Intelligent materials:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge
RSC Publ.
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 532 S. Ill., graph. Darst. |
ISBN: | 0854043357 9780854043354 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022257370 | ||
003 | DE-604 | ||
005 | 20101122 | ||
007 | t | ||
008 | 070206s2008 ad|| |||| 00||| eng d | ||
020 | |a 0854043357 |9 0-85404-335-7 | ||
020 | |a 9780854043354 |9 978-0-85404-335-4 | ||
035 | |a (OCoLC)255468466 | ||
035 | |a (DE-599)BVBBV022257370 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-91G | ||
050 | 0 | |a TA418.9.S62 | |
082 | 0 | |a 620.11 | |
084 | |a UQ 8050 |0 (DE-625)146587: |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a WER 410f |2 stub | ||
245 | 1 | 0 | |a Intelligent materials |c ed. by Mohsen Shahinpoor ; Hans-Jörg Schneider |
264 | 1 | |a Cambridge |b RSC Publ. |c 2008 | |
300 | |a XXI, 532 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Smart materials | |
650 | 0 | 7 | |a Intelligenter Werkstoff |0 (DE-588)4274825-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Intelligenter Werkstoff |0 (DE-588)4274825-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shahinpoor, Mohsen |e Sonstige |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015468064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015468064 |
Datensatz im Suchindex
_version_ | 1804136256023560192 |
---|---|
adam_text | Contents
Introduction
xxi
Chapter 1 Chemically Driven Artificial Molecular Machines
J.D. Crowley, E.R. Kay and D.A. Leigh
1.1 Design Principles for Molecular-Level Motors and
Machines 1
1.1.1 The Effects of Scale 2
1.1.2 Machines that Operate at Low Reynolds
Number 3
1.1.3 Lessons to Learn from Biological Motors and
Machines 3
1.2 Controlling Motion in Covalently Bonded Molecular
Systems 4
1.2.1 Controlling Conformational Changes 4
1.2.2 Controlling Configurational Changes 9
1.3 Controlling Motion in Mechanically Bonded
Molecular Systems 12
1.3.1 Basic Features 13
1.3.2 Translational Molecular Switches:
Stimuli-Responsive Molecular Shuttles 13
1.3.3 Controlling Rotational Motion in Catenanes 24
1.4 From Laboratory to Technology: Towards Useful
Molecular Machines 29
1.4.1 The Current Challenges: Constraining,
Communicating, Correlating 30
1.4.2 Reporting Controlled Motion in Solution 32
1.4.3 Reporting Controlled Motion on Surfaces, in
Solids and Other Condensed Phases 32
1.5 Summary and Outlook 38
References 40
x Contents
Chapter 2 Photochemically Controlled Molecular Devices and Machines
V. Balzani, G. Bergamini, P. Ceroni, A. Credi and
M. Venturi
2.1 Introduction 48
2.2 Molecular-level Devices for Processing Light Signals 50
2.2.1 Wires 50
2.2.2 Switching Devices 51
2.2.3 Plug/socket Systems 52
2.2.4 Molecular Extension Cables 53
2.2.5 Antenna Systems for Light Harvesting 53
2.2.6 Molecular Lenses Capable of Tuning the
Colour of Light 56
2.2.7 Fluorescent Sensors with Signal Amplification 56
2.2.8 Dendrimers for a Multiple Use of Light
Signals 59
2.2.9 Logic Gates 62
2.3 Light-driven Molecular Machines 65
2.3.1 Dethreading/rethreading of Pseudorotaxanes 65
2.3.2 A Sunlight-Powered Nanomotor 66
2.4 Conclusions 69
Acknowledgements 70
References 70
Chapter 3 Transition-Metal Complex-Based Molecular Machines
B. Champin, U. Letinois-Halbes and J.-P. Sauvage
3.1 Introduction 76
3.2 Molecular Motions Driven by a Chemical Reaction 77
3.2.1 Use of a Chemical Reaction to Induce
the Contraction/Stretching Process of a
Muscle-like Rotaxane Dimer 77
3.2.2 Intramolecular Complexation/Decomplexation
Processes as a Means to Make an Intermittent
Degenerate Molecular Shuttle 78
3.2.3 Molecular Machines Based on Metal-ion
Translocation 82
3.3 Electrochemically Induced Motions 83
3.3.1 Transition-metal-complexed Catenanes and
Rotaxanes 83
3.3.2 Other Related Noninterlocking Systems 89
3.4 Light-fuelled Molecular Machines 91
3.4.1 Photoinduced Decoordination and Thermal
Recoordination of a Ring in a Ruthenium(II)-
containing 2catenane 91
Contents xj
3.4.2 A Photochemically Driven Molecular-level
Abacus 92
3.5 Conclusion and Prospective 96
Acknowledegments 96
References 97
Chapter 4 Chemomechanical Polymers
H.-J. Schneider and K. Kato
4.1 Introduction 100
4.2 Chemomechanical Polymers Triggered by pH 101
4.3 Particle-size Effects and Kinetics 107
4.4 Water Uptake and Release 108
4.5 Concentration Profiles 110
