Life distributions: structure of nonparametric, semiparametric, and parametric families
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Springer
2007
|
Schriftenreihe: | Springer series in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XX, 782 S. graph. Darst. |
ISBN: | 0387203338 9780387203331 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022301726 | ||
003 | DE-604 | ||
005 | 20150909 | ||
007 | t | ||
008 | 070307s2007 xxud||| |||| 00||| eng d | ||
016 | 7 | |a 968849113 |2 DE-101 | |
020 | |a 0387203338 |9 0-387-20333-8 | ||
020 | |a 9780387203331 |c hbk |9 978-0-387-20333-1 | ||
035 | |a (OCoLC)77795745 | ||
035 | |a (DE-599)BVBBV022301726 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-355 |a DE-824 |a DE-521 |a DE-384 |a DE-20 |a DE-83 | ||
050 | 0 | |a QA273.6 | |
082 | 0 | |a 519.24 |2 22 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a 27 |2 sdnb | ||
100 | 1 | |a Marshall, Albert W. |e Verfasser |0 (DE-588)1053449909 |4 aut | |
245 | 1 | 0 | |a Life distributions |b structure of nonparametric, semiparametric, and parametric families |c Albert W. Marshall ; Ingram Olkin |
264 | 1 | |a New York |b Springer |c 2007 | |
300 | |a XX, 782 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in statistics | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Distribution (Théorie des probabilités) | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 0 | 7 | |a Wahrscheinlichkeitsverteilung |0 (DE-588)4121894-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsverteilung |0 (DE-588)4121894-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Olkin, Ingram |d 1924-2016 |e Verfasser |0 (DE-588)118889036 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-68477-2 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015511708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015511708 |
Datensatz im Suchindex
_version_ | 1804136319638568960 |
---|---|
adam_text | Contents
Preface
............................................................................
vii
Acknowledgements
............................................................ xi
Basic
Notation and Terminology
........................................ xix
Part I. Basics
1.
Preliminaries.....
.......................................................... 3
A. Introduction
............................................................... 3
B. Probabilistic Descriptions
.............................................. 7
C. Moments and Other Expectations
.................................... 22
D. Families of Distributions
............................................... 25
E. Mixtures of Distributions: Introduction
............................. 26
F. Parametric Families: Basic Examples
................................ 28
G. Nonparametric Families: Basic Examples
........................... 30
H. Functions of Random Variables
....................................... 32
I. Inverse Distributions: The
Lorenz
Curve and the
Total Time on Test Transform
....................................... 35
2.
Ordering Distributions: Descriptive Statistics
................ 47
A. Magnitude
................................................................. 49
B. Dispersion
................................................................. 61
С
Shape
....................................................................... 67
D. Cone Orders
............................................................... 76
3.
Mixtures
..................................................................... 79
A. Basic Ideas
................................................................ 80
B. The Conditional Mixing Distribution
................................ 83
C. Limiting Hazard Rates
.................................................. 86
:iv Contents
D.
Hazard Transforms of Mixtures
....................................... 88
E. Mixtures and Minima
................................................... 92
F. Preservation of Orders Under Mixtures
............................. 94
Part II. Nonparametric Families
4.
Nonparametric Families: Densities and
Hazard Rates
.............................................................. 97
A. Introduction
............................................................... 97
B. Log-Concave and Log-Convex Densities
............................. 98
C. Monotone Hazard Rates
................................................ 103
D. Bathtub Hazard Rates
.................................................. 120
E. Determination of Hazard Rate Shape
................................ 133
5.
Nonparametric Families: Origins in
Reliability Theory
....................................................... 137
A. Coherent Systems
........................................................ 137
B. Monotone Hazard Rate Averages
..................................... 151
C. New Better (Worse) Than Used Distributions
..................... 161
D. Decreasing Mean Residual Life Distributions
...................... 169
E. New Better (Worse) Than Used in Expectation
Distributions
.............................................................. 173
F. Additional Nonparametric Families of Distributions
............. 177
G. Summary of Relationships and Closure Properties
................ 180
H. Shock Models
............................................................. 182
I. Replacement Policies: Renewal Theory
.............................. 187
J. Some Additional Families
.............................................. 192
6.
