Multiscale and multiresolution approaches in turbulence:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiv, 340 p. Ill., graph. Darst. 24 cm |
ISBN: | 186094650X |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022247974 | ||
003 | DE-604 | ||
005 | 20211005 | ||
007 | t | ||
008 | 070130s2006 xxkad|| |||| 00||| eng d | ||
010 | |a 2006283992 | ||
015 | |a GBA677614 |2 dnb | ||
020 | |a 186094650X |c hbk. |9 1-86094-650-X | ||
035 | |a (OCoLC)71346496 | ||
035 | |a (DE-599)BVBBV022247974 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-29T |a DE-83 |a DE-11 | ||
050 | 0 | |a TA357.5.T87 | |
082 | 0 | |a 532.0527 | |
084 | |a UF 4300 |0 (DE-625)145584: |2 rvk | ||
100 | 1 | |a Sagaut, Pierre |d 1967- |e Verfasser |0 (DE-588)1049515781 |4 aut | |
245 | 1 | 0 | |a Multiscale and multiresolution approaches in turbulence |c Pierre Sagaut ; Sebasten Deck ; Marc Terracol |
264 | 1 | |a London |b Imperial College Press |c 2006 | |
300 | |a xiv, 340 p. |b Ill., graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Turbulence |x Mathematical models | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 0 | 1 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Deck, Sebastien |e Verfasser |4 aut | |
700 | 1 | |a Terracol, Marc |e Verfasser |0 (DE-588)1140533037 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015458800&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015458800 |
Datensatz im Suchindex
_version_ | 1804136242665750528 |
---|---|
adam_text | MULTISCALE AND MULTIRESOLUTION APPROACHESINLURBULENCE ICP PIERRE SAGAUT
UNIVERSITE PIERRE ET MARIE CURIE, FRANCE SEBASTIEN DECK ONERA, FRANCE
MARC TERRACOL ONERA, FRANCE IMPERIAL COLLEGE PRESS CONTENTS PREFACE VII
1. A BRIEF INTRODUCTION TO TURBULENCE 1 1.1 COMMON FEATURES OF TURBULENT
FLOWS 1 1.1.1 INTRODUCTORY CONCEPTS 1 1.1.2 RANDOMNESS AND COHERENT
STRUCTURE IN TURBULENT FLOWS 3 1.2 TURBULENT SCALES AND COMPLEXITY OF A
TURBULENT FIELD ... 5 1.2.1 BASIC EQUATIONS OF TURBULENT FLOW 5 1.2.2
DEFINING TURBULENT SCALES 8 1.2.3 A GLIMPSE AT NUMERICAL SIMULATIONS OF
TURBULENT FLOWS 13 1.3 INTER-SCALE COUPLING IN TURBULENT FLOWS 14 1.3.1
THE ENERGY CASCADE 14 1.3.2 INTER-SCALE INTERACTIONS 16 2. TURBULENCE
SIMULATION AND SCALE SEPARATION 21 2.1 NUMERICAL SIMULATION OF TURBULENT
FLOWS 21 2.2 REDUCING THE COST OF THE SIMULATIONS 23 2.2.1 SCALE
SEPARATION 24 2.2.2 NAVIER-STOKES-BASED EQUATIONS FOR THE RESOLVED
QUANTITIES 24 2.2.3 NAVIER-STOKES-BASED EQUATIONS FOR THE UNRESOLVED
QUANTITIES 26 2.3 THE AVERAGING APPROACH: REYNOLDS-AVERAGED NUMERICAL
SIMULATION (RANS) 26 2.3.1 STATISTICAL AVERAGE 26 2.3.2
REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS 28 IX X CONTENTS 2.3.3
PHASE-AVERAGED NAVIER STOKES EQUATIONS 29 2.4 THE LARGE EDDY SIMULATION
APPROACH (LES) 31 2.4.1 LARGE AND SMALL SCALES SEPARATION 31 2.4.2
FILTERED NAVIER-STOKES EQUATIONS 33 2.5 MULTILEVEL/MULTIRESOLUTION
METHODS 35 2.5.1 HIERARCHICAL MULTILEVEL DECOMPOSITION 36 2.5.2
PRACTICAL EXAMPLE: THE MULTISCALE/MULTILEVEL LES DECOMPOSITION 38 2.5.3
ASSOCIATED NAVIER-STOKES-BASED EQUATIONS 39 2.5.4 CLASSIFICATION OF
EXISTING MULTILEVEL METHODS 41 2.5.4.1 MULTILEVEL METHODS BASED ON
RESOLVED-ONLY WAVENUMBERS 41 2.5.4.2 MULTILEVEL METHODS BASED ON HIGHER
WAVENUMBERS 42 2.5.4.3 ADAPTIVE MULTILEVEL METHODS 43 2.6 SUMMARY 44 3.