4.6 Cooperativity and Logical Gate Functions 111
4.7 Selectivity with Organic Effector Molecules 114
4.8 Ternary Complex Formation for Amino Acids and
Peptides as Effectors 117
4.9 Selectivity by Covalent Interactions/Glucose-triggered
Size Changes 118
4.10 Conclusions 119
References 120
Chapter 5 Ionic Polymer Metal Nanocomposites as Intelligent Materials
and Artificial Muscles
M. Shahinpoor
5.1 Summary 126
5.2 Introduction 127
5.3 Three-dimensional Fabrication of IPMNCs 128
5.4 Manfacturing Methodologies 128
5.5 Manufacturing Steps 129
5.6 Electrically Induced Robotic Actuation 130
5.7 Distributed Nanosensing and Transduction 132
5.8 Modeling and Simulation 136
5.9 Smart-Product Development 138
5.10 Medical, Engineering and Industrial Applications 139
References 140
Chapter 6 Artificial Muscles, Sensing and Multifunctionality
T.F. Otero
6.1 Introduction 142
6.2 Materials 143
xii Contents
6.3 Electrochemical Behaviour of Conducting Polymers in
Aqueous Solution 143
6.4 Nonstoichiometric, Soft, and Wet Materials 147
6.5 Electrochemical Properties 149
6.5.1 Electrochemomechanical Properties 150
6.5.2 Electrochromic Properties 150
6.5.3 Charge Storage 150
6.5.4 Porosity 150
6.5.5 Electron/Chemical Transduction 151
6.5.6 Unparalleled Simultaneous Sensing
Possibilities 151
6.6 Multifunctional and Biomimicking Properties 151
6.7 Natural Muscles 152
6.8 Devices based on the Electrochemical Properties of
Conducting Polymers 153
6.8.1 Artificial Muscles 153
6.8.2 Other Electrochemically based Properties and
Devices: Electrochromic Devices 170
6.8.3 Batteries 172
6.8.4 Membranes and Electron/Ion (or
Electron/Chemical) Transducers 174
6.9 Theoretical Models 174
6.9.1 Elastic Models 177
6.9.2 Electrochemical Models 177
6.9.3 Relaxation Models 178
6.9.4 Molecular Dynamics Treatment 179
6.10 Final Remarks 179
References 182
Chapter 7 Electrochemically Controllable Polyacrylonitrile-Derived
Artificial Muscle as an Intelligent Material
K.J. Kim and K. Choe
1.1 Polyacrylonitrile in General 191
7.2 Force-Strain Behaviour of Modified PAN 194
7.3 Actuation Properties of Modified PAN 194
7.3.1 Length-change Characteristics of Modified
PAN: Effect of pH Variation 194
7.3.2 Generative Force Characteristics: pH-driven
and/or Electrically Driven PAN Actuator 194
7.3.3 Generative Force Characteristics: Effect of
Different Anions 196
7.3.4 Generative Force Characteristics: Effect of
Acidity 197
7.4 Performance of PAN Bundle Artificial Muscle 198
Contents
7.4.1 Electric-current Effect on Force Generation 199
7.4.2 Work Performance 201
7.5 Summary of Performance Capability of PAN
Artificial Muscle 201
References 203
Chapter 8 Unimolecular Electronic Devices
R.M. Metzger
8.1 Introduction 205
8.2 Donors and Acceptors; HOMOs and LUMOs 206
8.3 Contacts 207
8.4 Two-probe, Three-probe and Four-probe Electrical
Measurements 209
8.5 Resistors 210
8.6 Rectifiers or Diodes 212
8.7 Switches 221
8.8 Capacitors 221
8.9 Future Flash Memories 222
8.10 Field Effect Transistors 222
8.11 Negative Differential Resistance Devices 222
8.12 Coulomb-blockade Device and Single-electron Transistor 222
8.13 Future Unimolecular Amplifiers 223
8.14 Future Organic Interconnects 223
Acknowledgements 223
References 223
Chapter 9 Piezoelectric Ceramics as Intelligent Multifunctional
Materials
A. Yousefi-Koma
9.1 Introduction 231
9.2 Piezoelectricity 232
9.3 Piezoelectric Ceramics 232
9.4 Piezoelectric Ceramic Actuators 233
9.5 Modeling 235
9.5.1 Sensors 239
9.5.2 Actuators 242
9.6 Applications 242
9.6.1 Vibration/Acoustic Control 243
9.6.2 Rotor-blade Flap 245
9.6.3 Adaptive Structural Shape Control 246
9.6.4 Structural Health Monitoring 246
9.6.5 Compact Hybrid Actuators 247
xiv Contents
9.7 Commercial Products 247
References 252
Chapter 10 Ferroelectric Relaxor Polymers as Intelligent Soft
Actuators and Artificial Muscles
Q. M. Zhang, B. Chu and Z.-Y. Cheng
10.1 Introduction 256
10.2 High-energy Electron-irradiated Copolymer
(HEEIP) 258
10.2.1 Microstructures of HEEIP 258
10.2.2 Electromechanical Responses of HEEIP 262
10.3 Electrostrictive Responses and Relaxor Ferroelec-
tric Behaviour in P(VDF-TrFE)-based Terpolymers 266
10.3.1 The Electromechanical Response in
P(VDF-TrFE)-based Terpolymers 266
10.3.2 The Microstructure and Ferroelectric
Relaxor Behaviour of P(VDF-TrFE-CFE)
Terpolymers 268
10.4 Performance of Microelectromechanical Devices 273
