Electromagnetic and optical pulse propagation: 1 Spectral representations in temporally dispersive media
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2006
|
Schriftenreihe: | Springer series in optical sciences
125 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XV, 456 S. graph. Darst. |
ISBN: | 038734599X 9780387345994 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV022289920 | ||
003 | DE-604 | ||
005 | 20090211 | ||
007 | t | ||
008 | 070227s2006 gw d||| |||| 00||| eng d | ||
020 | |a 038734599X |9 0-387-34599-X | ||
020 | |a 9780387345994 |9 978-0-387-34599-4 | ||
035 | |a (OCoLC)492812896 | ||
035 | |a (DE-599)BVBBV022289920 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T |a DE-91G |a DE-703 |a DE-20 |a DE-83 | ||
050 | 0 | |a QC670 | |
100 | 1 | |a Oughstun, Kurt E. |e Verfasser |0 (DE-588)141460865 |4 aut | |
245 | 1 | 0 | |a Electromagnetic and optical pulse propagation |n 1 |p Spectral representations in temporally dispersive media |c Kurt E. Oughstun |
264 | 1 | |a New York, NY |b Springer |c 2006 | |
300 | |a XV, 456 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in optical sciences |v 125 | |
490 | 0 | |a Springer series in optical sciences |v ... | |
650 | 7 | |a Mouvement ondulatoire, Théorie du |2 ram | |
650 | 7 | |a Ondes électromagnétiques - Propagation |2 ram | |
650 | 7 | |a Théorie électromagnétique |2 ram | |
650 | 4 | |a Electromagnetic theory | |
650 | 4 | |a Electromagnetic waves | |
650 | 4 | |a Wave-motion, Theory of | |
773 | 0 | 8 | |w (DE-604)BV022289890 |g 1 |
830 | 0 | |a Springer series in optical sciences |v 125 |w (DE-604)BV000000237 |9 125 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2803936&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015500116&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015500116 |
Datensatz im Suchindex
_version_ | 1804136303573336064 |
---|---|
adam_text | Contents
1
Introduction
.............................................. 1
1.1 Motivation ............................................ 1
1.2
A Critical History of Previous Research
................... 4
1.3
Organization of the Book
................................ 29
References
................................................. 35
Problems
.................................................. 45
2
Microscopic Electromagnetics
............................. 47
2.1
The Microscopic Maxwell-Lorentz Theory
................. 48
2.1.1
Differential Form of the Microscopic Maxwell Equations
51
2.1.2
Integral Form of the Microscopic Maxwell Equations
.. 59
2.2
Invariance
of the Maxwell-Lorentz Equations
.............. 67
2.2.1
Transformation Laws in Special Relativity
........... 68
2.2.2
Transformation of Dynamical Quantities
............ 75
2.2.3
Interdependence of Electric and Magnetic Fields
..... 81
2.2.4
Transformation Relations for Electric and Magnetic
Fields
........................................... 83
2.2.5
Invariance
of Maxwell s Equations
.................. 85
2.3
Conservation Laws for the Microscopic Electromagnetic Field
88
2.3.1
Conservation of Energy and Poynting s Theorem
..... 88
2.3.2
Conservation of Linear Momentum
................. 92
2.3.3
Conservation of Angular Momentum
................ 95
2.4
Uniqueness of Solution
.................................. 98
References
.................................................103
Problems
..................................................104
3
Microscopic Potentials and Radiation
.....................109
3.1
The Microscopic Electromagnetic Potentials
...............109
3.1.1
The
Lorenz
Condition and the
Lorenz
Gauge
........112
3.1.2
The Coulomb Gauge
..............................113
3.1.3
The Retarded Potentials
..........................116
3.2
The Hertz Potential and Elemental
Dipole
Radiation
........119
3.2.1
The Hertz Potential
..............................120
3.2.2
Radiation from an Elemental Hertzian
Dipole........124
3.3
Liénard-Wiechert
Potentials
.............................125
XII Contents
3.3.1
The Liénard-Wiechert
Potentials
...................125
3.3.2
The Field Produced by a Moving Charged Particle
... 130
3.3.3
Radiated Energy from a Moving Charged Particle
-----136
3.4
The Radiation Field Produced by a General
Dipole
Oscillator
137
3.4.1
The Field Vectors Produced by a General
Dipole
Oscillator
.......................................