STATISTICAL MULTISCALE MODELLING 51 3.1 GENERAL 51 3.2 EXACT GOVERNING
EQUATIONS FOR THE MULTISCALE PROBLEM ... 54 3.2.1 BASIC EQUATIONS IN
PHYSICAL AND SPECTRAL SPACE . . . . 54 3.2.2 THE MULTISCALE SPLITTING 59
3.2.3 GOVERNING EQUATIONS FOR BAND-INTEGRATED APPROACHES 60 3.3 SPECTRAL
CLOSURES FOR BAND-INTEGRATED APPROACHES 62 3.3.1 LOCAL VERSUS NON-LOCAL
TRANSFERS 62 3.3.2 EXPRESSION FOR THE SPECTRAL FLUXES 64 3.3.3 DYNAMIC
SPECTRAL SPLITTING 67 3.3.4 TURBULENT DIFFUSION TERMS 68 3.3.5 VISCOUS
DISSIPATION TERM 68 3.3.6 PRESSURE TERM 69 3.4 A FEW MULTISCALE MODELS
FOR BAND-INTEGRATED APPROACHES 69 3.4.1 MULTISCALE REYNOLDS STRESS
MODEIS 69 3.4.2 MULTISCALE EDDY-VISCOSITY MODEIS 70 3.5 SPECTRAL
CLOSURES FOR LOCAL APPROACHES 71 3.5.1 LOCAL MULTISCALE REYNOLDS STRESS
MODEIS 71 3.5.1.1 CLOSURES FOR THE LINEAR TRANSFER TERM 72 3.5.1.2
CLOSURES FOR THE LINEAR PRESSURE TERM .... 73 CONTENTS XI 3.5.1.3
CLOSURES FOR THE NON-LINEAR HOMOGENEOUS TRANSFER TERM 74 3.5.1.4
CLOSURES FOR THE NON-LINEAR NON-HOMOGENEOUS TRANSFER TERM 76 3.5.2 LOCAL
MULTISCALE EDDY-VISCOSITY MODEIS 77 3.6 ACHIEVEMENTS AND OPEN ISSUES 78
MULTISCALE SUBGRID MODELS: SELF-ADAPTIVITY 87 4.1 FUNDAMENTALS OF
SUBGRID MODELLING 87 4.1.1 FUNCTIONAL AND STRUCTURAL SUBGRID MODEIS 87
4.1.2 THE GABOR-HEISENBERG CURSE 88 4.2 GERMANO-TYPE DYNAMIC SUBGRID
MODELS 93 4.2.1 GERMANO IDENTITY 93 4.2.1.1 TWO-LEVEL MULTIPLICATIVE
GERMANO IDENTITY . 93 4.2.1.2 MULTILEVEL GERMANO IDENTITY 95 4.2.1.3
GENERALIZED GERMANO IDENTITY 96 4.2.2 DERIVATION OF DYNAMIC SUBGRID
MODEIS 96 4.2.3 DYNAMIC MODEIS AND SELF-SIMILARITY 99 4.2.3.1 TURBULENCE
SELF-SIMILARITY 99 4.2.3.2 SCALE-SEPARATION OPERATOR SELF-SIMILARITY . .