Nonparametric Families: Inequalities for Moments
and Survival Functions
................................................. 195
A. Results Concerning Moments
.......................................... 195
B. Bounds for Survival Functions
........................................ 198
Part III. Semiparametric Families
7.
Semiparametric Families
.............................................. 217
A. Introduction
............................................................... 217
B. Location Parameters
.................................................... 220
C. Scale Parameters
......................................................... 224
D. Power Parameters
........................................................ 228
Contents xv
E.
Frailty and Resilience Parameters: Proportional Hazards
and Reverse Hazards
.................................................... 232
F. Tilt Parameters: Proportional Odds Ratios,
Extreme Stable Families
................................................ 242
G. Hazard Power Parameters
.............................................. 256
H. Moment Parameters
..................................................... 258
I. Laplace Transform Parameters
........................................ 260
J. Convolution Parameters
................................................ 261
K. Age Parameters: Residual Life Families
............................. 264
L. Successive Additions of Parameters
.................................. 265
M. Mixing Semiparametric Families
...................................... 267
N.
Summary of Order Properties
......................................... 283
0. Additional Semiparametric Families
................................. 284
P. Distributions not Admitting Parameters
............................ 285
Part IV. Parametric Families
8.
The Exponential Distribution
....................................... 291
A. Defining Functions
...................................................... 292
B
.
Characterizations of the Exponential Distribution
................ 296
C. Some Basic Properties of Exponential Distributions
............. 302
9.
Parametric Extensions of the Exponential
Distribution
................................................................ 309
A. The Gamma Distribution
.............................................. 310
B. The Weibull Distribution
.............................................. 321
C. Exponential Distributions with a Resilience Parameter
......... 333
D
.
Exponential Distributions with a Tilt Parameter
................. 338
E. Generalized Gamma (Gamma-Weibull) Distribution
............ 348
F. Weibull Distribution with a Resilience Parameter
................ 353
G. Residual Life of the Weibull Distribution
........................... 355
H. Weibull Distribution with a Tilt Parameter
....................... 355
1. Generalized Gamma Convolutions
................................... 359
J. Summary of Distributions and Hazard Rates
...................... 360
10.
Gompertz and Gompertz-Makeham Distributions
.......... 363
A. The Gompertz Distribution
........................................... 364
B. The Extensions of Makeham
.......................................... 375
С
Further Extensions of the Gompertz Distribution
................ 390
D. Summary of Distributions and Hazard Rates
...................... 396
xvi Contents
11. Pareto and
F Distributions
and Their
Parametric Extensions
................................................. 399
A. Introduction
.............................................................. 399
B. Pareto Distributions
.................................................... 400
C. Generalized
F
Distribution
............................................ 411
D. The
F
Distribution
...................................................... 418
E. Ordering Pareto and
F
Distributions
................................ 423
F
.
Another Generalization of the Pareto Distribution
............... 424
12.
Logarithmic Distributions
............................................ 427
A. Introduction
.............................................................. 427
B. The
Lognormal
Distribution
.......................................... 431
С
Log Logistic Distributions
............................................. 441
D. Log Extreme Value Distributions
.................................... 442
E. The Log Cauchy Distribution
......................................... 443
F. The Log Student s
í
Distribution
..................................... 445
G. Alternatives for the Logarithm Function
........................... 445
13.
The Inverse Gaussian Distribution
................................ 451
A. The Inverse Gaussian Distribution
................................... 452
B. The Generalized Inverse Gaussian Distribution
................... 459
C. The Birnbaum-Saunders Distribution
............................... 466
14.