138
3.4.2
The Electric
Dipole
Approximation
.................144
3.4.3
The Field Produced by a Monochromatic
Dipole
Oscillator in the Electric
Dipole
Approximation
......147
3.5
The Complex Potential and the Scalar Optical Field
........155
3.5.1
The Wave Equation for the Complex Potential
.......157
3.5.2
Electromagnetic Energy and Momentum Densities
.... 157
3.5.3
A Scalar Representation of the Optical Field
.........158
References
.................................................162
Problems
..................................................162
4
Macroscopic Electromagnetics
............................165
4.1
Correlation of Microscopic and Macroscopic Electromagnetics
165
4.1.1
Spatial Average of the Microscopic Field Equations
.. . 166
4.1.2
Spatial Average of the Charge Density
..............167
4.1.3
Spatial Average of the Current Density
..............172
4.1.4
The Macroscopic Maxwell Equations
................175
4.2
Constitutive Relations in Linear Electromagnetics and Optics
178
4.3
Causality and Dispersion Relations
.......................182
4.3.1
The Dielectric Permitivity
.........................184
4.3.2
The Electric Conductivity
.........................187
4.3.3
The Magnetic Permeability
........................189
4.4
Causal Models of the Material Dispersion
..................193
4.4.1
The Lorentz-Lorenz Relation
......................196
4.4.2
The Debye Model of Orientational Polarization
.......197
4.4.3
Generalizations of the Debye Model
.................201
4.4.4
The Classical
Lorentz
Model of Resonance Polarization
207
4.4.5
Composite Model of the Dielectric Permittivity
......214
4.4.6
Composite Model of the Magnetic Permeability
......215
4.4.7
The
Drude
Model of Free Electron Metals
...........217
References
.................................................218
Problems
..................................................220
5
Fundamental Field Equations in a Temporally Dispersive
Medium
..................................................221
5.1
Macroscopic Field Equations in Temporally Dispersive HILL
Media
.................................................221
5.1.1
Temporal Frequency Domain Representation
.........223
5.1.2
Complex Time-Harmonic Form of the Field Quantities
225
5.1.3
The Harmonic Electromagnetic Plane Wave Field
.... 227
Contents XIII
5.2
Electromagnetic Energy and Energy
Flow
.................234
5.2.1
Poynting s Theorem and the Conservation
of Energy
. . 234
5.2.2
The Energy
Density and Evolved Heat in a Dispersive
and Absorptive Medium
...........................239
5.2.3
Complex Time-Harmonic Form of Poynting s Theorem
242
5.2.4
Electromagnetic Energy in the Harmonic Plane Wave
Field
...........................................248
5.2.5
Reversible and Irreversible Electrodynamic Processes
in Temporally Dispersive Media
....................249
5.2.6
Energy Velocity of a Time-Harmonic Field in a
Multiple- Resonance
Lorentz
Model Dielectric
........256
5.3
Boundary Conditions
...................................262
5.3.1
Boundary Conditions for Nonconducting Dielectric
Media
...........................................266
5.3.2
Boundary Conditions for Dielectric-Conductor
Interfaces
.......................................267
5.4
Discussion
.............................................273
References
.................................................274
Problems
..................................................275
The Angular Spectrum Representation of the Pulsed
Radiation Field
...........................................277
6.1
The Fourier-Laplace Integral Representation of the
Radiation Field
........................................278
6.2
Scalar and Vector Potentials for the Radiation Field
........284
6.2.1
The Nonconducting,
Nondispersive
Medium Case
.....288
6.2.2
The Spectral
Lorenz
Condition for Dispersive HILL
Media
...........................................289
6.3
Angular Spectrum of Plane Waves Representation of the
Radiation Field
........................................291
6.4
Polar Coordinate Form of the Angular Spectrum
Representation
.........................................299
6.4.1
Transformation to an Arbitrary Polar Axis
