Spectral theory of infinite-volume hyperbolic surfaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2007
|
Schriftenreihe: | PM - Progress in Mathematics
282 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XI, 355 S. Ill., graph. Darst. |
ISBN: | 9780817645243 0817645241 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022255992 | ||
003 | DE-604 | ||
005 | 20071126 | ||
007 | t | ||
008 | 070205s2007 ad|| |||| 00||| eng d | ||
015 | |a 06,N34,0448 |2 dnb | ||
016 | 7 | |a 980660955 |2 DE-101 | |
020 | |a 9780817645243 |c Gb. (Pr. in Vorb.) |9 978-0-8176-4524-3 | ||
020 | |a 0817645241 |c Gb. (Pr. in Vorb.) |9 0-8176-4524-1 | ||
024 | 3 | |a 9780817645243 | |
028 | 5 | 2 | |a 11740766 |
035 | |a (OCoLC)124025851 | ||
035 | |a (DE-599)BVBBV022255992 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-29T | ||
050 | 0 | |a QA333 | |
082 | 0 | |a 515.93 |2 22 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Borthwick, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral theory of infinite-volume hyperbolic surfaces |c David Borthwick |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2007 | |
300 | |a XI, 355 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a PM - Progress in Mathematics |v 282 | |
650 | 4 | |a Riemann, Surfaces de | |
650 | 4 | |a Spectre (Mathématiques) | |
650 | 4 | |a Riemann surfaces | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 0 | 7 | |a Hyperbolische Fläche |0 (DE-588)4735194-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Fläche |0 (DE-588)4735194-9 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a PM - Progress in Mathematics |v 282 |w (DE-604)BV000004120 |9 282 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015466712 |
Datensatz im Suchindex
_version_ | 1805088672857456640 |
---|---|
adam_text |
Contents
1
Introduction
. 1
2
Hyperbolic Surfaces
. 7
2.1
The hyperbolic plane
. 8
2.2
Fuchsian groups
. 13
2.3
Geometrically finite groups
. 18
2.4
Classification of hyperbolic ends
. 22
2.5
Gauss-Bonnet theorem
. 28
2.6
Length spectrum and Selberg's
zeta
function
. 31
3
Compact and Finite-Area Surfaces
. 37
3.1
Selberg's trace formula for compact surfaces
. 37
3.2
Consequences of the trace formula
. 42
3.3
Finite-area hyperbolic surfaces
. 45
4
Spectral Theory for the Hyperbolic Plane
. 49
4.1
Resolvent
. 49
4.2
Generalized eigenfimctions
. 52
4.3
Scattering matrix
. 56
5
Model Resolvents for Cylinders
. 61
5.1
Hyperbolic cylinders
. 61
5.2
Funnels
. 68
5.3
Parabolic cylinder
. 70
6
The Resolvent
. 75
6.1
Compactification
. 75
6.2
Analytic
Fredholm
theorem
. 79
6.3
Continuation of the resolvent
. 81
6.4
Structure of the resolvent kernel
. 84
6.5
The stretched product
. 87
x
Contents
7
Spectral
and Scattering Theory
. 93
7.1
Essential and discrete spectrum
. 93
7.2
Absence of embedded eigenvalues
. 95
7.3
Generalized eigenfunctions
. 102
7.4
Scattering matrix
. 105
7.5
Scattering matrices for the runnel and cylinders
. 114
8
Resonances and Scattering Poles
. 117
8.1
Multiplicities of resonances
. 118
8.2
Structure of the resolvent at a resonance
. 119
8.3
Scattering poles
. 124
8.4
Operator logarithmic residues
. 126
8.5
Half-integer points
. 131
8.6
Coincidence of resonances and scattering poles
. 137
9
Upper Bound for Resonances
. 147
9.1
Resonances and zeros of determinants
. 148
9.2
Singular value estimates
. 151
9.3
Upper bound
. 154
9.4
Estimates on model terms
. 156
10
Selberg
Zeta
Function
. 171
10.1
Relative scattering determinant
. 173
10.2
Regularized traces
. 175
10.3
The resolvent 0-trace calculation
. 183
10.4
Structure of the
zeta
function
. 189
10.5
Order bound
. 196
10.6
Determinant of the Laplacian
. 203
11
Wave Trace and
Poisson
Formula
. 207
1
1.1
Regularized wave trace
. 208
11.2
Model wave kernel
. 209
11.3
Wave 0-trace formula
. 211
11.4
Poisson
formula
. 215
12
Resonance Asymptotics
. 223
12.1
Lower bound on resonances
. 223
12.2
Lower bound near the critical line
. 226
12.3
Weyl formula for the scattering phase
. 229
13
Inverse Spectral Geometry
. 237
13.1
Resonances and the length spectrum
. 238
13.2
Hyperbolic trigonometry
. 239
13.3 Teichmüller
space
. 242
13.4
Finiteness of
isospectral
classes
. 248
Contents xi
14
Patterson-Sullivan Theory
. 259
14.1
A measure on the limit set
. 259
14.2
Ergodicity
. 267
14.3
Hausdorff measure of the limit set
. 274
14.4
The first resonance
. 278
14.5