Distributions with Bounded Support
............................. 473
A. Introduction
.............................................................. 473
B. The Uniform Distribution and One-Parameter
Extensions
................................................................ 475
C. The Beta Distribution
.................................................. 479
D. Additional Two-Parameter Extensions of the
Uniform Distribution
................................................... 489
E. Introduction of a Scale Parameter
................................... 493
F. Algebraic Structure of the Distributions on
[0, 1]................. 494
15.
Additional Parametric Families
..................................... 497
A.
Noncentral Chi-Square
Distributions
................................ 497
B.
Noncentral F
Distributions
............................................ 501
C. A
Noncentral
Beta Distribution and the
Noncentral
Squared Multiple Correlation Distribution
......................... 504
D
.
Log Distributions from
Nonnegative
Random Variables
......... 509
E. Another Extension of the Exponential Distribution
.............. 518
F. Weibull-Pareto-Beta Distribution
................................... 521
Contents xvii
G.
Composite Distributions
............................................... 523
H.
Stable Distributions
..................................................... 529
Part V. Models Involving Several Variables
16.
Covariate Models
......................................................... 533
A. Introduction
.............................................................. 533
B. Some Regression Models
............................................... 536
C. Regression Models for Other Parameters
........................... 540
17.
Several Types of Failure: Competing Risks
.................... 541
A. Definitions and Notation
............................................... 542
B. The Problem of Identifiability
........................................ 547
C. Assumption of Independence
.......................................... 549
D. Verifiability of Independence
.......................................... 554
E. Known Copula
........................................................... 555
F. Positively Dependent Latent Variables
.............................. 557
Part VI. More About Semi-parametric Families
18.
Characterizations Through Coincidences of
Semiparametric Families
.............................................. 563
A. Introduction
.............................................................. 564
B. Coincidences Leading to Continuous Distributions
............... 568
C. Coincidences Leading to Discrete Distributions
................... 596
D. Unresolved Coincidences
............................................... 607
19.
More About Semiparametric Families
........................... 611
A. Introduction: Stability Criteria
....................................... 611
B
.
Classification of Parameters
........................................... 612
C. Derivation of Families
.................................................. 619
D.
Orderings
Generated by Semiparametric Families
................ 626
E. Related Stronger Orders
............................................... 630
Part
VII.
Complementary Topics
20.
Some Topics from Probability Theory
........................... 635
A. Foundations
............................................................... 635
B. Moments
.................................................................. 644
C. Convergence
.............................................................. 650
xviii Contents
D
.
Laplace Transforms and Infinite Divisibility
....................... 653
E. Some Discrete Distributions
........................................... 658
F. Poisson
and
Pólya
Processes: Renewal Theory
.................... 663
G. Extreme-Value Distributions
.......................................... 669
H. Chebyshev s Covariance Inequality
.................................. 673
I. Multivariate Basics
...................................................... 674
21.
Convexity and Total
Positivity
...................................... 687
A. Convex Functions
........................................................ 687
B. Total
Positivity
.......................................................... 694
22.
Some Functional Equations
........................................... 701
A. Cauchy s Equations
..................................................... 701
B. Variants of Cauchy s Equations
....................................... 704
C. Some Additional Functional Equations
............................. 712
23.
Gamma and Beta Functions
......................................... 717
A. The Gamma Function
.................................................. 717
B. The Beta Function
...................................................... 722
24.
Some Topics from Analysis..
......................................... 729
A. Basic Results from Calculus
........................................... 729
B. Some Results Concerning Lebesgue Integrals
...................... 731
References
........................................................................ 733
Author Index
................................................................... 763
Subject Index
................................................................... 771
|
adam_txt |
Contents
Preface
.
vii
Acknowledgements
. xi
Basic
Notation and Terminology
. xix
Part I. Basics
1.
Preliminaries.
. 3
A. Introduction
. 3
B. Probabilistic Descriptions
. 7
C. Moments and Other Expectations
. 22
D. Families of Distributions
. 25
E. Mixtures of Distributions: Introduction
. 26
F. Parametric Families: Basic Examples
. 28
G. Nonparametric Families: Basic Examples
. 30
H. Functions of Random Variables
. 32
I. Inverse Distributions: The
Lorenz
Curve and the
Total Time on Test Transform
. 35
2.