10.5 Summary 278
Acknowledgement 279
References 279
Chapter 11 Magnetic Polymeric Gels as Intelligent Artificial Muscles
M. Zrinyi
11.1 Introduction 282
11.2 Ferrogel as a New Type of Responsive Gel 283
11.3 Interpretation of the Abrupt Shape Transition 288
11.4 Nonhomogeneous Deformation of Ferrogels 290
11.5 Muscle-like Contraction Mimicked by Ferrogels 294
11.6 Control of Pseudomuscular Contraction 295
11.7 Future Aspects 299
Acknowledgements 299
References 299
Chapter 12 Intelligent Materials: Shape-Memory Polymers
M. Behl, R. Langer and A. Lendlein
12.1 Introduction 301
12.2 Thermally Induced Shape-memory Polymers 303
12.2.1 General Concept and Characterisation of
Shape-memory Effect 303
Contents xv
12.2.2 Thermoplastic Shape-memory Polymers 304
12.2.3 Covalently Crosslinked Shape-memory
Polymers 306
12.2.4 Composites from Shape-memory Polymers
and Particles 308
12.2.5 Indirect Actuation of Thermally Induced
Shape-memory Effect in Polymers 308
12.3 Light-induced Shape-memory Polymers 311
12.4 Multifunctional Polymers with Shape-memory Effect 312
12.5 Conclusion and Outlook 313
References 314
Chapter 13 Shape-Memory Alloys as Multifunctional Materials
L. McDonald Schetky
13.1 Introduction to Shape-memory Alloys 317
13.2 Shape-memory Alloy Applications 320
13.2.1 Couplings 320
13.2.2 Seals 321
13.2.3 Electrical Connectors 322
13.2.4 Virtual Two-way Actuation Using One-way
NiTi Shape-memory Alloys 323
13.2.5 Nonbiased Safety Devices 324
13.2.6 Thermal Interrupter 325
13.2.7 Eyeglass Frames 326
13.2.8 Cellular-phone Antennas 327
13.2.9 Home Appliances 327
13.3 Medical Applications 327
13.3.1 Orthodontics and Dental Procedures 328
13.3.2 Superelastic Medical Devices 328
13.3.3 Cardiovascular Stents 329
13.4 Engineering Applications 331
13.4.1 Adaptive Structures 331
13.4.2 Structural Damping 333
13.4.3 High-force Devices 334
13.4.4 Jet-engine and Other Aeronautical Applications 334
13.5 Thin-film and Porous Devices 336
References 338
Chapter 14 Magnetorheological Materials and their Applications
X. Wang and F. Gordaninejad
14.1 Introduction 339
14.2 Historical Perspective 340
14.3 Magnetorheological Materials 341
xvi Contents
14.3.1 Magnetorheological Fluids 341
14.3.2 Magnetorheological Elastomers 344
14.3.3 Rheological Behaviour of MR Fluids 348
14.3.4 Models for Shear-yield Stress 351
14.3.5 Field-induced Microstructures 353
14.3.6 Rheometry of MR Fluids 354
14.3.7 Effects of Surface Roughness 357
14.4 Magnetorheological Fluid Devices 363
14.4.1 Magnetorheological Fluid Dampers 363
14.4.2 Modeling of Magnetorheological-Fluid
Dampers 365
14.4.3 Effect of Temperature 369
14.4.4 Other Applications 373
14.5 Summary 376
Acknowledgements 376
References 376
Chapter 15 Metal Hydrides as Intelligent Materials and Artificial Muscles
K.J. Kim, G. Lloyd and M. Shahinpoor
15.1 Metal Hydrides in General 386
15.2 Metal-hydride-actuation Principle 387
15.2.1 Modeling 390
15.2.2 Experiments 393
15.3 Summary 394
References 394
Chapter 16 Dielectric Elastomer Actuators as Intelligent Materials for
Actuation, Sensing and Generation
G. Kofod and R. Kornbluh
16.1 Introduction 396
16.2 Actuation Basics 397
16.3 Pre-stress Bias 399
16.4 Compliant Electrodes 400
16.4.1 Percolating Conductive Particle Networks 400
16.4.2 Structured Metal Electrodes 400
16.5 Theory and Modeling 401
16.6 Actuator Design: Geometry and Structure 405
16.7 Applications 406
16.7.1 Artificial Muscles for Biomimetic Robots 409
16.7.2 Linear Actuators for Industrial Applications 411
16.7.3 Diaphragm Actuators for Pumps and
Arrays 411
16.7.4 Enhanced-thickness Mode Arrays 412
Contents xv,-
16.7.5 Framed Actuator for Optics 414
16.7.6 Sensors 415
16.7.7 Generators 416
16.8 Implementation Challenges for Dielectric Elastomers 417
16.9 The Future: Materials Development for New
Elastomers 418
16.9.1 Improving Elastic Properties 419
16.9.2 Improving Dielectric Properties 420
16.9.3 Improving Breakdown Properties 420
16.10 Conclusion 421
References 421
Chapter 17 Azobenzene Polymers as Photomechanical and
Multifunctional Smart Materials
K.G. Yager and C.J. Barrett
17.1 Introduction 424
17.2 Azobenzenes 425
17.3 Azobenzene Systems 427
17.4 Photoswitchable Azo Materials 430
17.5 Photoresponsive Azo Materials 432
17.5.1 Photo-orientation 432
17.5.2 Surface Properties 434
17.6 Photodeformable Azo Materials 434
17.6.1 Surface Mass Transport 434