..........307
6.4.2
Weyl s Proof
.....................................310
6.4.3
Weyl s Integral Representation
.....................318
6.4.4
Sommerfeld s Integral Representation
...............320
6.4.5
Ott s Integral Representation
......................323
6.5
Applications
...........................................324
References
.................................................325
Problems
..................................................326
The Angular Spectrum Representation of Pulsed
Electromagnetic and Optical Beam Fields in Temporally
Dispersive Media
.........................................329
XIV Contents
7.1
The Angular Spectrum Representation of the Freely
Propagating Electromagnetic Field
.......................329
7.1.1
Geometric Form of the Angular Spectrum
Representation
...................................333
7.1.2
Angular Spectrum Representation and Huygen s
Principle
........................................341
7.2
Polarization Properties of the Freely Propagating
Electromagnetic Wave Field
.............................345
7.2.1
The Polarization Ellipse for the Complex Field Vectors
346
7.2.2
Propagation Properties of the Polarization Ellipse
.... 351
7.2.3
Relation Between the Electric and Magnetic
Polarizations
.....................................355
7.2.4
The Uniformly Polarized Wave Field
................357
7.3
Real Direction Cosine Form of the Angular Spectrum
Representation
.........................................361
7.4
Pulsed Electromagnetic Beam Fields and Source-Free Fields
. 366
7.4.1
General Properties of Source-Free Wave Fields
.......367
7.4.2
Separable Pulsed Beam Fields
.....................381
References
.................................................384
Problems
..................................................385
8
Free Fields in Temporally Dispersive Media
..............387
8.1
Laplace-Fourier Representation of the Free Field
...........387
8.1.1
Plane Wave Expansion of the Free Field in a
Nondispersive
Nonconducting Medium
..............391
8.1.2
Uniqueness of the Plane Wave Expansion of the
Initial Value Problem
.............................396
8.2
Transformation to Spherical Coordinates in k-Space
........399
8.2.1
Plane Wave Representations and Mode Expansions
. .. 401
8.2.2
Polar Coordinate Axis Along the Direction of
Observation
.....................................403
8.3
Propagation of the Free Electromagnetic Field
.............405
8.3.1
Initial Field Values Confined Within a Sphere of
Radius
R
........................................406
8.3.2
Initial Field Values Confined Inside a Closed Convex
Surface
..........................................410
8.3.3
Propagation of the Free Electromagnetic Wave Field
.. 413
References
.................................................418
Problems
..................................................418
A Helmholtz Theorem
......................................421
References
.................................................423
Contents
XV
В
The Dirac Delta Function
.................................425
B.I The One-Dimensional Dirac Delta Function
................425
B.2 The Dirac Delta Function in Higher Dimensions
............432
References
.................................................435
С
The Fourier-Laplace Transform
...........................437
References
.................................................440
D
The Effective Local Field
.................................441
References
.................................................444
E
Magnetic Field Contribution to the Classical
Lorentz
Model of Resonance Polarization
.........................445
References
.................................................448
Index
.........................................................449
|
adam_txt |
Contents
1
Introduction
. 1
1.1 Motivation . 1
1.2
A Critical History of Previous Research
. 4
1.3
Organization of the Book
. 29
References
. 35
Problems
. 45
2
Microscopic Electromagnetics
. 47
2.1
The Microscopic Maxwell-Lorentz Theory
. 48
2.1.1
Differential Form of the Microscopic Maxwell Equations
51
2.1.2
Integral Form of the Microscopic Maxwell Equations
. 59
2.2
Invariance