Prime geodesic theorem
. 284
14.6
Refined asymptotics of the length spectrum
.289
15
Dynamical Approach to the
Zeta
Function
. 297
15.1
Schottky groups
. 298
15.2
Symbolic dynamics
. 300
15.3
Dynamical
zeta
function
. 303
15.4
Growth estimates
. 308
A Appendix
. 315
A.I Entire functions
. 315
A.2 Distributions and Fourier transforms
. 320
A.3 Spectral theory
. 324
A.4 Singular values, traces, and determinants
. 330
A.5 Pseudodifferential operators
. 336
References
. 341
Notation Guide
. 351
Index
. 353 |
adam_txt |
Contents
1
Introduction
. 1
2
Hyperbolic Surfaces
. 7
2.1
The hyperbolic plane
. 8
2.2
Fuchsian groups
. 13
2.3
Geometrically finite groups
. 18
2.4
Classification of hyperbolic ends
. 22
2.5
Gauss-Bonnet theorem
. 28
2.6
Length spectrum and Selberg's
zeta
function
. 31
3
Compact and Finite-Area Surfaces
. 37
3.1
Selberg's trace formula for compact surfaces
. 37
3.2
Consequences of the trace formula
. 42
3.3
Finite-area hyperbolic surfaces
. 45
4
Spectral Theory for the Hyperbolic Plane
. 49
4.1
Resolvent
. 49
4.2
Generalized eigenfimctions
. 52
4.3
Scattering matrix
. 56
5
Model Resolvents for Cylinders
. 61
5.1
Hyperbolic cylinders
. 61
5.2
Funnels
. 68
5.3
Parabolic cylinder
. 70
6
The Resolvent
. 75
6.1
Compactification
. 75
6.2
Analytic
Fredholm
theorem
. 79
6.3
Continuation of the resolvent
. 81
6.4
Structure of the resolvent kernel
. 84
6.5
The stretched product
. 87
x
Contents
7
Spectral
and Scattering Theory
. 93
7.1
Essential and discrete spectrum
. 93
7.2
Absence of embedded eigenvalues
. 95
7.3
Generalized eigenfunctions
. 102
7.4
Scattering matrix
. 105
7.5
Scattering matrices for the runnel and cylinders
. 114
8
Resonances and Scattering Poles
. 117
8.1
Multiplicities of resonances
. 118
8.2
Structure of the resolvent at a resonance
. 119
8.3
Scattering poles
. 124
8.4
Operator logarithmic residues
. 126
8.5
Half-integer points
. 131
8.6
Coincidence of resonances and scattering poles
. 137
9
Upper Bound for Resonances
. 147
9.1
Resonances and zeros of determinants
. 148
9.2
Singular value estimates
. 151
9.3
Upper bound
. 154
9.4
Estimates on model terms
. 156
10
Selberg
Zeta
Function
. 171
10.1
Relative scattering determinant
. 173
10.2
Regularized traces
. 175
10.3
The resolvent 0-trace calculation
. 183
10.4
Structure of the
zeta
function
. 189
10.5
Order bound
. 196
10.6
Determinant of the Laplacian
. 203
11
Wave Trace and
Poisson
Formula
. 207
1
1.1
Regularized wave trace
. 208
11.2
Model wave kernel
. 209
11.3
Wave 0-trace formula
. 211
11.4
Poisson
formula
. 215
12
Resonance Asymptotics
. 223
12.1
Lower bound on resonances
. 223
12.2
Lower bound near the critical line
. 226
12.3
Weyl formula for the scattering phase
. 229
13
Inverse Spectral Geometry
. 237
13.1
Resonances and the length spectrum
. 238
13.2
Hyperbolic trigonometry
. 239
13.3 Teichmüller
space
. 242
13.4
Finiteness of
isospectral
classes
. 248
Contents xi
14
Patterson-Sullivan Theory
. 259
14.1
A measure on the limit set
. 259
14.2
Ergodicity
. 267
14.3
Hausdorff measure of the limit set
. 274
14.4
The first resonance
. 278
14.5
Prime geodesic theorem
. 284
14.6
Refined asymptotics of the length spectrum
.289
15
Dynamical Approach to the
Zeta
Function
. 297
15.1
Schottky groups
. 298
15.2
Symbolic dynamics
. 300
15.3
Dynamical
zeta
function
. 303
15.4
Growth estimates
. 308
A Appendix
. 315
A.I Entire functions
. 315
A.2 Distributions and Fourier transforms
. 320
A.3 Spectral theory
. 324
A.4 Singular values, traces, and determinants
. 330
A.5 Pseudodifferential operators
. 336
References
. 341
Notation Guide
. 351
Index
. 353 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Borthwick, David |
author_facet | Borthwick, David |
author_role | aut |
author_sort | Borthwick, David |
author_variant | d b db |
building | Verbundindex |
bvnumber | BV022255992 |
callnumber-first | Q - Science |
callnumber-label | QA333 |
callnumber-raw | QA333 |
callnumber-search | QA333 |
callnumber-sort | QA 3333 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 620 |
ctrlnum | (OCoLC)124025851 (DE-599)BVBBV022255992 |
dewey-full | 515.93 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.93 |
dewey-search | 515.93 |
