Plant diversity effects on N and P cycling in an experimental grassland:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Fachgebiete Bodenkunde, Standortkunde und Bodenschutz, Inst. für Ökologie, Techn. Univ. Berlin
2007
|
Schriftenreihe: | Bodenökologie und Bodengenese
39 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 125 S. graph. Darst. CD-ROM (12 cm) |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022295407 | ||
003 | DE-604 | ||
005 | 20190605 | ||
007 | t | ||
008 | 070302s2007 d||| m||| 00||| eng d | ||
035 | |a (OCoLC)162439062 | ||
035 | |a (DE-599)BVBBV022295407 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29 |a DE-12 |a DE-91 |a DE-634 |a DE-83 | ||
082 | 0 | |a 577.4 |2 22/ger | |
084 | |a UMW 163d |2 stub | ||
100 | 1 | |a Oelmann, Yvonne |e Verfasser |4 aut | |
245 | 1 | 0 | |a Plant diversity effects on N and P cycling in an experimental grassland |c Yvonne Oelmann |
264 | 1 | |a Berlin |b Fachgebiete Bodenkunde, Standortkunde und Bodenschutz, Inst. für Ökologie, Techn. Univ. Berlin |c 2007 | |
300 | |a XIII, 125 S. |b graph. Darst. |e CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Bodenökologie und Bodengenese |v 39 | |
502 | |a Zugl.: Berlin, Techn. Univ., Diss., 2006 | ||
546 | |a Zsfassung in dt. Sprache | ||
650 | 0 | 7 | |a Pflanzen |0 (DE-588)4045539-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biodiversität |0 (DE-588)4601495-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pflanzenart |0 (DE-588)4297311-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Phosphorkreislauf |0 (DE-588)4174433-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stickstoffkreislauf |0 (DE-588)4183276-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökosystem |0 (DE-588)4043216-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Artenreichtum |0 (DE-588)4131912-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grünland |0 (DE-588)4158359-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Pflanzenart |0 (DE-588)4297311-9 |D s |
689 | 0 | 1 | |a Ökosystem |0 (DE-588)4043216-6 |D s |
689 | 0 | 2 | |a Artenreichtum |0 (DE-588)4131912-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Pflanzen |0 (DE-588)4045539-7 |D s |
689 | 1 | 1 | |a Biodiversität |0 (DE-588)4601495-0 |D s |
689 | 1 | 2 | |a Grünland |0 (DE-588)4158359-0 |D s |
689 | 1 | 3 | |a Stickstoffkreislauf |0 (DE-588)4183276-0 |D s |
689 | 1 | 4 | |a Phosphorkreislauf |0 (DE-588)4174433-0 |D s |
689 | 1 | |C b |5 DE-604 | |
830 | 0 | |a Bodenökologie und Bodengenese |v 39 |w (DE-604)BV004387243 |9 39 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015505491&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015505491 |
Datensatz im Suchindex
_version_ | 1804136310787538944 |
---|---|
adam_text | Leader
Contents
Contents.......................................................................................................................I
List of tables..............................................................................................................V
List of figures..........................................................................................................VII
List of abbreviations..................................................................................................X
Summary..................................................................................................................XI
Zusammenfassung...................................................................................................XII
Acknowledgments.................................................................................................Xin
A Snmmarming overview ¦¦¦¦..•¦¦...............¦¦*.¦..•¦¦¦.¦¦¦«•¦•.¦¦¦¦...•••••.»¦¦¦¦•»«•¦•«¦¦••¦».¦•• •¦¦¦¦»•• »¦¦•« 1
1. Introduction........................................................................................................................2
2. Materials and Methods.......................................................................................................4
2.1 Study site......................................................................................................................4
2.2 Sampling.......................................................................................................................5
2.3 Incubation.....................................................................................................................6
2.4 Extractions and chemical analyses...............................................................................7
2.5 Calculations and statistical analyses............................................................................8
3. Results and Discussion.....................................................................................................10
3.1 Soil and plant nitrogen pools as related to plant diversity in an experimental
grassland (Section B, pp 29-52).................................................................................10
3.2 Nitrogen-15 in NO3 characterizes differently reactive soil organic N pools
(Section C, pp 53-65).................................................................................................10
3.3 Nitrate leaching in soil: tracing the NO3 sources with the help of stable N and O
isotopes (Section D, pp 67-82)...................................................................................11
3.4 Is plant diversity a control of phosphorus concentrations in soil solution?
(Section E, pp 83-97).................................................................................................11
3.5 N and P budgets in artificially assembled grassland mixtures
(Section F, pp 99-124)................................................................................................12
3.6 Does the relationship between biodiversity and N and P cycling in an
experimental grassland change in two years after establishment?.............................13
3.7 Error discussion..........................................................................................................18
4. General conclusions.........................................................................................................22
5. References........................................................................................................................23
B Soil and plant nitrogen pools as related to plant diversity in an experimental
.. ... ..................... .... ........... ..................,.....,.....*.....*............••...#•••••••••••. 29
................. ..... ................................................