of the Maxwell-Lorentz Equations
. 67
2.2.1
Transformation Laws in Special Relativity
. 68
2.2.2
Transformation of Dynamical Quantities
. 75
2.2.3
Interdependence of Electric and Magnetic Fields
. 81
2.2.4
Transformation Relations for Electric and Magnetic
Fields
. 83
2.2.5
Invariance
of Maxwell's Equations
. 85
2.3
Conservation Laws for the Microscopic Electromagnetic Field
88
2.3.1
Conservation of Energy and Poynting's Theorem
. 88
2.3.2
Conservation of Linear Momentum
. 92
2.3.3
Conservation of Angular Momentum
. 95
2.4
Uniqueness of Solution
. 98
References
.103
Problems
.104
3
Microscopic Potentials and Radiation
.109
3.1
The Microscopic Electromagnetic Potentials
.109
3.1.1
The
Lorenz
Condition and the
Lorenz
Gauge
.112
3.1.2
The Coulomb Gauge
.113
3.1.3
The Retarded Potentials
.116
3.2
The Hertz Potential and Elemental
Dipole
Radiation
.119
3.2.1
The Hertz Potential
.120
3.2.2
Radiation from an Elemental Hertzian
Dipole.124
3.3
Liénard-Wiechert
Potentials
.125
XII Contents
3.3.1
The Liénard-Wiechert
Potentials
.125
3.3.2
The Field Produced by a Moving Charged Particle
. 130
3.3.3
Radiated Energy from a Moving Charged Particle
-----136
3.4
The Radiation Field Produced by a General
Dipole
Oscillator
137
3.4.1
The Field Vectors Produced by a General
Dipole
Oscillator
.
138
3.4.2
The Electric
Dipole
Approximation
.144
3.4.3
The Field Produced by a Monochromatic
Dipole
Oscillator in the Electric
Dipole
Approximation
.147
3.5
The Complex Potential and the Scalar Optical Field
.155
3.5.1
The Wave Equation for the Complex Potential
.157
3.5.2
Electromagnetic Energy and Momentum Densities
. 157
3.5.3
A Scalar Representation of the Optical Field
.158
References
.162
Problems
.162
4
Macroscopic Electromagnetics
.165
4.1
Correlation of Microscopic and Macroscopic Electromagnetics
165
4.1.1
Spatial Average of the Microscopic Field Equations
. . 166
4.1.2
Spatial Average of the Charge Density
.167
4.1.3
Spatial Average of the Current Density
.172
4.1.4
The Macroscopic Maxwell Equations
.175
4.2
Constitutive Relations in Linear Electromagnetics and Optics
178
4.3
Causality and Dispersion Relations
.182
4.3.1
The Dielectric Permitivity
.184
4.3.2
The Electric Conductivity
.187
4.3.3
The Magnetic Permeability
.189
4.4
Causal Models of the Material Dispersion
.193
4.4.1
The Lorentz-Lorenz Relation
.196
4.4.2
The Debye Model of Orientational Polarization
.197
4.4.3
Generalizations of the Debye Model
.201
4.4.4
The Classical
Lorentz
Model of Resonance Polarization
207
4.4.5
Composite Model of the Dielectric Permittivity
.214
4.4.6
Composite Model of the Magnetic Permeability
.215
4.4.7
The
Drude
Model of Free Electron Metals
.217
References
.218
Problems
.220
5
Fundamental Field Equations in a Temporally Dispersive
Medium
.221
5.1
Macroscopic Field Equations in Temporally Dispersive HILL
Media
.221
5.1.1
Temporal Frequency Domain Representation
.223
5.1.2
Complex Time-Harmonic Form of the Field Quantities
225
5.1.3
The Harmonic Electromagnetic Plane Wave Field
. 227
Contents XIII
5.2
Electromagnetic Energy and Energy
Flow
.234
5.2.1
Poynting's Theorem and the Conservation
of Energy
. . 234
5.2.2
The Energy
Density and Evolved Heat in a Dispersive
and Absorptive Medium
.239
5.2.3
Complex Time-Harmonic Form of Poynting's Theorem
242
5.2.4
Electromagnetic Energy in the Harmonic Plane Wave
Field
.248
5.2.5
Reversible and Irreversible Electrodynamic Processes
in Temporally Dispersive Media
.249
5.2.6
Energy Velocity of a Time-Harmonic Field in a
Multiple- Resonance
Lorentz
Model Dielectric
.256
5.3
Boundary Conditions
.262
5.3.1
Boundary Conditions for Nonconducting Dielectric
Media
.266
5.3.2
Boundary Conditions for Dielectric-Conductor
Interfaces
.267
5.4
Discussion
.273
References
.274
Problems
.275
The Angular Spectrum Representation of the Pulsed
Radiation Field
.277
6.1
The Fourier-Laplace Integral Representation of the
Radiation Field
.278
6.2
Scalar and Vector Potentials for the Radiation Field
.284
6.2.1
The Nonconducting,
Nondispersive
Medium Case
.288
6.2.2
The Spectral
Lorenz
Condition for Dispersive HILL
Media
.289
6.3
Angular Spectrum of Plane Waves Representation of the
