Nanochemistry: a chemical approach to nanomaterials
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
RSC Publishing
2006
|
Ausgabe: | Reprinted |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XL, 628 S. Ill., graph. Darst. |
ISBN: | 085404664X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022245052 | ||
003 | DE-604 | ||
005 | 20071018 | ||
007 | t | ||
008 | 070129s2006 ad|| |||| 00||| eng d | ||
020 | |a 085404664X |9 0-85404-664-X | ||
035 | |a (OCoLC)255840889 | ||
035 | |a (DE-599)BVBBV022245052 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-11 | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 620.5 | |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |a CHE 380f |2 stub | ||
084 | |a TEC 030f |2 stub | ||
100 | 1 | |a Ozin, Geoffrey A. |d 1943- |e Verfasser |0 (DE-588)139009639 |4 aut | |
245 | 1 | 0 | |a Nanochemistry |b a chemical approach to nanomaterials |c Geoffrey A. Ozin and André C. Arsenault |
250 | |a Reprinted | ||
264 | 1 | |a Cambridge |b RSC Publishing |c 2006 | |
300 | |a XL, 628 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Chemie - Nanostrukturiertes Material | |
650 | 4 | |a Nanoscience | |
650 | 4 | |a Nanostructured materials | |
650 | 0 | 7 | |a Chemie |0 (DE-588)4009816-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanopartikel |0 (DE-588)4333369-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Chemie |0 (DE-588)4009816-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nanopartikel |0 (DE-588)4333369-2 |D s |
689 | 1 | 1 | |a Chemie |0 (DE-588)4009816-3 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Arsenault, André C. |d 1979- |e Verfasser |0 (DE-588)1044017937 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455926&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015455926 |
Datensatz im Suchindex
_version_ | 1804136238642364416 |
---|---|
adam_text | Contents
List of Acronyms
xxv
Teaching (Nano)Materials
xxix
Learning (Nano)Materials
xxxi
About the Authors
xxxiii
Acknowledgements
xxxvii
Nanofood for Thought
-
Thinking about Nanochemistry,
Nanoscience,
N
anote
chnology and Nanosafety
xxxix
Chapter
1
Nanochemistry Basics
1
1.1
Materials Self-Assembly
1
1.2
Big Bang to the Universe
2
1.3
Why
Nano?
2
1.4
What do we Mean by Large and Small Nanomaterials?
3
1.5
Do it Yourself Quantum Mechanics
4
1.6
What is Nanochemistry?
5
1.7
Molecular vs. Materials Self-Assembly
5
1.8
What is Hierarchical Assembly?
6
1.9
Directing Self-Assembly
6
1.10
Supramolecular Vision
7
1.11
Geneology of Self-Assembling Materials
8
1.12
Unlocking the Key to Porous Solids 1
1
1.13
Learning from
Biominerals -
Form is Function
14
1.14
Can you Curve a Crystal?
16
1.15
Patterns, Patterns Everywhere
17
1.16
Synthetic Creations with Natural Form
18
1.17
Two-Dimensional Assemblies
20
1.18
S
AMs and Soft Lithography
23
1.19
Clever Clusters
24
xvi
Contents
.20
Extending the Prospects of Nanowires
26
.21
Coercing Colloids
27
.22
Mesoscale Self-Assembly
31
.23
Materials Self-Assembly of Integrated Systems
32
.24
References
33
Nanofood for Thought
-
Nanochemistry, Genealogy Materials
Self-Assembly, Length Scales
45
Chapter
2
Chemical Patterning and Lithography
49
2.1
Soft Lithography
49
2.2
What are Self-Assembled Monolayers?
50
2.3
The Science and Art of Soft Lithography
52
2.4
Patterning Wettability?
54
2.5
Condensation Figures
55
2.6
Microlens Arrays
56
2.7
Nanoring Arrays
58
2.8
Patterning the Solid State
59
2.9
Primed for Printing Polymers
61
2.10
Beyond Molecules
-
Transfer Printing of Thin Films
63
2.11
Electrically Contacting SAMS
64
2.12
SAM Crystal Engineering
66
2.13
Learning from Nature s Biocrystal Engineering
68
2.14
Colloidal Microsphere Patterns
71
2.15
Switching SAM Function
71
2.
J
6
Patterning by Photocatalysis
73
2.17
Reversibly Switching SAMs
74
2.18
Electrowettability Switch
76
2.19
Sweet Chips
77
2.20
All Fall Down in a Row Lithography
79
2.21
References
80
Nanofood for Thought
-
Soft Lithography, SAMs, Patterning
89
Chapter
3
Layer-by-Layer Self-Assembly
95
3.1
Building One Layer at a Time
95
3.2
Electrostatic Superlattices
95
3.3
Organic Polyelectrolyte Multilayers
97
3.4
Layer-by-Layer Smart Windows
97
3.5
How Thick is Thin?