1. Abstract............................................................................................................................30
2. Introduction......................................................................................................................31
3. Materials and Methods.....................................................................................................32
3.1 Study site....................................................................................................................32
3.2 Sampling.....................................................................................................................33
3.3 Extractions and chemical analyses.............................................................................34
3.4 Calculations and statistical analyses..........................................................................35
4. Results..............................................................................................................................36
4.1 Mineral N in soil solid phase......................................................................................36
4.2 Organic and total N in soil solution...........................................................................38
4.3 Plant community N concentrations and pools............................................................42
5. Discussion........................................................................................................................45
5.1 Mineral N in soil solid phase......................................................................................45
5.2 Organic and total N in soil solution...........................................................................46
5.3 Plant community N concentrations and pools............................................................47
6. Conclusions......................................................................................................................48
7. Acknowledgments.............................................................................................................48
8. References........................................................................................................................49
C Nirrogen-15 in NO3 characterizes differently reactive soil organic N pooh..........— 53
1. Abstract............................................................................................................................54
2. Introduction......................................................................................................................55
3. Methods............................................................................................................................55
3.1 Study site and sampling..............................................................................................55
3.2 Incubation experiment................................................................................................56
3.3 Statistical analyses......................................................................................................57
4. Results..............................................................................................................................58
5. Discussion........................................................................................................................60
5.1 N mineralization.........................................................................................................60
5.2 S15N in NO3 ...............................................................................................................61
6. Conclusions......................................................................................................................63
7. Acknowledgments.............................................................................................................63
8. References........................................................................................................................63
Leader
D Nitrate leaching in soil: tracing the NO3 sources with the help of stable N and O
isotopes • ¦.•¦•*•¦••••¦¦•¦•¦••••..¦¦*•••¦¦.••••••••••••¦¦•••• .•••»»¦ .. »••¦• .».¦.•••. ¦¦»¦..¦....•..•¦.......... ....¦. .¦«.. 67
1. Abstract............................................................................................................................68
2. Introduction......................................................................................................................69
3. Methods............................................................................................................................70
3.1 Study site....................................................................................................................70
3.2 Sampling at the field site............................................................................................70
3.3 Incubation experiment................................................................................................71
3.4 Chemical analyses......................................................................................................72
3.5 Calculations and statistical analyses..........................................................................73
4. Results..............................................................................................................................74
3.1 Nitrate leaching..........................................................................................................74
3.2 Nitrate sources............................................................................................................76
5. Discussion........................................................................................................................77
5.1 Nitrate leaching..........................................................................................................77
5.2 Nitrate sources............................................................................................................79
6. Conclusions......................................................................................................................79
7. Acknowledgments.............................................................................................................79
8. References........................................................................................................................80
E Is plant diversity a control of phosphorus concentrations in soil solution?-....—...... 83
1. Abstract............................................................................................................................84
2. Introduction......................................................................................................................85
3. Methods............................................................................................................................86
3.1 Study site....................................................................................................................86
3.2 Sampling and chemical analyses................................................................................86
3.3 Statistics.....................................................................................................................87
4. Results..............................................................................................................................88
4.1 Phosphorus concentrations in soil solution................................................................88
4.2 Plant effects................................................................................................................90
5. Discussion........................................................................................................................92
5.1 Phosphorus concentrations in soil solution................................................................92
5.2 Plant effects................................................................................................................93
6. Conclusions......................................................................................................................94
7. Acknowledgments.............................................................................................................95
8. References........................................................................................................................95
HI
F Nitrogen and phosphorus budgets in experimental grasslands of variable
diversity.._______.._________...__________.....................................................................99
1. Abstract..........................................................................................................................100
2. Introduction....................................................................................................................101
3. Methods..........................................................................................................................103
3.1 Study site..................................................................................................................103
3.2 Sampling...................................................................................................................103
3.3 Chemical analyses....................................................................................................104