Ordering Distributions: Descriptive Statistics
. 47
A. Magnitude
. 49
B. Dispersion
. 61
С
Shape
. 67
D. Cone Orders
. 76
3.
Mixtures
. 79
A. Basic Ideas
. 80
B. The Conditional Mixing Distribution
. 83
C. Limiting Hazard Rates
. 86
:iv Contents
D.
Hazard Transforms of Mixtures
. 88
E. Mixtures and Minima
. 92
F. Preservation of Orders Under Mixtures
. 94
Part II. Nonparametric Families
4.
Nonparametric Families: Densities and
Hazard Rates
. 97
A. Introduction
. 97
B. Log-Concave and Log-Convex Densities
. 98
C. Monotone Hazard Rates
. 103
D. Bathtub Hazard Rates
. 120
E. Determination of Hazard Rate Shape
. 133
5.
Nonparametric Families: Origins in
Reliability Theory
. 137
A. Coherent Systems
. 137
B. Monotone Hazard Rate Averages
. 151
C. New Better (Worse) Than Used Distributions
. 161
D. Decreasing Mean Residual Life Distributions
. 169
E. New Better (Worse) Than Used in Expectation
Distributions
. 173
F. Additional Nonparametric Families of Distributions
. 177
G. Summary of Relationships and Closure Properties
. 180
H. Shock Models
. 182
I. Replacement Policies: Renewal Theory
. 187
J. Some Additional Families
. 192
6.
Nonparametric Families: Inequalities for Moments
and Survival Functions
. 195
A. Results Concerning Moments
. 195
B. Bounds for Survival Functions
. 198
Part III. Semiparametric Families
7.
Semiparametric Families
. 217
A. Introduction
. 217
B. Location Parameters
. 220
C. Scale Parameters
. 224
D. Power Parameters
. 228
Contents xv
E.
Frailty and Resilience Parameters: Proportional Hazards
and Reverse Hazards
. 232
F. Tilt Parameters: Proportional Odds Ratios,
Extreme Stable Families
. 242
G. Hazard Power Parameters
. 256
H. Moment Parameters
. 258
I. Laplace Transform Parameters
. 260
J. Convolution Parameters
. 261
K. Age Parameters: Residual Life Families
. 264
L. Successive Additions of Parameters
. 265
M. Mixing Semiparametric Families
. 267
N.
Summary of Order Properties
. 283
0. Additional Semiparametric Families
. 284
P. Distributions not Admitting Parameters
. 285
Part IV. Parametric Families
8.
The Exponential Distribution
. 291
A. Defining Functions
. 292
B
.
Characterizations of the Exponential Distribution
. 296
C. Some Basic Properties of Exponential Distributions
. 302
9.
Parametric Extensions of the Exponential
Distribution
. 309
A. The Gamma Distribution
. 310
B. The Weibull Distribution
. 321
C. Exponential Distributions with a Resilience Parameter
. 333
D
.
Exponential Distributions with a Tilt Parameter
. 338
E. Generalized Gamma (Gamma-Weibull) Distribution
. 348
F. Weibull Distribution with a Resilience Parameter
. 353
G. Residual Life of the Weibull Distribution
. 355
H. Weibull Distribution with a Tilt Parameter
. 355
1. Generalized Gamma Convolutions
. 359
J. Summary of Distributions and Hazard Rates
. 360
10.
Gompertz and Gompertz-Makeham Distributions
. 363
A. The Gompertz Distribution
. 364
B. The Extensions of Makeham
. 375
С
Further Extensions of the Gompertz Distribution
. 390
D. Summary of Distributions and Hazard Rates
. 396
xvi Contents
11. Pareto and
F Distributions
and Their
Parametric Extensions
. 399
A. Introduction
. 399
B. Pareto Distributions
. 400
C. Generalized
F
Distribution
. 411
D. The
F
Distribution
. 418
E. Ordering Pareto and
F
Distributions
. 423
F
.