Radiation Field
.291
6.4
Polar Coordinate Form of the Angular Spectrum
Representation
.299
6.4.1
Transformation to an Arbitrary Polar Axis
.307
6.4.2
Weyl's Proof
.310
6.4.3
Weyl's Integral Representation
.318
6.4.4
Sommerfeld's Integral Representation
.320
6.4.5
Ott's Integral Representation
.323
6.5
Applications
.324
References
.325
Problems
.326
The Angular Spectrum Representation of Pulsed
Electromagnetic and Optical Beam Fields in Temporally
Dispersive Media
.329
XIV Contents
7.1
The Angular Spectrum Representation of the Freely
Propagating Electromagnetic Field
.329
7.1.1
Geometric Form of the Angular Spectrum
Representation
.333
7.1.2
Angular Spectrum Representation and Huygen's
Principle
.341
7.2
Polarization Properties of the Freely Propagating
Electromagnetic Wave Field
.345
7.2.1
The Polarization Ellipse for the Complex Field Vectors
346
7.2.2
Propagation Properties of the Polarization Ellipse
. 351
7.2.3
Relation Between the Electric and Magnetic
Polarizations
.355
7.2.4
The Uniformly Polarized Wave Field
.357
7.3
Real Direction Cosine Form of the Angular Spectrum
Representation
.361
7.4
Pulsed Electromagnetic Beam Fields and Source-Free Fields
. 366
7.4.1
General Properties of Source-Free Wave Fields
.367
7.4.2
Separable Pulsed Beam Fields
.381
References
.384
Problems
.385
8
Free Fields in Temporally Dispersive Media
.387
8.1
Laplace-Fourier Representation of the Free Field
.387
8.1.1
Plane Wave Expansion of the Free Field in a
Nondispersive
Nonconducting Medium
.391
8.1.2
Uniqueness of the Plane Wave Expansion of the
Initial Value Problem
.396
8.2
Transformation to Spherical Coordinates in k-Space
.399
8.2.1
Plane Wave Representations and Mode Expansions
. . 401
8.2.2
Polar Coordinate Axis Along the Direction of
Observation
.403
8.3
Propagation of the Free Electromagnetic Field
.405
8.3.1
Initial Field Values Confined Within a Sphere of
Radius
R
.406
8.3.2
Initial Field Values Confined Inside a Closed Convex
Surface
.410
8.3.3
Propagation of the Free Electromagnetic Wave Field
. 413
References
.418
Problems
.418
A Helmholtz' Theorem
.421
References
.423
Contents
XV
В
The Dirac Delta Function
.425
B.I The One-Dimensional Dirac Delta Function
.425
B.2 The Dirac Delta Function in Higher Dimensions
.432
References
.435
С
The Fourier-Laplace Transform
.437
References
.440
D
The Effective Local Field
.441
References
.444
E
Magnetic Field Contribution to the Classical
Lorentz
Model of Resonance Polarization
.445
References
.448
Index
.449 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Oughstun, Kurt E. |
author_GND | (DE-588)141460865 |
author_facet | Oughstun, Kurt E. |
author_role | aut |
author_sort | Oughstun, Kurt E. |
author_variant | k e o ke keo |
building | Verbundindex |
bvnumber | BV022289920 |
callnumber-first | Q - Science |
callnumber-label | QC670 |
callnumber-raw | QC670 |
callnumber-search | QC670 |
callnumber-sort | QC 3670 |
callnumber-subject | QC - Physics |
ctrlnum | (OCoLC)492812896 (DE-599)BVBBV022289920 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01819nam a2200433 cc4500</leader><controlfield tag="001">BV022289920</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090211 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070227s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038734599X</subfield><subfield code="9">0-387-34599-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387345994</subfield><subfield code="9">978-0-387-34599-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)492812896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022289920</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC670</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oughstun, Kurt E.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141460865</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electromagnetic and optical pulse propagation</subfield><subfield code="n">1</subfield><subfield code="p">Spectral representations in temporally dispersive media</subfield><subfield code="c">Kurt E. Oughstun</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 456 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in optical sciences</subfield><subfield code="v">125</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in optical sciences</subfield><subfield code="v">...