3.4 Calculations and statistical analyses........................................................................105
4. Results............................................................................................................................107
4.1 Net budget................................................................................................................107
4.2 Effect of functional groups and species richness.....................................................110
5. Discussion......................................................................................................................113
5.1 Net budget................................................................................................................113
5.2 Effect of functional groups and species richness.....................................................115
6. Conclusions....................................................................................................................116
7. Acknowledgments...........................................................................................................117
8. References......................................................................................................................117
G Appendo________________________________________________________________125
IV
Leader
List of tables
Table A-1: Detection limits and analyzers (CFA: Continuous flow analyzer, CE:
capillary electrophoresis) of the respective elements (TON: total dissolved
N, TDP: total dissolved P) in solution................................................................19
Table B-l : Results of a repeated measures ANOVA (type I sum of squares) of soil
NO3 concentrations (KC1 extracts) for autumn 2002, spring, summer,
autumn 2003, spring, autumn 2004, and spring 2005 with the effect of
species richness fitted first and the respective functional groups fitted after
functional group richness. Non-significant interactions between non-
significant factors as well as non-significant interactions of Within Subject
Effects (Time*x) are excluded from this table...................................................38
Table B-2: Results of a repeated measures ANOVA (type I sum of squares) of
volume-weighted mean (vwm) concentrations of dissolved organic N
(DON) in soil solution in spring 2003, winter 2003/04, and spring 2004
with the effect of species richness fitted first and the respective functional
groups fitted after functional group richness. Non-significant interactions
between non-significant factors as well as non-significant interactions of
Within Subject Effects (Time*x) are excluded from this table.........................40
Table B-3: Results of a repeated measures ANOVA (type I sum of squares) of
volume-weighted mean (vwm) concentrations of total dissolved N (TDN)
in soil solution in spring 2003, winter 2003/04, and spring 2004 with the
effect of species richness fitted first and the respective functional groups
fitted after functional group richness. Non-significant interactions between
non-significant factors as well as non-significant interactions of Within
Subject Effects (Time*x) are excluded from this table.....................................42
Table B-4: Results of a repeated measures ANOVA (type I sum of squares) N
concentrations in aboveground plant community with time: September
2002, May 2003, August 2003, May 2004 and August 2004. The effect of
species richness was fitted first and the respective functional groups were
fitted after functional group richness. Non-significant interactions between
non-significant actors as well as non-significant interactions of Within
Subject Effects (Time*x) are excluded from this table.....................................44
Table B-S: Results of a repeated measures ANOVA (type I sum of squares) of N
pools in aboveground plant community with time: September 2002, May
2003, August 2 003, May 2004 and August 2004. The effect of species
richness was fitted first and the respective functional groups were fitted
after functional group richness. Non-significant interactions between non-
significant factors as well as non-significant interactions of Wimin Subject
Effects (Time*x) are excluded from this table..................................................44
Table C-l: Soil properties before incubation and cumulative NO3~-N mineralization
(meaniSE)........................................................................................................58
Table D-l: Cumulative NCV-N leaching and cumulative rainfall under field
conditions and during incubation. * treatment disturbance, * treatment
control,c N-free nutrient solution.......................................................................76
Table E-1 : Résulte of a repeated measures ANOVA results of volume-weighted mean
PO4-P concentrations in soil solution at 0.1,0.2,0.3, and 0.6 m soil depth
in spring 2003, winter 2003/2004, and spring 2004...........................................88
Table F-1: Volume and volume-weighted mean (VWM) total N, total P, and Cl
concentrations in the respective solutions averaged across all investigated
plots. Values are given as mean ± SE..............................................................108
Table F-2: Nitrogen and P deposition and leaching classified according to the
presence (+) or absence (-) of legumes (+: n = 13; -: n = 7) or grasses (+:
n = 8; -: n = 12). Values are given as mean ± SE. Different letters
following the values indicate significant differences between
presence/absence of the respective functional plant group (t test, p 0.05).... 109
Table F-3: Nitrate nitrogen, NH4-N, and dissolved organic N (DON) deposition and
leaching. Values are given as mean ± SE. Legumes (Le) or grasses (Gr)
following the values indicate significant differences between
presence/absence of the respective functional plant group (t test, p 0.05).... 110
VI
Leader
List of figures
Figure A-l : Design of the experiment (aerial photograph taken by Jussi Baade)...................5
Figure A-2: N and P cycling in the studied grassland ecosystem. WD: wet deposition,
DD: dry deposition, H: harvest; cLEA: leaching from the canopy (negative
values indicate uptake by the canopy); TFD: throughfall deposition;
sSTOR: soil storage of plant-available NO3-N or PO4-P in October 2002;
sLEA: leaching from soil; gLOSS: gaseous loss as N2O and NO*
estimated based on literature on comparable German grassland sites
(Kammann et al. 1998; Glatzel and Stahr 2001; Flechard et al. 2005);
fixN: fixation of atmospheric N2 by legumes estimated by means of N
yield of legumes. Except for sSTOR (g m 2, 0.3 m depth), all values are
expressed as g m 2 yr . The thickness of the arrows corresponds to the
mass of N or P except for values £ 0.2...............................................................14
Figure A-3: Relationship between the number of plant species and volume-weighted
mean (vwm) TON (a, c, e, g) and TOP (b, d, f, g) concentrations in soil
solution (at 20 cm soil depth) in spring and autumn 2003, winter 2003/04,
and spring 04......................................................................................................15
Figure A-4: In the respective seasons, TON and TOP leaching from the canopy (cLEA;
negative values represent uptake by the plants = gain, positive values
indicate leaching from die canopy = loss) (a, b), and N and P removal with
the harvest (c, d). na = not available; circles and stars represent extremes
and outliers, respectively....................................................................................16
Figure B-l: Mean concentrations of NO3 in KC1 extracts of the different sampling
dates for plots with and without legumes (A) and plots with and without
grasses (B). mo = month, yr = year. Data are presented as mean ± SE.............36
Figure B-2: Relationship between species richness differentiated according to the
presence of legumes (A), or grasses (C), or functional group richness
differentiated according to the presence of legumes (B), or grasses (D),
and concentrations of NO3 in KC1 extracts in autumn 2003. Data are
presented as mean ± standard error (SE). Note that there is no
60-species mixture without legumes..................................................................37
Figure B-3: Relationship between species richness differentiated according to the
presence of legumes (A), or grasses (C), or functional group richness
differentiated according to the presence of legumes (B), or grasses (D),
and volume-weighted mean (vwm) concentrations of dissolved organic N
(DON) and in spring 2003. Data are presented as mean ± standard error
(SE). Note mat mere is no 60-species mixture without legumes.......................39
Figure B-4: Relationship between species richness differentiated according to die
presence of legumes (a), or grasses (b), or functional group richness
differentiated according to the presence of legumes (c), or grasses (d), and
volume-weighted mean (vwm) concentrations of total dissolved N (TON)
in spring 2003. Data are presented as mean ± standard error (SE). Note
that there is no 60-species mixture without legumes.........................................41
Figure B-5: Relationship between species richness and mean N pools (g N m 2) in
plant community (aboveground) in May 2003 differentiated according to
the presence of legumes (A), or grasses (C), and functional group richness
differentiated according to the presence of legumes (B), or grasses (D).