17.6.2 Photomechanical Effects 437
17.7 Conclusion 437
References 438
Chapter 18 Intelligent Chitosan-based Hydrogels as Multifunctional
Materials
A.F.T. MakandS. Sun
18.1 Introduction 447
18.2 Characteristics of Chitosan 448
18.2.1 Physical and Chemical Properties of
Chitosan 448
18.2.2 Biological Properties of Chitosan 449
18.2.3 Solvent and Solubility 449
18.3 Intelligent Properties 450
18.3.1 pH Sensitivity 450
18.3.2 Ionic Strength Sensitivity 452
18.3.3 Organic Effectors Sensitivity 453
18.3.4 Electrosensitivity 453
18.3.5 Thermosensitivity 455
xviii Contents
18.4 Chitosan-based Intelligent Materials 456
18.4.1 pH-Responsive Hydrogels 456
18.4.2 Thermoresponsive and Dual Stimuli-
responsive Polymers 456
18.4.3 Magnetic Chitosan Microsphere 457
18.4.4 Electrical Responsive Polymers 458
18.5 Biomedical Applications 458
18.5.1 Drug-delivery and Drug-release
Systems 458
18.5.2 Injectable Gels for Tissue Engineering 460
18.5.3 Artificial Actuators and Muscles 460
18.6 Conclusions 461
References 461
Chapter 19 Polymer-Protein Complexation and its Application as
ATP-driven Gel Machine
R. Kawamura, A. Kakugo, Y. Osada and J.P. Gong
19.1 Introduction 464
19.2 Actin Gel formed from Polymer-Actin Complexes 465
19.3 Polymorphism of Actin Complexes 467
19.4 Oriented Myosin Gel Formed under Shear
Flow 469
19.5 Motility Assay of F-actin on Oriented Myosin
Gel 470
19.6 Motility Assay of Polymer-Actin Complex Gel 471
19.7 Polarity of the Actin in Complexes 472
19.8 Conclusions 474
References 475
Chapter 20 Intelligent Composite Materials Having Capabilities of
Sensing, Health Monitoring, Actuation, Self-Repair and
Multifunctionality
H. Asanuma
20.1 Introduction 478
20.2 A New Route to Develop Intelligent Composite
Materials 479
20.3 Composite Materials Fabricated by the New Route 481
20.4 A New Category of Composite Materials Having
Liquid Phases for Self-repair and Other Capabilities 485
20.5 Summary and Outlook 489
References 490
Contents xjx
Chapter 21 Overview of Liquid-crystal Elastomers, Magnetic
Shape-memory Materials, Fullerenes, Carbon Nanotubes,
Nonionic Smart Polymers and ElectrorheoJogical Fluids as
Other Intelligent and Multifunctional Materials
M. Shahinpoor and H.-J. Schneider
21.1 Liquid-crystal Elastomers as Multifunctional
Materials 491
21.2 Magnetic Shape-memory (MSM) Materials 493
21.2.1 MSM Alloy Actuators 496
21.2.2 Sensing and Multifunctionality Properties of
MSM Materials 496
21.3 Fullerenes and Carbon Nanotubes as Multifunc-
tional Intelligent Materials 497
21.4 Nonionic Polymer Gels/EAPs 500
21.5 Electrorheological (ER) Fluids as Multifunctional
Smart Materials 500
21.5.1 Other Applications of ER Fluids 501
References 501
Chapter 22 Overview on Biogenic and Bioinspired Intelligent
Materials-from DNA-based Devices to Biochips and
Drug-delivery Systems
H.-J. Schneider
22.1 Introduction 506
22.2 Biological Materials: Nucleic Acids as an Example 507
22.3 Biosensors and Biochips 508
22.4 Intelligent Bionanoparticles 509
22.5 Nanobiosensors 511
22.6 Drug-delivery and Related Systems 512
References 517
Subject Index 522
|
adam_txt |
Contents
Introduction
xxi
Chapter 1 Chemically Driven Artificial Molecular Machines
J.D. Crowley, E.R. Kay and D.A. Leigh
1.1 Design Principles for Molecular-Level Motors and
Machines 1
1.1.1 The Effects of Scale 2
1.1.2 Machines that Operate at Low Reynolds
Number 3
1.1.3 Lessons to Learn from Biological Motors and
Machines 3
1.2 Controlling Motion in Covalently Bonded Molecular
Systems 4
1.2.1 Controlling Conformational Changes 4
1.2.2 Controlling Configurational Changes 9
1.3 Controlling Motion in Mechanically Bonded
Molecular Systems 12
1.3.1 Basic Features 13
1.3.2 Translational Molecular Switches:
Stimuli-Responsive Molecular Shuttles 13
1.3.3 Controlling Rotational Motion in Catenanes 24
1.4 From Laboratory to Technology: Towards Useful
Molecular Machines 29
1.4.1 The Current Challenges: Constraining,
Communicating, Correlating 30
1.4.2 Reporting Controlled Motion in Solution 32
1.4.3 Reporting Controlled Motion on Surfaces, in
Solids and Other Condensed Phases 32
1.5 Summary and Outlook 38
References 40
x Contents
Chapter 2 Photochemically Controlled Molecular Devices and Machines
V. Balzani, G. Bergamini, P. Ceroni, A. Credi and
M. Venturi
2.1 Introduction 48
2.2 Molecular-level Devices for Processing Light Signals 50
2.2.1 Wires 50