99
3.6
Assembling
Metallopolymers 99
3.7
Directly Imaging Polyelectrolyte Multilayers
100
3.8
Polyelectrolyte-Colloid Multilayers
101
3.9
Graded Composition LbL Films
103
3.10
LbL MEMS
104
3.11
Trapping Active Proteins
106
3.12
Layering on Curved Surfaces
106
3.13
Crystal Engineering of Oriented Zeolite Film
108
Contents
,
xvii
3.14
Zeolite-Ordered Multicrystal Arrays
110
3.15
Crosslinked Crystal Arrays 111
3.16
Layering with Topological Complexity
112
3.17
Patterned Multilayers
113
3.18
Non-Electrostatic Layer-by-Layer Assembly
115
3.19
Low Pressure Layers
116
3.20
Layer-by-Layer Self-Limiting Reactions
117
3.21
References
118
Nanofood for Thought
-
Designer Monolayers, Multilayers,
Materials
Flatland
126
Chapter
4
Nanocontact Printing and Writing
-
Stamps
and Tips
131
4.1
Sub-
100
nm Soft Lithography
131
4.2
Extending
Microcontact
Printing
131
4.3
Putting on the Pressure
133
4.4
Defect Patterning
-
Topologically Directed Etching
135
4.5
Below
50
nm Nanocontact Printing
136
4.6
Nanocontact Writing
-
Dip Pen Nanolithography
137
4.7
DPN of Silicon
138
4.8
DPN on Glass
139
4.9
Nanoscale Writing on Seminconductor Nanowires
140
4.10
Sol-Gel DPN
141
4.11
Soft Patterning of Hard Magnets
142
4.12
Writing Molecular Recognition
143
4.13
DPN Writing Protein Recognition Nanostructures
145
4.14
Patterning
Bioconstructions
145
4.15
Eating Patterns
-
Enzyme DPN
147
4.16
Electrostatic DPN
148
4.17
Electrochemical DPN
148
4.18
SPM Nano-Electrochemistry
149
4.19
Beyond DPN
-
Whittling Nanostructures
151
4.20
Combi
Nano
-
DPN Combinatorial Libraries
151
4.21
Nanoplotters
153
4.22
Nanoblotters
154
4.23
Scanning Probe Contact Printing (SP-CP)
155
4.24
Dip Pen Nanolithography Stamp Tip
-
Beyond DPN CP
157
4.25
Best of Both Worlds
157
4.26
The Nanogenie is out of the Bottle
158
4.27
References
158
Nanofood for Thought
-
Sharper Chemical Patterning Tools
164
Chapter
5
Nanorod, Nanotube, Nanowire Self-Assembly
167
5.1
Building Block Assembly
167
5.2
Templating Nanowires
167
xviii Contents
5.3
Modulated Diameter Gold Nanorods
168
5.4
Modulated Composition Nanorods
170
5.5
Barcoded Nanorod Orthogonal Self-Assembly
173
5.6
Self-Assembling Nanorods
176
5.7
Magnetic Nanorods Bunch Up
177
5.8
Magnetic Nanorods and Magnetic Nanoclusters
178
5.9
An Irresistable Attraction for Biomolecules
181
5.10
Hierarchically Ordered Nanorods
183
5.11
Nanorod Devices
184
5.12
Nanotubes from Nanoporous Templates
186
5.13
Layer-by-Layer Nanotubes from Nanorods
188
5.14
Synthesis of Single Crystal Semiconductor Nanowires
189
5.15
Vapor-Liquid-Solid Synthesis of Nanowires
189
5.16
What Controls Nanowire-Oriented Growth?
191
5.17
Supercritical Fluid-Liquid-Solid Synthesis
191
5.18
Nanowire Quantum Size Effects
193
5.19
Zoo of Nanowire Compositions and Architectures
195
5.20
Single-Source Precursors
195
5.21
Manipulating Nanowires
196
5.22
Crossed Semiconductor Nanowires
-
Smallest LED
199
5.23
Nanowire Diodes and Transistors
201
5.24
Nanowire Sensors
201
5.25
Catalytic Nanowire Electronics
203
5.26
Nanowire Heterostructures
204
5.27
Longitudinal Nanowire Superlattices
206
5.28
Axial Nanowire Heterostructures
207
5.29
Nanowires Branch Out
209
5.30
Coaxially Gated Nanowire Transistor
209
5.31
Vertical Nanowire Field Effect Transistors
212
5.32
Integrated Metal-Semiconductor Nanowires
-
Nanoscale
Electrical Contacts
215
5.33
Photon-Driven Nanowire Laser
216
5.34
Electrically Driven Nanowire Laser
218
5.35
Nanowire UV Photodetectors
220
5.36
Simplifying Complex Nanowires
220
5.37
Nanowire Casting of Single-Crystal Nanolubes
222
5.38
Solution-Phase Routes to Nanowires
223
5.39
Spinning Nanowire Devices
226
5.40
Hollow Nanofibers by Electrospinning
227
5.41
Carbon Nanotubes
229
5.42
Carbon Nanotube Structure and Electrical Properties
229
5.43
Gone Ballistic
231
5.44
Carbon Nanotube Nanomechanics
233
5.45
Carbon Nanotube Chemistry
233
5.46
Carbon Nanotubes All in a Row
236
5.47
Carbon Nanotube Photonic Crystal
238
Contents . xix
5.48
Putting
Carbon Nanotubes
Exactly Where You
Want Them
240
5.49
The Nanowire Pitch Challenge
242
5.50
Integrated Nanowire Nanoelectronics
244
5.51
A Small Thought at the End of a Large Chapter
246
5.52
References
246
Nanofoodfor Thought- Wires, Rods, Tubes, Low
Dimensionality
260
Chapter
6
Nanoduster Self-Assembly
265
6.1
Building-Block Assembly
265
6.2
When is a Nanocluster a Nanocrystal or Nanoparticle?