dewey-sort | 3515.93 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV022255992</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071126</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070205s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N34,0448</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980660955</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817645243</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">978-0-8176-4524-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817645241</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">0-8176-4524-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780817645243</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11740766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)124025851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022255992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA333</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.93</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borthwick, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral theory of infinite-volume hyperbolic surfaces</subfield><subfield code="c">David Borthwick</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 355 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">PM - Progress in Mathematics</subfield><subfield code="v">282</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Surfaces de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectre (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Fläche</subfield><subfield code="0">(DE-588)4735194-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Fläche</subfield><subfield code="0">(DE-588)4735194-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">PM - Progress in Mathematics</subfield><subfield code="v">282</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">282</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015466712</subfield></datafield></record></collection> |
id | DE-604.BV022255992 |
illustrated | Illustrated |
index_date | 2024-07-02T16:41:11Z |
indexdate | 2024-07-20T09:11:44Z |
institution | BVB |
isbn | 9780817645243 0817645241 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015466712 |
oclc_num | 124025851 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-29T |
physical | XI, 355 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Birkhäuser |
record_format | marc |
series | PM - Progress in Mathematics |
series2 | PM - Progress in Mathematics |
spelling | Borthwick, David Verfasser aut Spectral theory of infinite-volume hyperbolic surfaces David Borthwick Boston [u.a.] Birkhäuser 2007 XI, 355 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier PM - Progress in Mathematics 282 Riemann, Surfaces de Spectre (Mathématiques) Riemann surfaces Spectral theory (Mathematics) Hyperbolische Fläche (DE-588)4735194-9 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Hyperbolische Fläche (DE-588)4735194-9 s Spektraltheorie (DE-588)4116561-5 s DE-604 PM - Progress in Mathematics 282 (DE-604)BV000004120 282 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Borthwick, David Spectral theory of infinite-volume hyperbolic surfaces PM - Progress in Mathematics Riemann, Surfaces de Spectre (Mathématiques) Riemann surfaces Spectral theory (Mathematics) Hyperbolische Fläche (DE-588)4735194-9 gnd Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4735194-9 (DE-588)4116561-5 |
title | Spectral theory of infinite-volume hyperbolic surfaces |
title_auth | Spectral theory of infinite-volume hyperbolic surfaces |
title_exact_search | Spectral theory of infinite-volume hyperbolic surfaces |
title_exact_search_txtP | Spectral theory of infinite-volume hyperbolic surfaces |
title_full | Spectral theory of infinite-volume hyperbolic surfaces David Borthwick |
title_fullStr | Spectral theory of infinite-volume hyperbolic surfaces David Borthwick |
title_full_unstemmed | Spectral theory of infinite-volume hyperbolic surfaces David Borthwick |
title_short | Spectral theory of infinite-volume hyperbolic surfaces |
title_sort | spectral theory of infinite volume hyperbolic surfaces |
topic | Riemann, Surfaces de Spectre (Mathématiques) Riemann surfaces Spectral theory (Mathematics) Hyperbolische Fläche (DE-588)4735194-9 gnd Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Riemann, Surfaces de Spectre (Mathématiques) Riemann surfaces Spectral theory (Mathematics) Hyperbolische Fläche Spektraltheorie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT borthwickdavid spectraltheoryofinfinitevolumehyperbolicsurfaces |