Data are presented as mean ± standard error (SE). Note mat there is no
60-species mixture without legumes..................................................................43
VII
60
Figure C-I : MV-N mineralization normalized to the initial N concentration of the soil
during ten weeks of incubation: a) weekly mineralization rates of NOs -N,
and b) cumulative mass of NO3*-N (mean ± SE)...............................................59
Figure C-2: 815N values in NO3 of the leachates during ten weeks of incubation a) for
individual treatments, and b) mean ± SE of all treatments. Solid line
represents 8l5N values of the solid soil phase, the dashed line is related to
8 T^I values of roots of Medicago x varia Martyn (root material provided
by H. Bessler and C. Engels, Humboldt University Berlin, Germany)..........
Figure D-l: (a) Seepage water to greater depth than 0.35 m (1 m 2), and (b) NO3 -N
concentrations (mg I 1) in soil solution at 0.3 m depth of bare ground plots
(open circles, n = 3) and legume monocultures (filled triangles, n = 3), and
of the Medicago x varia monoculture only (open triangles, n = 1, also
included in mean of legume monocultures) from April 03 to May 04..............74
Figure D-2: Calculated (a) NÛ3~-N input (g N m 2) through bulk deposition (open
diamonds, n = 3), and (b) NÛ3 -N leaching (g N m*2) of bare ground plots
(open circles, n = 3) and legume monocultures (filled triangles, n = 3), and
of the Medicago x varia monoculture (open triangles, n = 1, also included
in mean of legume monocultures) from April 03 to May 04. Error bars
represent +SE frequently smaller than the symbols of the means. Note
different dimensions of y-axes...........................................................................75
Figure D-3: S15N (AIR) and 818O (SMOW) values in NO3 (%o) of rainfall (open
diamonds), of mineralization of leguminous SOM (open triangles), of
mineralization of non-leguminous SOM (open circles), and of soil solution
field samples (filled quads)................................................................................77
Figure E-l: Volume-weighted mean PO4-P (A) and DOP (B) concentrations, in soil
solution at 0.1, 0.2, 0.3, and 0.6 m soil depth in spring 2003 (March to
May), winter 2003/2004 (December to February), spring 2004 (March to
May), and winter 2004/05 (December to February). Note differing
numbers of replicates because Block 2 had suction plates at all four study
depths and Blocks 1 and 3 only at 0.3 m (0.1, 0.2, and 0.6 m: n = 21,
0.3 m: n = 63). Data represented as box-and-whisker plots. Whiskers refer
to the range (Minimum - Maximum) of the data...............................................89
Figure E-2: The number of functional groups (A, B, C, D) related to volume-weighted
mean PO4-P concentrations at 0.2 m soil depth in spring 2003 (March to
May) (A), winter 2003/04 (December to February) (B), spring 2004
(March to May) (C), and winter 2004/05 (December to February) (D).
Data represented as box and whisker plots. Whiskers refer to the range
(Minimum - Maximum) of the data. Diamonds represent the mean values.
Lines refer to the regression of mean vwm PO4-P concentrations and
functional group richness excluding bare ground plots (functional group
richness = 0)...................................................................................................
Figure E-3: The number of plant species (A, B, C, D) related to volume-weighted
mean PO4-P concentrations at 0.2 m soil depth in spring 2003 (March to
May) (A), winter 2003/04 (December to February) (B), spring 2004
(March to May) (C), and winter 2004/05 (December to February) (D).
Data represented as box and whisker plots. Whiskers refer to the range
(Minimum - Maximum) of the data. Diamonds represent the mean values.
Lines refer to the regression of mean vwm PO4-P concentrations and
species richness excluding bare ground plots (species richness = 0).............
90
91
VIM
Leader
Figure F-l: Conceptual diagram of the in- and outputs in the studied grassland.
BD = bulk deposition (wet and coarse paniculate); DD = dry deposition
(fine particulate); M = mowing; sLEA = leaching from soil; fixN =
fixation of atmospheric N2; gLOSS = gaseous N loss.....................................107
Figure F-2: Nitrogen and P balance including total deposition, N fixation (based on N
yield of legumes), mowing, and leaching from soil. Gaseous N losses as
NOx or N2O were supposed to be negligible....................................................110
Figure F-3: Relationship between total biomass produced in 2003 and net N and P
budgets. N: r = 0.83, p 0.001 ; P: r = 0.96; p 0.001....................................111
Figure F-4: Relationship between total biomass produced in 2003 and througbfaJl
deposition (TFD) and leaching from the canopy (cLEA) of N (a, c) and P
(b, d). TFD P: r = 0.57, p 0.01; cLEA P: r = 0.56; p 0.01..........................112
IX
|
adam_txt |
Leader
Contents
Contents.I
List of tables.V
List of figures.VII
List of abbreviations.X
Summary.XI
Zusammenfassung.XII
Acknowledgments.Xin
A Snmmarming overview ¦¦¦¦.•¦¦.¦¦*.¦.•¦¦¦.¦¦¦«•¦•.¦¦¦¦.•••••.»¦¦¦¦•»«•¦•«¦¦••¦».¦•• •¦¦¦¦»•• »¦¦•« 1
1. Introduction.2
2. Materials and Methods.4
2.1 Study site.4
2.2 Sampling.5
2.3 Incubation.6
2.4 Extractions and chemical analyses.7
2.5 Calculations and statistical analyses.8
3. Results and Discussion.10
3.1 Soil and plant nitrogen pools as related to plant diversity in an experimental
grassland (Section B, pp 29-52).10
3.2 Nitrogen-15 in NO3" characterizes differently reactive soil organic N pools
(Section C, pp 53-65).10
3.3 Nitrate leaching in soil: tracing the NO3" sources with the help of stable N and O
isotopes (Section D, pp 67-82).11
3.4 Is plant diversity a control of phosphorus concentrations in soil solution?
(Section E, pp 83-97).11
3.5 N and P budgets in artificially assembled grassland mixtures
(Section F, pp 99-124).12
3.6 Does the relationship between biodiversity and N and P cycling in an
experimental grassland change in two years after establishment?.13
3.7 Error discussion.18
4. General conclusions.22
5. References.23
B Soil and plant nitrogen pools as related to plant diversity in an experimental
. . . . . .,.,.*.*.••.#•••••••••••. 29
. . .
