Generalized linear models with random effects: unified analysis via h-likelihood
"Presenting methods for fitting generalized linear models (GLMs) with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including meta-analysis of combining information over trials, analysis of frailty...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL [u.a.]
Chapman & Hall/CRC
2006
|
Schriftenreihe: | Monographs on statistics and applied probability
106 |
Schlagworte: | |
Online-Zugang: | Table of contents only Publisher description Inhaltsverzeichnis |
Zusammenfassung: | "Presenting methods for fitting generalized linear models (GLMs) with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including meta-analysis of combining information over trials, analysis of frailty models for survival data, and analysis of spatial models with correlated errors. Punctuated by real examples from medicine, epidemiology, agriculture, and more, the book includes background material on likelihood inference and GLMs as well as topics such as frailty models. It computes methods using Genstat, with datasets and software available on CD and online, making it easy to test alternative analyses"--Provided by publisher. |
Beschreibung: | Includes bibliographical references (p. 363-379) and indexes |
Beschreibung: | 396 S. Ill. 24 cm. + 1 CD-ROM (12 cm) |
ISBN: | 9781584886310 1584886315 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022291521 | ||
003 | DE-604 | ||
005 | 20171009 | ||
007 | t | ||
008 | 070228s2006 xxua||| |||| 00||| eng d | ||
010 | |a 2006045247 | ||
020 | |a 9781584886310 |9 978-1-58488-631-0 | ||
020 | |a 1584886315 |c alk. paper |9 1-584-88631-5 | ||
035 | |a (OCoLC)68416962 | ||
035 | |a (DE-599)BVBBV022291521 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-578 |a DE-19 |a DE-2070s | ||
050 | 0 | |a QA279 | |
082 | 0 | |a 519.5 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a MAT 627f |2 stub | ||
100 | 1 | |a Lee, Youngjo |e Verfasser |0 (DE-588)173864414 |4 aut | |
245 | 1 | 0 | |a Generalized linear models with random effects |b unified analysis via h-likelihood |c Youngjo Lee ; John A. Nelder ; Yudi Pawitan |
264 | 1 | |a Boca Raton, FL [u.a.] |b Chapman & Hall/CRC |c 2006 | |
300 | |a 396 S. |b Ill. |c 24 cm. + |e 1 CD-ROM (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Monographs on statistics and applied probability |v 106 | |
500 | |a Includes bibliographical references (p. 363-379) and indexes | ||
520 | 3 | |a "Presenting methods for fitting generalized linear models (GLMs) with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including meta-analysis of combining information over trials, analysis of frailty models for survival data, and analysis of spatial models with correlated errors. Punctuated by real examples from medicine, epidemiology, agriculture, and more, the book includes background material on likelihood inference and GLMs as well as topics such as frailty models. It computes methods using Genstat, with datasets and software available on CD and online, making it easy to test alternative analyses"--Provided by publisher. | |
650 | 4 | |a Linear models (Statistics) | |
650 | 4 | |a Generalized estimating equations | |
650 | 0 | 7 | |a Verallgemeinertes lineares Modell |0 (DE-588)4124382-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verallgemeinertes lineares Modell |0 (DE-588)4124382-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Nelder, John A. |d 1924-2010 |e Sonstige |0 (DE-588)1070718866 |4 oth | |
700 | 1 | |a Pawitan, Yudi |e Sonstige |4 oth | |
830 | 0 | |a Monographs on statistics and applied probability |v 106 |w (DE-604)BV002494005 |9 106 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/fy0701/2006045247.html |3 Table of contents only | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0654/2006045247-d.html |3 Publisher description | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015501694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015501694 |
Datensatz im Suchindex
_version_ | 1804136305696702464 |
---|---|
adam_text | Contents
List of notations
Preface
Introduction 1
1 Classical likelihood theory 5
1.1 Definition 5
1.2 Quantities derived from the likelihood 10
1.3 Profile likelihood 14
1.4 Distribution of the likelihood-ratio statistic 16
1.5 Distribution of the MLE and the Wald statistic 20
1.6 Model selection 24
1.7 Marginal and conditional likelihoods 25
1.8 Higher-order approximations 30
1.9 Adjusted profile likelihood 32
1.10 Bayesian and likelihood methods 34
1.11 Jacobian in likelihood methods 36
2 Generalized Linear Models 37
2.1 Linear models 37
2.2 Generalized linear models 42
2.3 Model checking 49
2.4 Examples 53
CONTENTS
3 Quasi-likelihood 65