. 106 4.3 SELF-SIMILARITY BASED DYNAMIC SUBGRID MODELS 108 4.3.1
TERRACOL-SAGAUT PROCEDURE 109 4.3.2 SHAO PROCEDURE 111 4.4 VARIATIONAL
MULTISCALE METHODS AND RELATED SUBGRID VISCOSITY MODELS 114 4.4.1 HUGHES
VMS APPROACH AND EXTENDED FORMULATIONS . 115 4.4.2 IMPLEMENTATION OF THE
SCALE SEPARATION OPERATOR . . . 119 4.4.3 BRIDGING WITH HYPERVISCOSITY
AND FILTERED MODEIS . . 123 STRUCTURAL MULTISCALE SUBGRID MODELS: SMALL
SCALES ESTIMATIONS 125 5.1 SMALL-SCALE RECONSTRUCTION METHODS:
DECONVOLUTION .... 126 5.1.1 THE VELOCITY ESTIMATION MODEL 128 5.1.2 THE
APPROXIMATE DECONVOLUTION MODEL (ADM) ... 134 5.2 SMALL SCALES
RECONSTRUCTION: MULTIFRACTAL SUBGRID-SCALE MODELLING 141 5.2.1 GENERAL
IDEA OF THE METHOD 141 5.2.2 MULTIFRACTAL RECONSTRUCTION OF SUBGRID
VORTICITY . . . 142 5.2.2.1 VORTICITY MAGNITUDE CASCADE 142 XII CONTENTS
5.2.2.2 VORTICITY ORIENTATION CASCADE 144 5.2.2.3 RECONSTRUCTION OF THE
SUBGRID VELOCITY FIELD . 146 5.3 MULTIGRID-BASED DECOMPOSITION 146 5.4
GLOBAL MULTIGRID APPROACHES: CYCLING METHODS 151 5.4.1 THE MULTIMESH
METHOD OF VOKE 152 5.4.2 THE MULTILEVEL LES METHOD OF TERRACOL ET AL 153
5.4.2.1 CYCLING PROCEDURE 154 5.4.2.2 MULTILEVEL SUBGRID CLOSURES 156
(A) DYNAMIC MIXED MULTILEVEL CLOSURE . . 157 (B) GENERALIZED MULTILEVEL
CLOSURE . . . . 161 5.4.2.3 EXAMPLES OF APPLICATION 162 5.5 ZONAL
MULTIGRID/MULTIDOMAIN METHODS 163 6. UNSTEADY TURBULENCE SIMULATION ON
SELF-ADAPTIVE GRIDS 173 6.1 TURBULENCE AND SELF-ADAPTIVITY: EXPECTATIONS
AND ISSUES 173 6.2 ADAPTIVE MULTILEVEL DNS AND LES 178 6.2.1 DYNAMIC
LOCAL MULTILEVEL LES 179 6.2.2 THE DYNAMIC MULTILEVEL (DML) METHOD OF
DUBOIS, JAUBERTEAU AND TEMAM 183 6.2.2.1 SPECTRAL MULTILEVEL
DECOMPOSITION 184 6.2.2.2 ASSOCIATED NAVIER-STOKES-BASED EQUATIONS . 185
6.2.2.3 QUASI-STATIC APPROXIMATION 187 6.2.2.4 GENERAL DESCRIPTION OF
THE SPECTRAL MULTILEVEL METHOD 188 6.2.2.5 DYNAMIC ESTIMATION OF THE
PARAMETERS I , I-I AND NV 189 6.2.3 DYNAMIC GLOBAL MULTILEVEL LES 191
6.3 ADAPTIVE WAVELET-BASED METHODS: CVS, SCALES 195 6.3.1 WAVELET
DECOMPOSITION: BRIEF REMINDER 196 6.3.2 COHERENCY DIAGRAM OF A TURBULENT
FIELD 198 6.3.2.1 INTRODUCTION TO THE COHERENCY DIAGRAM . . . 198
6.3.2.2 THRESHOLD VALUE AND ERROR CONTROL 201 6.3.3 ADAPTIVE WAVELET
BASED DIRECT NUMERICAL SIMULATION 203 6.3.4 COHERENT VORTEX CAPTURING
METHOD 204 6.3.5 STOCHASTIC COHERENT ADAPTIVE LARGE EDDY SIMULATION 205
6.4 DNS AND LES WITH OPTIMAL AMR 207 6.4.1 ERROR DEFINITION: SURFACIC
VERSUS VOLUMIC FORMULATION 207 6.4.2 A POSTERIORI ERROR ESTIMATION AND
OPTIMIZATION LOOP . 209 CONTENTS XIII 6.4.3 NUMERICAL RESULTS 211 7.