1. Abstract.30
2. Introduction.31
3. Materials and Methods.32
3.1 Study site.32
3.2 Sampling.33
3.3 Extractions and chemical analyses.34
3.4 Calculations and statistical analyses.35
4. Results.36
4.1 Mineral N in soil solid phase.36
4.2 Organic and total N in soil solution.38
4.3 Plant community N concentrations and pools.42
5. Discussion.45
5.1 Mineral N in soil solid phase.45
5.2 Organic and total N in soil solution.46
5.3 Plant community N concentrations and pools.47
6. Conclusions.48
7. Acknowledgments.48
8. References.49
C Nirrogen-15 in NO3" characterizes differently reactive soil organic N pooh.— 53
1. Abstract.54
2. Introduction.55
3. Methods.55
3.1 Study site and sampling.55
3.2 Incubation experiment.56
3.3 Statistical analyses.57
4. Results.58
5. Discussion.60
5.1 N mineralization.60
5.2 S15N in NO3".61
6. Conclusions.63
7. Acknowledgments.63
8. References.63
Leader
D Nitrate leaching in soil: tracing the NO3" sources with the help of stable N and O
isotopes • ¦.•¦•*•¦••••¦¦•¦•¦••••.¦¦*•••¦¦.••••••••••••¦¦•••• .•••»»¦ . »••¦• .».¦.•••. ¦¦»¦.¦.•.•¦. .¦. .¦«. 67
1. Abstract.68
2. Introduction.69
3. Methods.70
3.1 Study site.70
3.2 Sampling at the field site.70
3.3 Incubation experiment.71
3.4 Chemical analyses.72
3.5 Calculations and statistical analyses.73
4. Results.74
3.1 Nitrate leaching.74
3.2 Nitrate sources.76
5. Discussion.77
5.1 Nitrate leaching.77
5.2 Nitrate sources.79
6. Conclusions.79
7. Acknowledgments.79
8. References.80
E Is plant diversity a control of phosphorus concentrations in soil solution?-.—. 83
1. Abstract.84
2. Introduction.85
3. Methods.86
3.1 Study site.86
3.2 Sampling and chemical analyses.86
3.3 Statistics.87
4. Results.88
4.1 Phosphorus concentrations in soil solution.88
4.2 Plant effects.90
5. Discussion.92
5.1 Phosphorus concentrations in soil solution.92
5.2 Plant effects.93
6. Conclusions.94
7. Acknowledgments.95
8. References.95
HI
F Nitrogen and phosphorus budgets in experimental grasslands of variable
diversity._._._.99
1. Abstract.100
2. Introduction.101
3. Methods.103
3.1 Study site.103
3.2 Sampling.103
3.3 Chemical analyses.104
3.4 Calculations and statistical analyses.105
4. Results.107
4.1 Net budget.107
4.2 Effect of functional groups and species richness.110
5. Discussion.113
5.1 Net budget.113
5.2 Effect of functional groups and species richness.115
6. Conclusions.116
7. Acknowledgments.117
8. References.117
G Appendo_125
IV
Leader
List of tables
Table A-1: Detection limits and analyzers (CFA: Continuous flow analyzer, CE:
capillary electrophoresis) of the respective elements (TON: total dissolved
N, TDP: total dissolved P) in solution.19
Table B-l : Results of a repeated measures ANOVA (type I sum of squares) of soil
NO3" concentrations (KC1 extracts) for autumn 2002, spring, summer,
autumn 2003, spring, autumn 2004, and spring 2005 with the effect of
species richness fitted first and the respective functional groups fitted after
functional group richness. Non-significant interactions between non-
significant factors as well as non-significant interactions of Within Subject
Effects (Time*x) are excluded from this table.38
Table B-2: Results of a repeated measures ANOVA (type I sum of squares) of
volume-weighted mean (vwm) concentrations of dissolved organic N
(DON) in soil solution in spring 2003, winter 2003/04, and spring 2004
with the effect of species richness fitted first and the respective functional
groups fitted after functional group richness. Non-significant interactions
between non-significant factors as well as non-significant interactions of
Within Subject Effects (Time*x) are excluded from this table.40
Table B-3: Results of a repeated measures ANOVA (type I sum of squares) of
volume-weighted mean (vwm) concentrations of total dissolved N (TDN)
in soil solution in spring 2003, winter 2003/04, and spring 2004 with the
effect of species richness fitted first and the respective functional groups
fitted after functional group richness. Non-significant interactions between
non-significant factors as well as non-significant interactions of Within
Subject Effects (Time*x) are excluded from this table.42
Table B-4: Results of a repeated measures ANOVA (type I sum of squares) N
concentrations in aboveground plant community with time: September
2002, May 2003, August 2003, May 2004 and August 2004. The effect of
species richness was fitted first and the respective functional groups were
fitted after functional group richness. Non-significant interactions between
non-significant actors as well as non-significant interactions of Within
Subject Effects (Time*x) are excluded from this table.44
Table B-S: Results of a repeated measures ANOVA (type I sum of squares) of N
pools in aboveground plant community with time: September 2002, May
2003, August 2 003, May 2004 and August 2004. The effect of species
richness was fitted first and the respective functional groups were fitted
after functional group richness. Non-significant interactions between non-
significant factors as well as non-significant interactions of Wimin Subject
Effects (Time*x) are excluded from this table.44
Table C-l: Soil properties before incubation and cumulative NO3~-N mineralization