3.1 Examples 68
3.2 Iterative weighted least squares 72
3.3 Asymptotic inference 73
3.4 Dispersion models 77
3.5 Extended quasi-likelihood 80
3.6 Joint GLM of mean and dispersion 85
3.7 Joint GLMs for quality improvement 90
4 Extended Likelihood Inferences 97
4.1 Two kinds of likelihood 98
4.2 Inference about the fixed parameters 103
4.3 Inference about the random parameters 105
4.4 Optimality in random-parameter estimation 108
4.5 Canonical scale, h-likelihood and joint inference 112
4.6 Statistical prediction 119
4.7 Regression as an extended model 121
4.8 *Missing or incomplete-data problems 122
4.9 Is marginal likelihood enough for inference about fixed
parameters? 130
4.10 Summary: likelihoods in extended framework 131
5 Normal linear mixed models 135
5.1 Developments of normal mixed linear models 138
5.2 Likelihood estimation of fixed parameters 141
5.3 Classical estimation of random effects 146
5.4 H-likelihood approach 155
5.5 Example 163
5.6 Invariance and likelihood inference 166
CONTENTS
6 Hierarchical GLMs 173
6.1 HGLMs 173
6.2 H-likelihood 175
6.3 Inferential procedures using h-likelihood 183
6.4 Penalized quasi-likelihood 189
6.5 Déviances in HGLMs 192
6.6 Examples 194
6.7 Choice of random-effect scale 199
7 HGLMs with structured dispersion 203
7.1 HGLMs with structured dispersion 203
7.2 Quasi-HGLMs 205
7.3 Examples 213
8 Correlated random effects for HGLMs 231
8.1 HGLMs with correlated random effects 231
8.2 Random effects described by fixed L matrices 233
8.3 Random effects described by a covariance matrix 235
8.4 Random effects described by a precision matrix 236
8.5 Fitting and model-checking 237
8.6 Examples 238
8.7 Twin and family data 251
8.8 *Ascertainment problem 264
9 Smoothing 267
9.1 Spline models 267
9.2 Mixed model framework 273
9.3 Automatic smoothing 278
9.4 Non-Gaussian smoothing 281
CONTENTS
10 Random-effect models for survival data 293
10.1 Proportional-hazard model 293
10.2 Frailty models and the associated h-likelihood 295
10.3 *Mixed linear models with censoring 307
10.4 Extensions 313
10.5 Proofs 315
11 Double HGLMs 319
11.1 DHGLMs 319
11.2 Models for finance data 323
11.3 Joint splines 324
11.4 H-likelihood procedure for fitting DHGLMs 325
11.5 Random effects in the A component 328
11.6 Examples 330
12 Further topics 343
12.1 Model for multivariate responses 344
12.2 Joint model for continuous and binary data 345
12.3 Joint model for repeated measures and survival time 348
12.4 Missing data in longitudinal studies 351
12.5 Denoising signals by imputation 357
References 363
Data Index 380
Author Index 381
Subject Index 385
|
adam_txt |
Contents
List of notations
Preface
Introduction 1
1 Classical likelihood theory 5
1.1 Definition 5
1.2 Quantities derived from the likelihood 10
1.3 Profile likelihood 14
1.4 Distribution of the likelihood-ratio statistic 16
1.5 Distribution of the MLE and the Wald statistic 20
1.6 Model selection 24
1.7 Marginal and conditional likelihoods 25
1.8 Higher-order approximations 30
1.9 Adjusted profile likelihood 32
1.10 Bayesian and likelihood methods 34
1.11 Jacobian in likelihood methods 36
2 Generalized Linear Models 37
2.1 Linear models 37
2.2 Generalized linear models 42
2.3 Model checking 49
2.4 Examples 53
CONTENTS
3 Quasi-likelihood 65
3.1 Examples 68
3.2 Iterative weighted least squares 72
3.3 Asymptotic inference 73
3.4 Dispersion models 77
3.5 Extended quasi-likelihood 80
3.6 Joint GLM of mean and dispersion 85
3.7 Joint GLMs for quality improvement 90
4 Extended Likelihood Inferences 97
4.1 Two kinds of likelihood 98
4.2 Inference about the fixed parameters 103
4.3 Inference about the random parameters 105
4.4 Optimality in random-parameter estimation 108
4.5 Canonical scale, h-likelihood and joint inference 112
4.6 Statistical prediction 119
4.7 Regression as an extended model 121
4.8 *Missing or incomplete-data problems 122
4.9 Is marginal likelihood enough for inference about fixed
parameters? 130
4.10 Summary: likelihoods in extended framework 131
5 Normal linear mixed models 135
5.1 Developments of normal mixed linear models 138
5.2 Likelihood estimation of fixed parameters 141
5.3 Classical estimation of random effects 146
5.4 H-likelihood approach 155
5.5 Example 163
5.6 Invariance and likelihood inference 166
CONTENTS
6 Hierarchical GLMs 173
6.1 HGLMs 173
6.2 H-likelihood 175
6.3 Inferential procedures using h-likelihood 183
6.4 Penalized quasi-likelihood 189
6.5 Déviances in HGLMs 192
6.6 Examples 194
6.7 Choice of random-effect scale 199
7 HGLMs with structured dispersion 203
7.1 HGLMs with structured dispersion 203
7.2 Quasi-HGLMs 205
7.3 Examples 213
8 Correlated random effects for HGLMs 231
8.1 HGLMs with correlated random effects 231