2.2.2 Switching Devices 51
2.2.3 Plug/socket Systems 52
2.2.4 Molecular Extension Cables 53
2.2.5 Antenna Systems for Light Harvesting 53
2.2.6 Molecular Lenses Capable of Tuning the
Colour of Light 56
2.2.7 Fluorescent Sensors with Signal Amplification 56
2.2.8 Dendrimers for a Multiple Use of Light
Signals 59
2.2.9 Logic Gates 62
2.3 Light-driven Molecular Machines 65
2.3.1 Dethreading/rethreading of Pseudorotaxanes 65
2.3.2 A Sunlight-Powered Nanomotor 66
2.4 Conclusions 69
Acknowledgements 70
References 70
Chapter 3 Transition-Metal Complex-Based Molecular Machines
B. Champin, U. Letinois-Halbes and J.-P. Sauvage
3.1 Introduction 76
3.2 Molecular Motions Driven by a Chemical Reaction 77
3.2.1 Use of a Chemical Reaction to Induce
the Contraction/Stretching Process of a
Muscle-like Rotaxane Dimer 77
3.2.2 Intramolecular Complexation/Decomplexation
Processes as a Means to Make an Intermittent
Degenerate Molecular Shuttle 78
3.2.3 Molecular Machines Based on Metal-ion
Translocation 82
3.3 Electrochemically Induced Motions 83
3.3.1 Transition-metal-complexed Catenanes and
Rotaxanes 83
3.3.2 Other Related Noninterlocking Systems 89
3.4 Light-fuelled Molecular Machines 91
3.4.1 Photoinduced Decoordination and Thermal
Recoordination of a Ring in a Ruthenium(II)-
containing 2catenane 91
Contents xj
3.4.2 A Photochemically Driven Molecular-level
Abacus 92
3.5 Conclusion and Prospective 96
Acknowledegments 96
References 97
Chapter 4 Chemomechanical Polymers
H.-J. Schneider and K. Kato
4.1 Introduction 100
4.2 Chemomechanical Polymers Triggered by pH 101
4.3 Particle-size Effects and Kinetics 107
4.4 Water Uptake and Release 108
4.5 Concentration Profiles 110
4.6 Cooperativity and Logical Gate Functions 111
4.7 Selectivity with Organic Effector Molecules 114
4.8 Ternary Complex Formation for Amino Acids and
Peptides as Effectors 117
4.9 Selectivity by Covalent Interactions/Glucose-triggered
Size Changes 118
4.10 Conclusions 119
References 120
Chapter 5 Ionic Polymer Metal Nanocomposites as Intelligent Materials
and Artificial Muscles
M. Shahinpoor
5.1 Summary 126
5.2 Introduction 127
5.3 Three-dimensional Fabrication of IPMNCs 128
5.4 Manfacturing Methodologies 128
5.5 Manufacturing Steps 129
5.6 Electrically Induced Robotic Actuation 130
5.7 Distributed Nanosensing and Transduction 132
5.8 Modeling and Simulation 136
5.9 Smart-Product Development 138
5.10 Medical, Engineering and Industrial Applications 139
References 140
Chapter 6 Artificial Muscles, Sensing and Multifunctionality
T.F. Otero
6.1 Introduction 142
6.2 Materials 143
xii Contents
6.3 Electrochemical Behaviour of Conducting Polymers in
Aqueous Solution 143
6.4 Nonstoichiometric, Soft, and Wet Materials 147
6.5 Electrochemical Properties 149
6.5.1 Electrochemomechanical Properties 150
6.5.2 Electrochromic Properties 150
6.5.3 Charge Storage 150
6.5.4 Porosity 150
6.5.5 Electron/Chemical Transduction 151
6.5.6 Unparalleled Simultaneous Sensing
Possibilities 151
6.6 Multifunctional and Biomimicking Properties 151
6.7 Natural Muscles 152
6.8 Devices based on the Electrochemical Properties of
Conducting Polymers 153
6.8.1 Artificial Muscles 153
6.8.2 Other Electrochemically based Properties and
Devices: Electrochromic Devices 170
6.8.3 Batteries 172
6.8.4 Membranes and Electron/Ion (or
Electron/Chemical) Transducers 174
6.9 Theoretical Models 174
6.9.1 Elastic Models 177
6.9.2 Electrochemical Models 177
6.9.3 Relaxation Models 178
6.9.4 Molecular Dynamics Treatment 179
6.10 Final Remarks 179
References 182
Chapter 7 Electrochemically Controllable Polyacrylonitrile-Derived
Artificial Muscle as an Intelligent Material
K.J. Kim and K. Choe
1.1 Polyacrylonitrile in General 191
7.2 Force-Strain Behaviour of Modified PAN 194
7.3 Actuation Properties of Modified PAN 194
7.3.1 Length-change Characteristics of Modified
PAN: Effect of pH Variation 194
7.3.2 Generative Force Characteristics: pH-driven
and/or Electrically Driven PAN Actuator 194
7.3.3 Generative Force Characteristics: Effect of
Different Anions 196
7.3.4 Generative Force Characteristics: Effect of
Acidity 197
7.4 Performance of PAN Bundle Artificial Muscle 198
Contents
7.4.1 Electric-current Effect on Force Generation 199
7.4.2 Work Performance 201
7.5 Summary of Performance Capability of PAN
Artificial Muscle 201
References 203
Chapter 8 Unimolecular Electronic Devices
R.M. Metzger
8.1 Introduction 205