(meaniSE).58
Table D-l: Cumulative NCV-N leaching and cumulative rainfall under field
conditions and during incubation. * treatment disturbance, * treatment
control,c N-free nutrient solution.76
Table E-1 : Résulte of a repeated measures ANOVA results of volume-weighted mean
PO4-P concentrations in soil solution at 0.1,0.2,0.3, and 0.6 m soil depth
in spring 2003, winter 2003/2004, and spring 2004.88
Table F-1: Volume and volume-weighted mean (VWM) total N, total P, and Cl"
concentrations in the respective solutions averaged across all investigated
plots. Values are given as mean ± SE.108
Table F-2: Nitrogen and P deposition and leaching classified according to the
presence (+) or absence (-) of legumes (+: n = 13; -: n = 7) or grasses (+:
n = 8; -: n = 12). Values are given as mean ± SE. Different letters
following the values indicate significant differences between
presence/absence of the respective functional plant group (t test, p 0.05). 109
Table F-3: Nitrate nitrogen, NH4-N, and dissolved organic N (DON) deposition and
leaching. Values are given as mean ± SE. Legumes (Le) or grasses (Gr)
following the values indicate significant differences between
presence/absence of the respective functional plant group (t test, p 0.05). 110
VI
Leader
List of figures
Figure A-l : Design of the experiment (aerial photograph taken by Jussi Baade).5
Figure A-2: N and P cycling in the studied grassland ecosystem. WD: wet deposition,
DD: dry deposition, H: harvest; cLEA: leaching from the canopy (negative
values indicate uptake by the canopy); TFD: throughfall deposition;
sSTOR: soil storage of plant-available NO3-N or PO4-P in October 2002;
sLEA: leaching from soil; gLOSS: gaseous loss as N2O and NO*
estimated based on literature on comparable German grassland sites
(Kammann et al. 1998; Glatzel and Stahr 2001; Flechard et al. 2005);
fixN: fixation of atmospheric N2 by legumes estimated by means of N
yield of legumes. Except for sSTOR (g m'2, 0.3 m depth), all values are
expressed as g m"2 yr'. The thickness of the arrows corresponds to the
mass of N or P except for values £ 0.2.14
Figure A-3: Relationship between the number of plant species and volume-weighted
mean (vwm) TON (a, c, e, g) and TOP (b, d, f, g) concentrations in soil
solution (at 20 cm soil depth) in spring and autumn 2003, winter 2003/04,
and spring 04.15
Figure A-4: In the respective seasons, TON and TOP leaching from the canopy (cLEA;
negative values represent uptake by the plants = gain, positive values
indicate leaching from die canopy = loss) (a, b), and N and P removal with
the harvest (c, d). na = not available; circles and stars represent extremes
and outliers, respectively.16
Figure B-l: Mean concentrations of NO3' in KC1 extracts of the different sampling
dates for plots with and without legumes (A) and plots with and without
grasses (B). mo = month, yr = year. Data are presented as mean ± SE.36
Figure B-2: Relationship between species richness differentiated according to the
presence of legumes (A), or grasses (C), or functional group richness
differentiated according to the presence of legumes (B), or grasses (D),
and concentrations of NO3" in KC1 extracts in autumn 2003. Data are
presented as mean ± standard error (SE). Note that there is no
60-species mixture without legumes.37
Figure B-3: Relationship between species richness differentiated according to the
presence of legumes (A), or grasses (C), or functional group richness
differentiated according to the presence of legumes (B), or grasses (D),
and volume-weighted mean (vwm) concentrations of dissolved organic N
(DON) and in spring 2003. Data are presented as mean ± standard error
(SE). Note mat mere is no 60-species mixture without legumes.39
Figure B-4: Relationship between species richness differentiated according to die
presence of legumes (a), or grasses (b), or functional group richness
differentiated according to the presence of legumes (c), or grasses (d), and
volume-weighted mean (vwm) concentrations of total dissolved N (TON)
in spring 2003. Data are presented as mean ± standard error (SE). Note
that there is no 60-species mixture without legumes.41
Figure B-5: Relationship between species richness and mean N pools (g N m'2) in
plant community (aboveground) in May 2003 differentiated according to
the presence of legumes (A), or grasses (C), and functional group richness
differentiated according to the presence of legumes (B), or grasses (D).
Data are presented as mean ± standard error (SE). Note mat there is no
60-species mixture without legumes.43
VII
60
Figure C-I : MV-N mineralization normalized to the initial N concentration of the soil
during ten weeks of incubation: a) weekly mineralization rates of NOs"-N,
and b) cumulative mass of NO3*-N (mean ± SE).59
Figure C-2: 815N values in NO3" of the leachates during ten weeks of incubation a) for
individual treatments, and b) mean ± SE of all treatments. Solid line
represents 8l5N values of the solid soil phase, the dashed line is related to
8'T^I values of roots of Medicago x varia Martyn (root material provided
by H. Bessler and C. Engels, Humboldt University Berlin, Germany).