8.2 Random effects described by fixed L matrices 233
8.3 Random effects described by a covariance matrix 235
8.4 Random effects described by a precision matrix 236
8.5 Fitting and model-checking 237
8.6 Examples 238
8.7 Twin and family data 251
8.8 *Ascertainment problem 264
9 Smoothing 267
9.1 Spline models 267
9.2 Mixed model framework 273
9.3 Automatic smoothing 278
9.4 Non-Gaussian smoothing 281
CONTENTS
10 Random-effect models for survival data 293
10.1 Proportional-hazard model 293
10.2 Frailty models and the associated h-likelihood 295
10.3 *Mixed linear models with censoring 307
10.4 Extensions 313
10.5 Proofs 315
11 Double HGLMs 319
11.1 DHGLMs 319
11.2 Models for finance data 323
11.3 Joint splines 324
11.4 H-likelihood procedure for fitting DHGLMs 325
11.5 Random effects in the A component 328
11.6 Examples 330
12 Further topics 343
12.1 Model for multivariate responses 344
12.2 Joint model for continuous and binary data 345
12.3 Joint model for repeated measures and survival time 348
12.4 Missing data in longitudinal studies 351
12.5 Denoising signals by imputation 357
References 363
Data Index 380
Author Index 381
Subject Index 385 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Lee, Youngjo |
author_GND | (DE-588)173864414 (DE-588)1070718866 |
author_facet | Lee, Youngjo |
author_role | aut |
author_sort | Lee, Youngjo |
author_variant | y l yl |
building | Verbundindex |
bvnumber | BV022291521 |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279 |
callnumber-search | QA279 |
callnumber-sort | QA 3279 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 233 |
classification_tum | MAT 627f |
ctrlnum | (OCoLC)68416962 (DE-599)BVBBV022291521 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02906nam a2200505zcb4500</leader><controlfield tag="001">BV022291521</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171009 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070228s2006 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006045247</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584886310</subfield><subfield code="9">978-1-58488-631-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584886315</subfield><subfield code="c">alk. paper</subfield><subfield code="9">1-584-88631-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)68416962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022291521</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-2070s</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 627f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Youngjo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173864414</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized linear models with random effects</subfield><subfield code="b">unified analysis via h-likelihood</subfield><subfield code="c">Youngjo Lee ; John A. Nelder ; Yudi Pawitan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">396 S.</subfield><subfield code="b">Ill.</subfield><subfield code="c">24 cm. +</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monographs on statistics and applied probability</subfield><subfield code="v">106</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 363-379) and indexes</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Presenting methods for fitting generalized linear models (GLMs) with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including meta-analysis of combining information over trials, analysis of frailty models for survival data, and analysis of spatial models with correlated errors. Punctuated by real examples from medicine, epidemiology, agriculture, and more, the book includes background material on likelihood inference and GLMs as well as topics such as frailty models. It computes methods using Genstat, with datasets and software available on CD and online, making it easy to test alternative analyses"--Provided by publisher.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized estimating equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verallgemeinertes lineares Modell</subfield><subfield code="0">(DE-588)4124382-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verallgemeinertes lineares Modell</subfield><subfield code="0">(DE-588)4124382-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelder, John A.</subfield><subfield code="d">1924-2010</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1070718866</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pawitan, Yudi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monographs on statistics and applied probability</subfield><subfield code="v">106</subfield><subfield code="w">(DE-604)BV002494005</subfield><subfield code="9">106</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/fy0701/2006045247.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0654/2006045247-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015501694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015501694</subfield></datafield></record></collection> |