8.2 Donors and Acceptors; HOMOs and LUMOs 206
8.3 Contacts 207
8.4 Two-probe, Three-probe and Four-probe Electrical
Measurements 209
8.5 Resistors 210
8.6 Rectifiers or Diodes 212
8.7 Switches 221
8.8 Capacitors 221
8.9 Future Flash Memories 222
8.10 Field Effect Transistors 222
8.11 Negative Differential Resistance Devices 222
8.12 Coulomb-blockade Device and Single-electron Transistor 222
8.13 Future Unimolecular Amplifiers 223
8.14 Future Organic Interconnects 223
Acknowledgements 223
References 223
Chapter 9 Piezoelectric Ceramics as Intelligent Multifunctional
Materials
A. Yousefi-Koma
9.1 Introduction 231
9.2 Piezoelectricity 232
9.3 Piezoelectric Ceramics 232
9.4 Piezoelectric Ceramic Actuators 233
9.5 Modeling 235
9.5.1 Sensors 239
9.5.2 Actuators 242
9.6 Applications 242
9.6.1 Vibration/Acoustic Control 243
9.6.2 Rotor-blade Flap 245
9.6.3 Adaptive Structural Shape Control 246
9.6.4 Structural Health Monitoring 246
9.6.5 Compact Hybrid Actuators 247
xiv Contents
9.7 Commercial Products 247
References 252
Chapter 10 Ferroelectric Relaxor Polymers as Intelligent Soft
Actuators and Artificial Muscles
Q. M. Zhang, B. Chu and Z.-Y. Cheng
10.1 Introduction 256
10.2 High-energy Electron-irradiated Copolymer
(HEEIP) 258
10.2.1 Microstructures of HEEIP 258
10.2.2 Electromechanical Responses of HEEIP 262
10.3 Electrostrictive Responses and Relaxor Ferroelec-
tric Behaviour in P(VDF-TrFE)-based Terpolymers 266
10.3.1 The Electromechanical Response in
P(VDF-TrFE)-based Terpolymers 266
10.3.2 The Microstructure and Ferroelectric
Relaxor Behaviour of P(VDF-TrFE-CFE)
Terpolymers 268
10.4 Performance of Microelectromechanical Devices 273
10.5 Summary 278
Acknowledgement 279
References 279
Chapter 11 Magnetic Polymeric Gels as Intelligent Artificial Muscles
M. Zrinyi
11.1 Introduction 282
11.2 Ferrogel as a New Type of Responsive Gel 283
11.3 Interpretation of the Abrupt Shape Transition 288
11.4 Nonhomogeneous Deformation of Ferrogels 290
11.5 Muscle-like Contraction Mimicked by Ferrogels 294
11.6 Control of Pseudomuscular Contraction 295
11.7 Future Aspects 299
Acknowledgements 299
References 299
Chapter 12 Intelligent Materials: Shape-Memory Polymers
M. Behl, R. Langer and A. Lendlein
12.1 Introduction 301
12.2 Thermally Induced Shape-memory Polymers 303
12.2.1 General Concept and Characterisation of
Shape-memory Effect 303
Contents xv
12.2.2 Thermoplastic Shape-memory Polymers 304
12.2.3 Covalently Crosslinked Shape-memory
Polymers 306
12.2.4 Composites from Shape-memory Polymers
and Particles 308
12.2.5 Indirect Actuation of Thermally Induced
Shape-memory Effect in Polymers 308
12.3 Light-induced Shape-memory Polymers 311
12.4 Multifunctional Polymers with Shape-memory Effect 312
12.5 Conclusion and Outlook 313
References 314
Chapter 13 Shape-Memory Alloys as Multifunctional Materials
L. McDonald Schetky
13.1 Introduction to Shape-memory Alloys 317
13.2 Shape-memory Alloy Applications 320
13.2.1 Couplings 320
13.2.2 Seals 321
13.2.3 Electrical Connectors 322
13.2.4 Virtual Two-way Actuation Using One-way
NiTi Shape-memory Alloys 323
13.2.5 Nonbiased Safety Devices 324
13.2.6 Thermal Interrupter 325
13.2.7 Eyeglass Frames 326
13.2.8 Cellular-phone Antennas 327
13.2.9 Home Appliances 327
13.3 Medical Applications 327
13.3.1 Orthodontics and Dental Procedures 328
13.3.2 Superelastic Medical Devices 328
13.3.3 Cardiovascular Stents 329
13.4 Engineering Applications 331
13.4.1 Adaptive Structures 331
13.4.2 Structural Damping 333
13.4.3 High-force Devices 334
13.4.4 Jet-engine and Other Aeronautical Applications 334
13.5 Thin-film and Porous Devices 336
References 338
Chapter 14 Magnetorheological Materials and their Applications
X. Wang and F. Gordaninejad
14.1 Introduction 339
14.2 Historical Perspective 340
14.3 Magnetorheological Materials 341
xvi Contents
14.3.1 Magnetorheological Fluids 341
14.3.2 Magnetorheological Elastomers 344
14.3.3 Rheological Behaviour of MR Fluids 348
14.3.4 Models for Shear-yield Stress 351
14.3.5 Field-induced Microstructures 353
14.3.6 Rheometry of MR Fluids 354
14.3.7 Effects of Surface Roughness 357
14.4 Magnetorheological Fluid Devices 363
14.4.1 Magnetorheological Fluid Dampers 363
14.4.2 Modeling of Magnetorheological-Fluid
Dampers 365
14.4.3 Effect of Temperature 369
14.4.4 Other Applications 373
14.5 Summary 376
Acknowledgements 376
References 376