GLOBAL HYBRID RANS/LES METHODS 219 7.1 BRIDGING BETWEEN HYBRID RANS/LES
METHODS AND MULTISCALE METHODS 219 7.1.1 CONCEPT: THE EFFECTIVE FILTER
219 7.1.2 EDDY VISCOSITY EFFECTIVE FILTER 221 7.1.3 GLOBAL HYBRID
RANS/LES METHODS AS MULTISCALE METHODS 223 7.2 MOTIVATION AND
CLASSIFICATION OF RANS/LES METHODS ... 224 7.3 UNSTEADY STATISTICAL
MODELLING APPROACHES 228 7.3.1 UNSTEADY RANS APPROACH 228 7.3.2 THE
SEMI-DETERMINISTIC METHOD OF HA MINH 231 7.3.3 THE SCALE ADAPTIVE
SIMULATION 237 7.3.4 THE TURBULENCE-RESOLVING RANS APPROACH OF TRAVIN ET
AL 241 7.4 GLOBAL HYBRID APPROACHES 243 7.4.1 THE APPROACH OF SPEZIALE
244 7.4.2 LIMITED NUMERICAL SCALES (LNS) 247 7.4.2.1 GENERAL IDEA OF LNS
247 7.4.2.2 EXAMPLE OF APPLICATION 248 7.4.3 BLENDING METHODS 249
7.4.3.1 GENERAL IDEA OF BLENDING METHODS 249 7.4.3.2 APPLICATIONS 251
7.4.4 DETACHED-EDDY SIMULATION 254 7.4.4.1 GENERAL IDEA 254 7.4.4.2 DES
BASED ON THE SA MODEL 256 7.4.4.3 POSSIBLE EXTENSIONS OF STANDARD SA-DES
. . 259 7.4.4.4 EXAMPLES 261 7.4.4.5 DES BASED ON THE K - W MODEL 261
7.4.4.6 EXTRA-LARGE EDDY SIMULATION (XLES) ... 265 7.4.5 GREY AREA-GRID
INDUCED SEPARATION (GIS) 267 7.4.6 SOLUTIONS AGAINST GIS 270 7.4.6.1
MODIFYING THE LENGTH SCALE 270 7.4.6.2 ZONAL-DES 271 7.4.6.3 SHIELDING
THE BOUNDARY LAYER-DELAYED DETACHED EDDY SIMULATION 273 7.5 SUMMARY 276
CONTENTS 8. ZONAL RANS/LES METHODS 283 8.1 THEORETICAL SETTING OF
RANS/LES COUPLING 285 8.1.1 FULL-VARIABLES APPROACH 285 8.1.1.1
ENRICHMENT PROCEDURE FROM RANS TO LES . 287 8.1.1.2 RESTRICTION
PROCEDURE FROM LES TO RANS . 289 8.1.2 PERTURBATION APPROACH: NLDE 290
8.2 INLET DATA GENERATION - MAPPING TECHNIQUES 294 8.2.1 PRECURSOR
CALCULATION 295 8.2.2 RECYCLING METHODS 298 8.2.3 FORCING CONDITIONS 303
8.3 TURBULENCE RECONSTRUCTION FOR INFLOW CONDITIONS 306 8.3.1 RANDOM
FLUCTUATIONS 307 8.3.2 INVERSE FOURIER TRANSFORM TECHNIQUE 307 8.3.3
RANDOM FOURIER MODES SYNTHESIZATION 309 8.3.4 SYNTHETIC TURBULENCE 315
BIBLIOGRAPHY 321 INDEX 339
|
adam_txt |
MULTISCALE AND MULTIRESOLUTION APPROACHESINLURBULENCE ICP PIERRE SAGAUT
UNIVERSITE PIERRE ET MARIE CURIE, FRANCE SEBASTIEN DECK ONERA, FRANCE
MARC TERRACOL ONERA, FRANCE IMPERIAL COLLEGE PRESS CONTENTS PREFACE VII
1. A BRIEF INTRODUCTION TO TURBULENCE 1 1.1 COMMON FEATURES OF TURBULENT
FLOWS 1 1.1.1 INTRODUCTORY CONCEPTS 1 1.1.2 RANDOMNESS AND COHERENT
STRUCTURE IN TURBULENT FLOWS 3 1.2 TURBULENT SCALES AND COMPLEXITY OF A
TURBULENT FIELD . 5 1.2.1 BASIC EQUATIONS OF TURBULENT FLOW 5 1.2.2
DEFINING TURBULENT SCALES 8 1.2.3 A GLIMPSE AT NUMERICAL SIMULATIONS OF
TURBULENT FLOWS 13 1.3 INTER-SCALE COUPLING IN TURBULENT FLOWS 14 1.3.1
THE ENERGY CASCADE 14 1.3.2 INTER-SCALE INTERACTIONS 16 2. TURBULENCE
SIMULATION AND SCALE SEPARATION 21 2.1 NUMERICAL SIMULATION OF TURBULENT