Figure D-l: (a) Seepage water to greater depth than 0.35 m (1 m"2), and (b) NO3'-N
concentrations (mg I"1) in soil solution at 0.3 m depth of bare ground plots
(open circles, n = 3) and legume monocultures (filled triangles, n = 3), and
of the Medicago x varia monoculture only (open triangles, n = 1, also
included in mean of legume monocultures) from April 03 to May 04.74
Figure D-2: Calculated (a) NÛ3~-N input (g N m"2) through bulk deposition (open
diamonds, n = 3), and (b) NÛ3"-N leaching (g N m*2) of bare ground plots
(open circles, n = 3) and legume monocultures (filled triangles, n = 3), and
of the Medicago x varia monoculture (open triangles, n = 1, also included
in mean of legume monocultures) from April 03 to May 04. Error bars
represent +SE frequently smaller than the symbols of the means. Note
different dimensions of y-axes.75
Figure D-3: S15N (AIR) and 818O (SMOW) values in NO3" (%o) of rainfall (open
diamonds), of mineralization of leguminous SOM (open triangles), of
mineralization of non-leguminous SOM (open circles), and of soil solution
field samples (filled quads).77
Figure E-l: Volume-weighted mean PO4-P (A) and DOP (B) concentrations, in soil
solution at 0.1, 0.2, 0.3, and 0.6 m soil depth in spring 2003 (March to
May), winter 2003/2004 (December to February), spring 2004 (March to
May), and winter 2004/05 (December to February). Note differing
numbers of replicates because Block 2 had suction plates at all four study
depths and Blocks 1 and 3 only at 0.3 m (0.1, 0.2, and 0.6 m: n = 21,
0.3 m: n = 63). Data represented as box-and-whisker plots. Whiskers refer
to the range (Minimum - Maximum) of the data.89
Figure E-2: The number of functional groups (A, B, C, D) related to volume-weighted
mean PO4-P concentrations at 0.2 m soil depth in spring 2003 (March to
May) (A), winter 2003/04 (December to February) (B), spring 2004
(March to May) (C), and winter 2004/05 (December to February) (D).
Data represented as box and whisker plots. Whiskers refer to the range
(Minimum - Maximum) of the data. Diamonds represent the mean values.
Lines refer to the regression of mean vwm PO4-P concentrations and
functional group richness excluding bare ground plots (functional group
richness = 0).
Figure E-3: The number of plant species (A, B, C, D) related to volume-weighted
mean PO4-P concentrations at 0.2 m soil depth in spring 2003 (March to
May) (A), winter 2003/04 (December to February) (B), spring 2004
(March to May) (C), and winter 2004/05 (December to February) (D).
Data represented as box and whisker plots. Whiskers refer to the range
(Minimum - Maximum) of the data. Diamonds represent the mean values.
Lines refer to the regression of mean vwm PO4-P concentrations and
species richness excluding bare ground plots (species richness = 0).
90
91
VIM
Leader
Figure F-l: Conceptual diagram of the in- and outputs in the studied grassland.
BD = bulk deposition (wet and coarse paniculate); DD = dry deposition
(fine particulate); M = mowing; sLEA = leaching from soil; fixN =
fixation of atmospheric N2; gLOSS = gaseous N loss.107
Figure F-2: Nitrogen and P balance including total deposition, N fixation (based on N
yield of legumes), mowing, and leaching from soil. Gaseous N losses as
NOx or N2O were supposed to be negligible.110
Figure F-3: Relationship between total biomass produced in 2003 and net N and P
budgets. N: r = 0.83, p 0.001 ; P: r = 0.96; p 0.001.111
Figure F-4: Relationship between total biomass produced in 2003 and througbfaJl
deposition (TFD) and leaching from the canopy (cLEA) of N (a, c) and P
(b, d). TFD P: r = 0.57, p 0.01; cLEA P: r = 0.56; p 0.01.112
IX |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Oelmann, Yvonne |
author_facet | Oelmann, Yvonne |
author_role | aut |
author_sort | Oelmann, Yvonne |
author_variant | y o yo |
building | Verbundindex |
bvnumber | BV022295407 |
classification_tum | UMW 163d |
ctrlnum | (OCoLC)162439062 (DE-599)BVBBV022295407 |
dewey-full | 577.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577.4 |
dewey-search | 577.4 |
dewey-sort | 3577.4 |
dewey-tens | 570 - Biology |
discipline | Biologie Umwelt |
discipline_str_mv | Biologie Umwelt |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02393nam a2200553 cb4500</leader><controlfield tag="001">BV022295407</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190605 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070302s2007 d||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162439062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022295407</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577.4</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UMW 163d</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oelmann, Yvonne</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plant diversity effects on N and P cycling in an experimental grassland</subfield><subfield code="c">Yvonne Oelmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Fachgebiete Bodenkunde, Standortkunde und Bodenschutz, Inst. für Ökologie, Techn. Univ. Berlin</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 125 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="e">CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Bodenökologie und Bodengenese</subfield><subfield code="v">39</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Berlin, Techn. Univ., Diss., 2006</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Zsfassung in dt. Sprache</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzen</subfield><subfield code="0">(DE-588)4045539-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biodiversität</subfield><subfield code="0">(DE-588)4601495-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzenart</subfield><subfield