</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mouvement ondulatoire, Théorie du</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ondes électromagnétiques - Propagation</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie électromagnétique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave-motion, Theory of</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV022289890</subfield><subfield code="g">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in optical sciences</subfield><subfield code="v">125</subfield><subfield code="w">(DE-604)BV000000237</subfield><subfield code="9">125</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2803936&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015500116&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015500116</subfield></datafield></record></collection> |
id | DE-604.BV022289920 |
illustrated | Illustrated |
index_date | 2024-07-02T16:51:25Z |
indexdate | 2024-07-09T20:54:15Z |
institution | BVB |
isbn | 038734599X 9780387345994 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015500116 |
oclc_num | 492812896 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM DE-703 DE-20 DE-83 |
owner_facet | DE-29T DE-91G DE-BY-TUM DE-703 DE-20 DE-83 |
physical | XV, 456 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Springer series in optical sciences |
series2 | Springer series in optical sciences |
spelling | Oughstun, Kurt E. Verfasser (DE-588)141460865 aut Electromagnetic and optical pulse propagation 1 Spectral representations in temporally dispersive media Kurt E. Oughstun New York, NY Springer 2006 XV, 456 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in optical sciences 125 Springer series in optical sciences ... Mouvement ondulatoire, Théorie du ram Ondes électromagnétiques - Propagation ram Théorie électromagnétique ram Electromagnetic theory Electromagnetic waves Wave-motion, Theory of (DE-604)BV022289890 1 Springer series in optical sciences 125 (DE-604)BV000000237 125 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2803936&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015500116&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Oughstun, Kurt E. Electromagnetic and optical pulse propagation Springer series in optical sciences Mouvement ondulatoire, Théorie du ram Ondes électromagnétiques - Propagation ram Théorie électromagnétique ram Electromagnetic theory Electromagnetic waves Wave-motion, Theory of |
title | Electromagnetic and optical pulse propagation |
title_auth | Electromagnetic and optical pulse propagation |
title_exact_search | Electromagnetic and optical pulse propagation |
title_exact_search_txtP | Electromagnetic and optical pulse propagation |
title_full | Electromagnetic and optical pulse propagation 1 Spectral representations in temporally dispersive media Kurt E. Oughstun |
title_fullStr | Electromagnetic and optical pulse propagation 1 Spectral representations in temporally dispersive media Kurt E. Oughstun |
title_full_unstemmed | Electromagnetic and optical pulse propagation 1 Spectral representations in temporally dispersive media Kurt E. Oughstun |
title_short | Electromagnetic and optical pulse propagation |
title_sort | electromagnetic and optical pulse propagation spectral representations in temporally dispersive media |
topic | Mouvement ondulatoire, Théorie du ram Ondes électromagnétiques - Propagation ram Théorie électromagnétique ram Electromagnetic theory Electromagnetic waves Wave-motion, Theory of |
topic_facet | Mouvement ondulatoire, Théorie du Ondes électromagnétiques - Propagation Théorie électromagnétique Electromagnetic theory Electromagnetic waves Wave-motion, Theory of |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2803936&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015500116&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022289890 (DE-604)BV000000237 |
work_keys_str_mv | AT oughstunkurte electromagneticandopticalpulsepropagation1 |