FLOWS 21 2.2 REDUCING THE COST OF THE SIMULATIONS 23 2.2.1 SCALE
SEPARATION 24 2.2.2 NAVIER-STOKES-BASED EQUATIONS FOR THE RESOLVED
QUANTITIES 24 2.2.3 NAVIER-STOKES-BASED EQUATIONS FOR THE UNRESOLVED
QUANTITIES 26 2.3 THE AVERAGING APPROACH: REYNOLDS-AVERAGED NUMERICAL
SIMULATION (RANS) 26 2.3.1 STATISTICAL AVERAGE 26 2.3.2
REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS 28 IX X CONTENTS 2.3.3
PHASE-AVERAGED NAVIER STOKES EQUATIONS 29 2.4 THE LARGE EDDY SIMULATION
APPROACH (LES) 31 2.4.1 LARGE AND SMALL SCALES SEPARATION 31 2.4.2
FILTERED NAVIER-STOKES EQUATIONS 33 2.5 MULTILEVEL/MULTIRESOLUTION
METHODS 35 2.5.1 HIERARCHICAL MULTILEVEL DECOMPOSITION 36 2.5.2
PRACTICAL EXAMPLE: THE MULTISCALE/MULTILEVEL LES DECOMPOSITION 38 2.5.3
ASSOCIATED NAVIER-STOKES-BASED EQUATIONS 39 2.5.4 CLASSIFICATION OF
EXISTING MULTILEVEL METHODS 41 2.5.4.1 MULTILEVEL METHODS BASED ON
RESOLVED-ONLY WAVENUMBERS 41 2.5.4.2 MULTILEVEL METHODS BASED ON HIGHER
WAVENUMBERS 42 2.5.4.3 ADAPTIVE MULTILEVEL METHODS 43 2.6 SUMMARY 44 3.
STATISTICAL MULTISCALE MODELLING 51 3.1 GENERAL 51 3.2 EXACT GOVERNING
EQUATIONS FOR THE MULTISCALE PROBLEM . 54 3.2.1 BASIC EQUATIONS IN
PHYSICAL AND SPECTRAL SPACE . . . . 54 3.2.2 THE MULTISCALE SPLITTING 59
3.2.3 GOVERNING EQUATIONS FOR BAND-INTEGRATED APPROACHES 60 3.3 SPECTRAL
CLOSURES FOR BAND-INTEGRATED APPROACHES 62 3.3.1 LOCAL VERSUS NON-LOCAL
TRANSFERS 62 3.3.2 EXPRESSION FOR THE SPECTRAL FLUXES 64 3.3.3 DYNAMIC
SPECTRAL SPLITTING 67 3.3.4 TURBULENT DIFFUSION TERMS 68 3.3.5 VISCOUS
DISSIPATION TERM 68 3.3.6 PRESSURE TERM 69 3.4 A FEW MULTISCALE MODELS
FOR BAND-INTEGRATED APPROACHES 69 3.4.1 MULTISCALE REYNOLDS STRESS
MODEIS 69 3.4.2 MULTISCALE EDDY-VISCOSITY MODEIS 70 3.5 SPECTRAL
CLOSURES FOR LOCAL APPROACHES 71 3.5.1 LOCAL MULTISCALE REYNOLDS STRESS
MODEIS 71 3.5.1.1 CLOSURES FOR THE LINEAR TRANSFER TERM 72 3.5.1.2
CLOSURES FOR THE LINEAR PRESSURE TERM . 73 CONTENTS XI 3.5.1.3
CLOSURES FOR THE NON-LINEAR HOMOGENEOUS TRANSFER TERM 74 3.5.1.4
CLOSURES FOR THE NON-LINEAR NON-HOMOGENEOUS TRANSFER TERM 76 3.5.2 LOCAL
MULTISCALE EDDY-VISCOSITY MODEIS 77 3.6 ACHIEVEMENTS AND OPEN ISSUES 78
MULTISCALE SUBGRID MODELS: SELF-ADAPTIVITY 87 4.1 FUNDAMENTALS OF
SUBGRID MODELLING 87 4.1.1 FUNCTIONAL AND STRUCTURAL SUBGRID MODEIS 87
4.1.2 THE GABOR-HEISENBERG CURSE 88 4.2 GERMANO-TYPE DYNAMIC SUBGRID
MODELS 93 4.2.1 GERMANO IDENTITY 93 4.2.1.1 TWO-LEVEL MULTIPLICATIVE
GERMANO IDENTITY . 93 4.2.1.2 MULTILEVEL GERMANO IDENTITY 95 4.2.1.3
GENERALIZED GERMANO IDENTITY 96 4.2.2 DERIVATION OF DYNAMIC SUBGRID
MODEIS 96 4.2.3 DYNAMIC MODEIS AND SELF-SIMILARITY 99 4.2.3.1 TURBULENCE
SELF-SIMILARITY 99 4.2.3.2 SCALE-SEPARATION OPERATOR SELF-SIMILARITY . .