Chapter 15 Metal Hydrides as Intelligent Materials and Artificial Muscles
K.J. Kim, G. Lloyd and M. Shahinpoor
15.1 Metal Hydrides in General 386
15.2 Metal-hydride-actuation Principle 387
15.2.1 Modeling 390
15.2.2 Experiments 393
15.3 Summary 394
References 394
Chapter 16 Dielectric Elastomer Actuators as Intelligent Materials for
Actuation, Sensing and Generation
G. Kofod and R. Kornbluh
16.1 Introduction 396
16.2 Actuation Basics 397
16.3 Pre-stress Bias 399
16.4 Compliant Electrodes 400
16.4.1 Percolating Conductive Particle Networks 400
16.4.2 Structured Metal Electrodes 400
16.5 Theory and Modeling 401
16.6 Actuator Design: Geometry and Structure 405
16.7 Applications 406
16.7.1 Artificial Muscles for Biomimetic Robots 409
16.7.2 Linear Actuators for Industrial Applications 411
16.7.3 Diaphragm Actuators for Pumps and
Arrays 411
16.7.4 Enhanced-thickness Mode Arrays 412
Contents xv,-
16.7.5 Framed Actuator for Optics 414
16.7.6 Sensors 415
16.7.7 Generators 416
16.8 Implementation Challenges for Dielectric Elastomers 417
16.9 The Future: Materials Development for New
Elastomers 418
16.9.1 Improving Elastic Properties 419
16.9.2 Improving Dielectric Properties 420
16.9.3 Improving Breakdown Properties 420
16.10 Conclusion 421
References 421
Chapter 17 Azobenzene Polymers as Photomechanical and
Multifunctional Smart Materials
K.G. Yager and C.J. Barrett
17.1 Introduction 424
17.2 Azobenzenes 425
17.3 Azobenzene Systems 427
17.4 Photoswitchable Azo Materials 430
17.5 Photoresponsive Azo Materials 432
17.5.1 Photo-orientation 432
17.5.2 Surface Properties 434
17.6 Photodeformable Azo Materials 434
17.6.1 Surface Mass Transport 434
17.6.2 Photomechanical Effects 437
17.7 Conclusion 437
References 438
Chapter 18 Intelligent Chitosan-based Hydrogels as Multifunctional
Materials
A.F.T. MakandS. Sun
18.1 Introduction 447
18.2 Characteristics of Chitosan 448
18.2.1 Physical and Chemical Properties of
Chitosan 448
18.2.2 Biological Properties of Chitosan 449
18.2.3 Solvent and Solubility 449
18.3 Intelligent Properties 450
18.3.1 pH Sensitivity 450
18.3.2 Ionic Strength Sensitivity 452
18.3.3 Organic Effectors Sensitivity 453
18.3.4 Electrosensitivity 453
18.3.5 Thermosensitivity 455
xviii Contents
18.4 Chitosan-based Intelligent Materials 456
18.4.1 pH-Responsive Hydrogels 456
18.4.2 Thermoresponsive and Dual Stimuli-
responsive Polymers 456
18.4.3 Magnetic Chitosan Microsphere 457
18.4.4 Electrical Responsive Polymers 458
18.5 Biomedical Applications 458
18.5.1 Drug-delivery and Drug-release
Systems 458
18.5.2 Injectable Gels for Tissue Engineering 460
18.5.3 Artificial Actuators and Muscles 460
18.6 Conclusions 461
References 461
Chapter 19 Polymer-Protein Complexation and its Application as
ATP-driven Gel Machine
R. Kawamura, A. Kakugo, Y. Osada and J.P. Gong
19.1 Introduction 464
19.2 Actin Gel formed from Polymer-Actin Complexes 465
19.3 Polymorphism of Actin Complexes 467
19.4 Oriented Myosin Gel Formed under Shear
Flow 469
19.5 Motility Assay of F-actin on Oriented Myosin
Gel 470
19.6 Motility Assay of Polymer-Actin Complex Gel 471
19.7 Polarity of the Actin in Complexes 472
19.8 Conclusions 474
References 475
Chapter 20 Intelligent Composite Materials Having Capabilities of
Sensing, Health Monitoring, Actuation, Self-Repair and
Multifunctionality
H. Asanuma
20.1 Introduction 478
20.2 A New Route to Develop Intelligent Composite
Materials 479
20.3 Composite Materials Fabricated by the New Route 481
20.4 A New Category of Composite Materials Having
Liquid Phases for Self-repair and Other Capabilities 485
20.5 Summary and Outlook 489
References 490
Contents xjx
Chapter 21 Overview of Liquid-crystal Elastomers, Magnetic
Shape-memory Materials, Fullerenes, Carbon Nanotubes,
Nonionic Smart Polymers and ElectrorheoJogical Fluids as
Other Intelligent and Multifunctional Materials
M. Shahinpoor and H.-J. Schneider
21.1 Liquid-crystal Elastomers as Multifunctional
Materials 491
21.2 Magnetic Shape-memory (MSM) Materials 493
21.2.1 MSM Alloy Actuators 496
21.2.2 Sensing and Multifunctionality Properties of
MSM Materials 496
21.3 Fullerenes and Carbon Nanotubes as Multifunc-
tional Intelligent Materials 497
21.4 Nonionic Polymer Gels/EAPs 500
21.5 Electrorheological (ER) Fluids as Multifunctional
Smart Materials 500
21.5.1 Other Applications of ER Fluids 501
References 501