id | DE-604.BV022291521 |
illustrated | Illustrated |
index_date | 2024-07-02T16:51:57Z |
indexdate | 2024-07-09T20:54:18Z |
institution | BVB |
isbn | 9781584886310 1584886315 |
language | English |
lccn | 2006045247 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015501694 |
oclc_num | 68416962 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-578 DE-19 DE-BY-UBM DE-2070s |
owner_facet | DE-91G DE-BY-TUM DE-578 DE-19 DE-BY-UBM DE-2070s |
physical | 396 S. Ill. 24 cm. + 1 CD-ROM (12 cm) |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Chapman & Hall/CRC |
record_format | marc |
series | Monographs on statistics and applied probability |
series2 | Monographs on statistics and applied probability |
spelling | Lee, Youngjo Verfasser (DE-588)173864414 aut Generalized linear models with random effects unified analysis via h-likelihood Youngjo Lee ; John A. Nelder ; Yudi Pawitan Boca Raton, FL [u.a.] Chapman & Hall/CRC 2006 396 S. Ill. 24 cm. + 1 CD-ROM (12 cm) txt rdacontent n rdamedia nc rdacarrier Monographs on statistics and applied probability 106 Includes bibliographical references (p. 363-379) and indexes "Presenting methods for fitting generalized linear models (GLMs) with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including meta-analysis of combining information over trials, analysis of frailty models for survival data, and analysis of spatial models with correlated errors. Punctuated by real examples from medicine, epidemiology, agriculture, and more, the book includes background material on likelihood inference and GLMs as well as topics such as frailty models. It computes methods using Genstat, with datasets and software available on CD and online, making it easy to test alternative analyses"--Provided by publisher. Linear models (Statistics) Generalized estimating equations Verallgemeinertes lineares Modell (DE-588)4124382-1 gnd rswk-swf Verallgemeinertes lineares Modell (DE-588)4124382-1 s DE-604 Nelder, John A. 1924-2010 Sonstige (DE-588)1070718866 oth Pawitan, Yudi Sonstige oth Monographs on statistics and applied probability 106 (DE-604)BV002494005 106 http://www.loc.gov/catdir/toc/fy0701/2006045247.html Table of contents only http://www.loc.gov/catdir/enhancements/fy0654/2006045247-d.html Publisher description HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015501694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lee, Youngjo Generalized linear models with random effects unified analysis via h-likelihood Monographs on statistics and applied probability Linear models (Statistics) Generalized estimating equations Verallgemeinertes lineares Modell (DE-588)4124382-1 gnd |
subject_GND | (DE-588)4124382-1 |
title | Generalized linear models with random effects unified analysis via h-likelihood |
title_auth | Generalized linear models with random effects unified analysis via h-likelihood |
title_exact_search | Generalized linear models with random effects unified analysis via h-likelihood |
title_exact_search_txtP | Generalized linear models with random effects unified analysis via h-likelihood |
title_full | Generalized linear models with random effects unified analysis via h-likelihood Youngjo Lee ; John A. Nelder ; Yudi Pawitan |
title_fullStr | Generalized linear models with random effects unified analysis via h-likelihood Youngjo Lee ; John A. Nelder ; Yudi Pawitan |
title_full_unstemmed | Generalized linear models with random effects unified analysis via h-likelihood Youngjo Lee ; John A. Nelder ; Yudi Pawitan |
title_short | Generalized linear models with random effects |
title_sort | generalized linear models with random effects unified analysis via h likelihood |
title_sub | unified analysis via h-likelihood |
topic | Linear models (Statistics) Generalized estimating equations Verallgemeinertes lineares Modell (DE-588)4124382-1 gnd |
topic_facet | Linear models (Statistics) Generalized estimating equations Verallgemeinertes lineares Modell |
url | http://www.loc.gov/catdir/toc/fy0701/2006045247.html http://www.loc.gov/catdir/enhancements/fy0654/2006045247-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015501694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002494005 |
work_keys_str_mv | AT leeyoungjo generalizedlinearmodelswithrandomeffectsunifiedanalysisviahlikelihood AT nelderjohna generalizedlinearmodelswithrandomeffectsunifiedanalysisviahlikelihood AT pawitanyudi generalizedlinearmodelswithrandomeffectsunifiedanalysisviahlikelihood |