. 106 4.3 SELF-SIMILARITY BASED DYNAMIC SUBGRID MODELS 108 4.3.1
TERRACOL-SAGAUT PROCEDURE 109 4.3.2 SHAO PROCEDURE 111 4.4 VARIATIONAL
MULTISCALE METHODS AND RELATED SUBGRID VISCOSITY MODELS 114 4.4.1 HUGHES
VMS APPROACH AND EXTENDED FORMULATIONS . 115 4.4.2 IMPLEMENTATION OF THE
SCALE SEPARATION OPERATOR . . . 119 4.4.3 BRIDGING WITH HYPERVISCOSITY
AND FILTERED MODEIS . . 123 STRUCTURAL MULTISCALE SUBGRID MODELS: SMALL
SCALES ESTIMATIONS 125 5.1 SMALL-SCALE RECONSTRUCTION METHODS:
DECONVOLUTION . 126 5.1.1 THE VELOCITY ESTIMATION MODEL 128 5.1.2 THE
APPROXIMATE DECONVOLUTION MODEL (ADM) . 134 5.2 SMALL SCALES
RECONSTRUCTION: MULTIFRACTAL SUBGRID-SCALE MODELLING 141 5.2.1 GENERAL
IDEA OF THE METHOD 141 5.2.2 MULTIFRACTAL RECONSTRUCTION OF SUBGRID
VORTICITY . . . 142 5.2.2.1 VORTICITY MAGNITUDE CASCADE 142 XII CONTENTS
5.2.2.2 VORTICITY ORIENTATION CASCADE 144 5.2.2.3 RECONSTRUCTION OF THE
SUBGRID VELOCITY FIELD . 146 5.3 MULTIGRID-BASED DECOMPOSITION 146 5.4
GLOBAL MULTIGRID APPROACHES: CYCLING METHODS 151 5.4.1 THE MULTIMESH
METHOD OF VOKE 152 5.4.2 THE MULTILEVEL LES METHOD OF TERRACOL ET AL 153
5.4.2.1 CYCLING PROCEDURE 154 5.4.2.2 MULTILEVEL SUBGRID CLOSURES 156
(A) DYNAMIC MIXED MULTILEVEL CLOSURE . . 157 (B) GENERALIZED MULTILEVEL
CLOSURE . . . . 161 5.4.2.3 EXAMPLES OF APPLICATION 162 5.5 ZONAL
MULTIGRID/MULTIDOMAIN METHODS 163 6. UNSTEADY TURBULENCE SIMULATION ON
SELF-ADAPTIVE GRIDS 173 6.1 TURBULENCE AND SELF-ADAPTIVITY: EXPECTATIONS
AND ISSUES 173 6.2 ADAPTIVE MULTILEVEL DNS AND LES 178 6.2.1 DYNAMIC
LOCAL MULTILEVEL LES 179 6.2.2 THE DYNAMIC MULTILEVEL (DML) METHOD OF
DUBOIS, JAUBERTEAU AND TEMAM 183 6.2.2.1 SPECTRAL MULTILEVEL
DECOMPOSITION 184 6.2.2.2 ASSOCIATED NAVIER-STOKES-BASED EQUATIONS . 185
6.2.2.3 QUASI-STATIC APPROXIMATION 187 6.2.2.4 GENERAL DESCRIPTION OF
THE SPECTRAL MULTILEVEL METHOD 188 6.2.2.5 DYNAMIC ESTIMATION OF THE
PARAMETERS I\, I-I AND NV 189 6.2.3 DYNAMIC GLOBAL MULTILEVEL LES 191
6.3 ADAPTIVE WAVELET-BASED METHODS: CVS, SCALES 195 6.3.1 WAVELET
DECOMPOSITION: BRIEF REMINDER 196 6.3.2 COHERENCY DIAGRAM OF A TURBULENT
FIELD 198 6.3.2.1 INTRODUCTION TO THE COHERENCY DIAGRAM . . . 198
6.3.2.2 THRESHOLD VALUE AND ERROR CONTROL 201 6.3.3 ADAPTIVE WAVELET
BASED DIRECT NUMERICAL SIMULATION 203 6.3.4 COHERENT VORTEX CAPTURING
METHOD 204 6.3.5 STOCHASTIC COHERENT ADAPTIVE LARGE EDDY SIMULATION 205
6.4 DNS AND LES WITH OPTIMAL AMR 207 6.4.1 ERROR DEFINITION: SURFACIC
VERSUS VOLUMIC FORMULATION 207 6.4.2 A POSTERIORI ERROR ESTIMATION AND
OPTIMIZATION LOOP . 209 CONTENTS XIII 6.4.3 NUMERICAL RESULTS 211 7.