Chapter 22 Overview on Biogenic and Bioinspired Intelligent
Materials-from DNA-based Devices to Biochips and
Drug-delivery Systems
H.-J. Schneider
22.1 Introduction 506
22.2 Biological Materials: Nucleic Acids as an Example 507
22.3 Biosensors and Biochips 508
22.4 Intelligent Bionanoparticles 509
22.5 Nanobiosensors 511
22.6 Drug-delivery and Related Systems 512
References 517
Subject Index 522 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022257370 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.S62 |
callnumber-search | TA418.9.S62 |
callnumber-sort | TA 3418.9 S62 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UQ 8050 VE 9850 |
classification_tum | WER 410f |
ctrlnum | (OCoLC)255468466 (DE-599)BVBBV022257370 |
dewey-full | 620.11 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.11 |
dewey-search | 620.11 |
dewey-sort | 3620.11 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Werkstoffwissenschaften |
discipline_str_mv | Chemie / Pharmazie Physik Werkstoffwissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01471nam a2200397 c 4500</leader><controlfield tag="001">BV022257370</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101122 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070206s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0854043357</subfield><subfield code="9">0-85404-335-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780854043354</subfield><subfield code="9">978-0-85404-335-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255468466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022257370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.S62</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8050</subfield><subfield code="0">(DE-625)146587:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 410f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intelligent materials</subfield><subfield code="c">ed. by Mohsen Shahinpoor ; Hans-Jörg Schneider</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">RSC Publ.</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 532 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intelligenter Werkstoff</subfield><subfield code="0">(DE-588)4274825-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Intelligenter Werkstoff</subfield><subfield code="0">(DE-588)4274825-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shahinpoor, Mohsen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015468064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015468064</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV022257370 |
illustrated | Illustrated |
index_date | 2024-07-02T16:41:35Z |
indexdate | 2024-07-09T20:53:30Z |
institution | BVB |
isbn | 0854043357 9780854043354 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015468064 |
oclc_num | 255468466 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
physical | XXI, 532 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | RSC Publ. |
record_format | marc |
spelling | Intelligent materials ed. by Mohsen Shahinpoor ; Hans-Jörg Schneider Cambridge RSC Publ. 2008 XXI, 532 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Smart materials Intelligenter Werkstoff (DE-588)4274825-2 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Intelligenter Werkstoff (DE-588)4274825-2 s DE-604 Shahinpoor, Mohsen Sonstige oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015468064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Intelligent materials Smart materials Intelligenter Werkstoff (DE-588)4274825-2 gnd |
subject_GND | (DE-588)4274825-2 (DE-588)4143413-4 |
title | Intelligent materials |
title_auth | Intelligent materials |
title_exact_search | Intelligent materials |
title_exact_search_txtP | Intelligent materials |
title_full | Intelligent materials ed. by Mohsen Shahinpoor ; Hans-Jörg Schneider |
title_fullStr | Intelligent materials ed. by Mohsen Shahinpoor ; Hans-Jörg Schneider |
title_full_unstemmed | Intelligent materials ed. by Mohsen Shahinpoor ; Hans-Jörg Schneider |
title_short | Intelligent materials |
title_sort | intelligent materials |
topic | Smart materials Intelligenter Werkstoff (DE-588)4274825-2 gnd |
topic_facet | Smart materials Intelligenter Werkstoff Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015468064&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT shahinpoormohsen intelligentmaterials |