code="0">(DE-588)4297311-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phosphorkreislauf</subfield><subfield code="0">(DE-588)4174433-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stickstoffkreislauf</subfield><subfield code="0">(DE-588)4183276-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökosystem</subfield><subfield code="0">(DE-588)4043216-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Artenreichtum</subfield><subfield code="0">(DE-588)4131912-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grünland</subfield><subfield code="0">(DE-588)4158359-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pflanzenart</subfield><subfield code="0">(DE-588)4297311-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ökosystem</subfield><subfield code="0">(DE-588)4043216-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Artenreichtum</subfield><subfield code="0">(DE-588)4131912-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Pflanzen</subfield><subfield code="0">(DE-588)4045539-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Biodiversität</subfield><subfield code="0">(DE-588)4601495-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Grünland</subfield><subfield code="0">(DE-588)4158359-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Stickstoffkreislauf</subfield><subfield code="0">(DE-588)4183276-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Phosphorkreislauf</subfield><subfield code="0">(DE-588)4174433-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Bodenökologie und Bodengenese</subfield><subfield code="v">39</subfield><subfield code="w">(DE-604)BV004387243</subfield><subfield code="9">39</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015505491&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015505491</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV022295407 |
illustrated | Illustrated |
index_date | 2024-07-02T16:53:13Z |
indexdate | 2024-07-09T20:54:22Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015505491 |
oclc_num | 162439062 |
open_access_boolean | |
owner | DE-29 DE-12 DE-91 DE-BY-TUM DE-634 DE-83 |
owner_facet | DE-29 DE-12 DE-91 DE-BY-TUM DE-634 DE-83 |
physical | XIII, 125 S. graph. Darst. CD-ROM (12 cm) |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Fachgebiete Bodenkunde, Standortkunde und Bodenschutz, Inst. für Ökologie, Techn. Univ. Berlin |
record_format | marc |
series | Bodenökologie und Bodengenese |
series2 | Bodenökologie und Bodengenese |
spelling | Oelmann, Yvonne Verfasser aut Plant diversity effects on N and P cycling in an experimental grassland Yvonne Oelmann Berlin Fachgebiete Bodenkunde, Standortkunde und Bodenschutz, Inst. für Ökologie, Techn. Univ. Berlin 2007 XIII, 125 S. graph. Darst. CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Bodenökologie und Bodengenese 39 Zugl.: Berlin, Techn. Univ., Diss., 2006 Zsfassung in dt. Sprache Pflanzen (DE-588)4045539-7 gnd rswk-swf Biodiversität (DE-588)4601495-0 gnd rswk-swf Pflanzenart (DE-588)4297311-9 gnd rswk-swf Phosphorkreislauf (DE-588)4174433-0 gnd rswk-swf Stickstoffkreislauf (DE-588)4183276-0 gnd rswk-swf Ökosystem (DE-588)4043216-6 gnd rswk-swf Artenreichtum (DE-588)4131912-6 gnd rswk-swf Grünland (DE-588)4158359-0 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Pflanzenart (DE-588)4297311-9 s Ökosystem (DE-588)4043216-6 s Artenreichtum (DE-588)4131912-6 s DE-604 Pflanzen (DE-588)4045539-7 s Biodiversität (DE-588)4601495-0 s Grünland (DE-588)4158359-0 s Stickstoffkreislauf (DE-588)4183276-0 s Phosphorkreislauf (DE-588)4174433-0 s b DE-604 Bodenökologie und Bodengenese 39 (DE-604)BV004387243 39 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015505491&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Oelmann, Yvonne Plant diversity effects on N and P cycling in an experimental grassland Bodenökologie und Bodengenese Pflanzen (DE-588)4045539-7 gnd Biodiversität (DE-588)4601495-0 gnd Pflanzenart (DE-588)4297311-9 gnd Phosphorkreislauf (DE-588)4174433-0 gnd Stickstoffkreislauf (DE-588)4183276-0 gnd Ökosystem (DE-588)4043216-6 gnd Artenreichtum (DE-588)4131912-6 gnd Grünland (DE-588)4158359-0 gnd |
subject_GND | (DE-588)4045539-7 (DE-588)4601495-0 (DE-588)4297311-9 (DE-588)4174433-0 (DE-588)4183276-0 (DE-588)4043216-6 (DE-588)4131912-6 (DE-588)4158359-0 (DE-588)4113937-9 |
title | Plant diversity effects on N and P cycling in an experimental grassland |
title_auth | Plant diversity effects on N and P cycling in an experimental grassland |
title_exact_search | Plant diversity effects on N and P cycling in an experimental grassland |
title_exact_search_txtP | Plant diversity effects on N and P cycling in an experimental grassland |
title_full | Plant diversity effects on N and P cycling in an experimental grassland Yvonne Oelmann |
title_fullStr | Plant diversity effects on N and P cycling in an experimental grassland Yvonne Oelmann |
title_full_unstemmed | Plant diversity effects on N and P cycling in an experimental grassland Yvonne Oelmann |
title_short | Plant diversity effects on N and P cycling in an experimental grassland |
title_sort | plant diversity effects on n and p cycling in an experimental grassland |
topic | Pflanzen (DE-588)4045539-7 gnd Biodiversität (DE-588)4601495-0 gnd Pflanzenart (DE-588)4297311-9 gnd Phosphorkreislauf (DE-588)4174433-0 gnd Stickstoffkreislauf (DE-588)4183276-0 gnd Ökosystem (DE-588)4043216-6 gnd Artenreichtum (DE-588)4131912-6 gnd Grünland (DE-588)4158359-0 gnd |
topic_facet | Pflanzen Biodiversität Pflanzenart Phosphorkreislauf Stickstoffkreislauf Ökosystem Artenreichtum Grünland Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015505491&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004387243 |
work_keys_str_mv | AT oelmannyvonne plantdiversityeffectsonnandpcyclinginanexperimentalgrassland |