GLOBAL HYBRID RANS/LES METHODS 219 7.1 BRIDGING BETWEEN HYBRID RANS/LES
METHODS AND MULTISCALE METHODS 219 7.1.1 CONCEPT: THE EFFECTIVE FILTER
219 7.1.2 EDDY VISCOSITY EFFECTIVE FILTER 221 7.1.3 GLOBAL HYBRID
RANS/LES METHODS AS MULTISCALE METHODS 223 7.2 MOTIVATION AND
CLASSIFICATION OF RANS/LES METHODS . 224 7.3 UNSTEADY STATISTICAL
MODELLING APPROACHES 228 7.3.1 UNSTEADY RANS APPROACH 228 7.3.2 THE
SEMI-DETERMINISTIC METHOD OF HA MINH 231 7.3.3 THE SCALE ADAPTIVE
SIMULATION 237 7.3.4 THE TURBULENCE-RESOLVING RANS APPROACH OF TRAVIN ET
AL 241 7.4 GLOBAL HYBRID APPROACHES 243 7.4.1 THE APPROACH OF SPEZIALE
244 7.4.2 LIMITED NUMERICAL SCALES (LNS) 247 7.4.2.1 GENERAL IDEA OF LNS
247 7.4.2.2 EXAMPLE OF APPLICATION 248 7.4.3 BLENDING METHODS 249
7.4.3.1 GENERAL IDEA OF BLENDING METHODS 249 7.4.3.2 APPLICATIONS 251
7.4.4 DETACHED-EDDY SIMULATION 254 7.4.4.1 GENERAL IDEA 254 7.4.4.2 DES
BASED ON THE SA MODEL 256 7.4.4.3 POSSIBLE EXTENSIONS OF STANDARD SA-DES
. . 259 7.4.4.4 EXAMPLES 261 7.4.4.5 DES BASED ON THE K - W MODEL 261
7.4.4.6 EXTRA-LARGE EDDY SIMULATION (XLES) . 265 7.4.5 GREY AREA-GRID
INDUCED SEPARATION (GIS) 267 7.4.6 SOLUTIONS AGAINST GIS 270 7.4.6.1
MODIFYING THE LENGTH SCALE 270 7.4.6.2 ZONAL-DES 271 7.4.6.3 SHIELDING
THE BOUNDARY LAYER-DELAYED DETACHED EDDY SIMULATION 273 7.5 SUMMARY 276
CONTENTS 8. ZONAL RANS/LES METHODS 283 8.1 THEORETICAL SETTING OF
RANS/LES COUPLING 285 8.1.1 FULL-VARIABLES APPROACH 285 8.1.1.1
ENRICHMENT PROCEDURE FROM RANS TO LES . 287 8.1.1.2 RESTRICTION
PROCEDURE FROM LES TO RANS . 289 8.1.2 PERTURBATION APPROACH: NLDE 290
8.2 INLET DATA GENERATION - MAPPING TECHNIQUES 294 8.2.1 PRECURSOR
CALCULATION 295 8.2.2 RECYCLING METHODS 298 8.2.3 FORCING CONDITIONS 303
8.3 TURBULENCE RECONSTRUCTION FOR INFLOW CONDITIONS 306 8.3.1 RANDOM
FLUCTUATIONS 307 8.3.2 INVERSE FOURIER TRANSFORM TECHNIQUE 307 8.3.3
RANDOM FOURIER MODES SYNTHESIZATION 309 8.3.4 SYNTHETIC TURBULENCE 315
BIBLIOGRAPHY 321 INDEX 339 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Sagaut, Pierre 1967- Deck, Sebastien Terracol, Marc |
author_GND | (DE-588)1049515781 (DE-588)1140533037 |
author_facet | Sagaut, Pierre 1967- Deck, Sebastien Terracol, Marc |
author_role | aut aut aut |
author_sort | Sagaut, Pierre 1967- |
author_variant | p s ps s d sd m t mt |
building | Verbundindex |
bvnumber | BV022247974 |
callnumber-first | T - Technology |
callnumber-label | TA357 |
callnumber-raw | TA357.5.T87 |
callnumber-search | TA357.5.T87 |
callnumber-sort | TA 3357.5 T87 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 4300 |
ctrlnum | (OCoLC)71346496 (DE-599)BVBBV022247974 |
dewey-full | 532.0527 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532.0527 |
dewey-search | 532.0527 |
dewey-sort | 3532.0527 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01991nam a2200505zc 4500</leader><controlfield tag="001">BV022247974</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211005 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070130s2006 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006283992</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA677614</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">186094650X</subfield><subfield code="c">hbk.</subfield><subfield code="9">1-86094-650-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71346496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022247974</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA357.5.T87</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532.0527</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4300</subfield><subfield code="0">(DE-625)145584:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sagaut, Pierre</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1049515781</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale and multiresolution approaches in turbulence</subfield><subfield code="c">Pierre Sagaut ; Sebasten Deck ; Marc Terracol</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 340 p.