Another Generalization of the Pareto Distribution
. 424
12.
Logarithmic Distributions
. 427
A. Introduction
. 427
B. The
Lognormal
Distribution
. 431
С
Log Logistic Distributions
. 441
D. Log Extreme Value Distributions
. 442
E. The Log Cauchy Distribution
. 443
F. The Log Student's
í
Distribution
. 445
G. Alternatives for the Logarithm Function
. 445
13.
The Inverse Gaussian Distribution
. 451
A. The Inverse Gaussian Distribution
. 452
B. The Generalized Inverse Gaussian Distribution
. 459
C. The Birnbaum-Saunders Distribution
. 466
14.
Distributions with Bounded Support
. 473
A. Introduction
. 473
B. The Uniform Distribution and One-Parameter
Extensions
. 475
C. The Beta Distribution
. 479
D. Additional Two-Parameter Extensions of the
Uniform Distribution
. 489
E. Introduction of a Scale Parameter
. 493
F. Algebraic Structure of the Distributions on
[0, 1]. 494
15.
Additional Parametric Families
. 497
A.
Noncentral Chi-Square
Distributions
. 497
B.
Noncentral F
Distributions
. 501
C. A
Noncentral
Beta Distribution and the
Noncentral
Squared Multiple Correlation Distribution
. 504
D
.
Log Distributions from
Nonnegative
Random Variables
. 509
E. Another Extension of the Exponential Distribution
. 518
F. Weibull-Pareto-Beta Distribution
. 521
Contents xvii
G.
Composite Distributions
. 523
H.
Stable Distributions
. 529
Part V. Models Involving Several Variables
16.
Covariate Models
. 533
A. Introduction
. 533
B. Some Regression Models
. 536
C. Regression Models for Other Parameters
. 540
17.
Several Types of Failure: Competing Risks
. 541
A. Definitions and Notation
. 542
B. The Problem of Identifiability
. 547
C. Assumption of Independence
. 549
D. Verifiability of Independence
. 554
E. Known Copula
. 555
F. Positively Dependent Latent Variables
. 557
Part VI. More About Semi-parametric Families
18.
Characterizations Through Coincidences of
Semiparametric Families
. 563
A. Introduction
. 564
B. Coincidences Leading to Continuous Distributions
. 568
C. Coincidences Leading to Discrete Distributions
. 596
D. Unresolved Coincidences
. 607
19.
More About Semiparametric Families
. 611
A. Introduction: Stability Criteria
. 611
B
.
Classification of Parameters
. 612
C. Derivation of Families
. 619
D.
Orderings
Generated by Semiparametric Families
. 626
E. Related Stronger Orders
. 630
Part
VII.
Complementary Topics
20.
Some Topics from Probability Theory
. 635
A. Foundations
. 635
B. Moments
. 644
C. Convergence
. 650
xviii Contents
D
.
Laplace Transforms and Infinite Divisibility
. 653
E. Some Discrete Distributions
. 658
F. Poisson
and
Pólya
Processes: Renewal Theory
. 663
G. Extreme-Value Distributions
. 669
H. Chebyshev's Covariance Inequality
. 673
I. Multivariate Basics
. 674
21.
Convexity and Total
Positivity
. 687
A. Convex Functions
. 687
B. Total
Positivity
. 694
22.
Some Functional Equations
. 701
A. Cauchy's Equations
. 701
B. Variants of Cauchy's Equations
. 704
C. Some Additional Functional Equations
. 712
23.
Gamma and Beta Functions
. 717
A. The Gamma Function
. 717
B. The Beta Function
. 722
24.
Some Topics from Analysis.
. 729
A. Basic Results from Calculus
. 729
B. Some Results Concerning Lebesgue Integrals
. 731
References
. 733
Author Index
. 763
Subject Index
. 771 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Marshall, Albert W. Olkin, Ingram 1924-2016 |
author_GND | (DE-588)1053449909 (DE-588)118889036 |
author_facet | Marshall, Albert W. Olkin, Ingram 1924-2016 |
author_role | aut aut |
author_sort | Marshall, Albert W. |
author_variant | a w m aw awm i o io |
building | Verbundindex |
bvnumber | BV022301726 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273.6 |
callnumber-search | QA273.6 |
callnumber-sort | QA 3273.6 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 233 SK 830 |
ctrlnum | (OCoLC)77795745 (DE-599)BVBBV022301726 |
dewey-full | 519.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.24 |
dewey-search | 519.24 |
dewey-sort | 3519.24 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01913nam a2200469 c 4500</leader><controlfield tag="001">BV022301726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150909 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070307s2007 xxud||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">968849113</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387203338</subfield><subfield code="9">0-387-20333-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387203331</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-387-20333-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)77795745</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022301726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marshall, Albert W.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1053449909</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Life distributions</subfield><subfield code="b">structure of nonparametric, semiparametric, and parametric families</subfield><subfield code="c">Albert W. Marshall ; Ingram Olkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 782 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Théorie des probabilités)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsverteilung</subfield><subfield code="0">(DE-588)4121894-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsverteilung</subfield><subfield code="0">(DE-588)4121894-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olkin, Ingram</subfield><subfield code="d">1924-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118889036</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-68477-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015511708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015511708</subfield></datafield></record></collection> |
id | DE-604.BV022301726 |
illustrated | Illustrated |
index_date | 2024-07-02T16:55:20Z |
indexdate | 2024-07-09T20:54:31Z |
institution | BVB |
isbn | 0387203338 9780387203331 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015511708 |
oclc_num | 77795745 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-824 DE-521 DE-384 DE-20 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-824 DE-521 DE-384 DE-20 DE-83 |
physical | XX, 782 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Springer series in statistics |
spelling | Marshall, Albert W. Verfasser (DE-588)1053449909 aut Life distributions structure of nonparametric, semiparametric, and parametric families Albert W. Marshall ; Ingram Olkin New York Springer 2007 XX, 782 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in statistics Hier auch später erschienene, unveränderte Nachdrucke Distribution (Théorie des probabilités) Distribution (Probability theory) Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd rswk-swf Wahrscheinlichkeitsverteilung (DE-588)4121894-2 s DE-604 Olkin, Ingram 1924-2016 Verfasser (DE-588)118889036 aut Erscheint auch als Online-Ausgabe 978-0-387-68477-2 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015511708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Marshall, Albert W. Olkin, Ingram 1924-2016 Life distributions structure of nonparametric, semiparametric, and parametric families Distribution (Théorie des probabilités) Distribution (Probability theory) Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd |
subject_GND | (DE-588)4121894-2 |
title | Life distributions structure of nonparametric, semiparametric, and parametric families |
title_auth | Life distributions structure of nonparametric, semiparametric, and parametric families |
title_exact_search | Life distributions structure of nonparametric, semiparametric, and parametric families |
title_exact_search_txtP | Life distributions structure of nonparametric, semiparametric, and parametric families |
title_full | Life distributions structure of nonparametric, semiparametric, and parametric families Albert W. Marshall ; Ingram Olkin |
title_fullStr | Life distributions structure of nonparametric, semiparametric, and parametric families Albert W. Marshall ; Ingram Olkin |
title_full_unstemmed | Life distributions structure of nonparametric, semiparametric, and parametric families Albert W. Marshall ; Ingram Olkin |
title_short | Life distributions |
title_sort | life distributions structure of nonparametric semiparametric and parametric families |
title_sub | structure of nonparametric, semiparametric, and parametric families |
topic | Distribution (Théorie des probabilités) Distribution (Probability theory) Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd |
topic_facet | Distribution (Théorie des probabilités) Distribution (Probability theory) Wahrscheinlichkeitsverteilung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015511708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT marshallalbertw lifedistributionsstructureofnonparametricsemiparametricandparametricfamilies AT olkiningram lifedistributionsstructureofnonparametricsemiparametricandparametricfamilies |