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulence</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deck, Sebastien</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terracol, Marc</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1140533037</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015458800&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015458800</subfield></datafield></record></collection> |
id | DE-604.BV022247974 |
illustrated | Illustrated |
index_date | 2024-07-02T16:38:26Z |
indexdate | 2024-07-09T20:53:17Z |
institution | BVB |
isbn | 186094650X |
language | English |
lccn | 2006283992 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015458800 |
oclc_num | 71346496 |
open_access_boolean | |
owner | DE-29T DE-83 DE-11 |
owner_facet | DE-29T DE-83 DE-11 |
physical | xiv, 340 p. Ill., graph. Darst. 24 cm |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Imperial College Press |
record_format | marc |
spelling | Sagaut, Pierre 1967- Verfasser (DE-588)1049515781 aut Multiscale and multiresolution approaches in turbulence Pierre Sagaut ; Sebasten Deck ; Marc Terracol London Imperial College Press 2006 xiv, 340 p. Ill., graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Mathematisches Modell Turbulence Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Modellierung (DE-588)4170297-9 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 s Modellierung (DE-588)4170297-9 s DE-604 Mathematisches Modell (DE-588)4114528-8 s Deck, Sebastien Verfasser aut Terracol, Marc Verfasser (DE-588)1140533037 aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015458800&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sagaut, Pierre 1967- Deck, Sebastien Terracol, Marc Multiscale and multiresolution approaches in turbulence Mathematisches Modell Turbulence Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Modellierung (DE-588)4170297-9 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4170297-9 (DE-588)4117265-6 |
title | Multiscale and multiresolution approaches in turbulence |
title_auth | Multiscale and multiresolution approaches in turbulence |
title_exact_search | Multiscale and multiresolution approaches in turbulence |
title_exact_search_txtP | Multiscale and multiresolution approaches in turbulence |
title_full | Multiscale and multiresolution approaches in turbulence Pierre Sagaut ; Sebasten Deck ; Marc Terracol |
title_fullStr | Multiscale and multiresolution approaches in turbulence Pierre Sagaut ; Sebasten Deck ; Marc Terracol |
title_full_unstemmed | Multiscale and multiresolution approaches in turbulence Pierre Sagaut ; Sebasten Deck ; Marc Terracol |
title_short | Multiscale and multiresolution approaches in turbulence |
title_sort | multiscale and multiresolution approaches in turbulence |
topic | Mathematisches Modell Turbulence Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Modellierung (DE-588)4170297-9 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
topic_facet | Mathematisches Modell Turbulence Mathematical models Modellierung Turbulente Strömung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015458800&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sagautpierre multiscaleandmultiresolutionapproachesinturbulence AT decksebastien multiscaleandmultiresolutionapproachesinturbulence AT terracolmarc multiscaleandmultiresolutionapproachesinturbulence |