266
6.3
Synthesis of Capped Semiconductor Nanoclusters
266
6.4
Electrons and Holes in Nanocluster Boxes
268
6.5
Watching Nanoclusters Grow
270
6.6
Nanocrystals in Nanobeakers
271
6.7
Nanocluster Semiconductor Alloys and Beyond
273
6.8
Nanocluster Phase Transformation
274
6.9
Capped Gold Nanoclusters
-
Nanonugget Rush
275
6.10
Alkanethiolate Capped Nanocluster Diagnostics
277
6.11
Periodic Table of Capped Nanoclusters
278
6.12
There s Gold in Them Thar Hills!
278
6.13
Water-Soluble
Nanoclusters
279
6.14
Capped Nanocluster Architectures and Morphologies
281
6.15
Alkanethiolate Capped Silver Nanocluster Superlattice
282
6.16
Crystals of Nanocrystals
284
6.17
Beyond Crystal of Nanocrystals
-
Binary Nanocrystal
Superlattices
285
6.18
Capped Magnetic Nanocluster Superlattice
-
High
Density Data Storage Materials
286
6.19
Alloying Core-Shell Magnetic Nanoclusters
287
6.20
Soft Lithography of Capped Nanoclusters
288
6.21
Organizing Nanoclusters by Evaporation
289
6.22
Electroluminescent Semiconductor Nanoclusters
289
6.23
Full Color Nanocluster-Polymer Composites
291
6.24
Capped Semiconductor Nanocluster Meets
Biomolecule
293
6.25
Nanocluster
DNA
Sensors
-
Besting the Best
296
6.26
Semiconductor Nanoclusters Extend and Branch Out
297
6.27
Branched Nanocluster Solar Cells
299
6.28
Tetrapod of Tetrapods
-
Towards Inorganic Dendrimers
300
6.29
Golden Tips
-
Making Contact with Nanorods
301
6.30
Flipping a Nanocluster Switch
303
6.31
Photochromic Metal Nanoclusters
304
6.32
Carbon Nanoclusters
-
Buckyballs
306
6.33
Building Nanodevices with Buckyballs
307
6.34
Carbon Catalysis with Buckyball
308
xx Contents
6.35
References
309
Nanofood for Thought
-
Nanoclusters, Nanocrystals,
Quantum Dots, Quantum Size Effects
320
Chapter
7
Microspheres
-
Colors from the Beaker
325
7.1
Nature s Photonic Crystals
325
7.2
Photonic Crystals
325
7.3
Photonic Semiconductors
327
7.4
Defects, Defects, Defects
328
7.5
Computing with Light
328
7.6
Color Tunability
330
7.7
Transferring Nature s Photonic Crystal Technology to
the Chemistry Laboratory
330
7.8
Microsphere Building Blocks
331
7.9
Silica Microspheres
331
7.10
Latex Microspheres
332
7.11
Multi-Shell Microspheres
332
7.12
Basics of Microsphere Self-Assembly
333
7.13
Microsphere Self-Assembly
-
Crystals and Films
334
7.14
Colloidal Crystalline Fluids
336
7.15
Beyond Face Centered Cubic Packing of Microspheres
337
7.16
Templates
-
Confinement and Epitaxy
338
7.17
Photonic Crystal Fibers
340
7.18
Photonic Crystal Marbles
340
7.19
Optical Properties of Colloidal Crystals
-
Combined
Bragg-Snell Laws
343
7.20
Basic Optical Properties of Colloidal Crystals
343
7.21
How Perfect is Perfect?
345
7.22
Cracking Controversy
346
7.23
Synthesizing a Full Photonic Band Gap
348
7.24
Writing Defects
349
7.25
Getting Smart with Planar Defects
350
7.26
Switching Light with Light
353
7.27
Internal Light Sources
353
7.28
Photonic Inks
354
7.29
Color Oscillator
357
7.30
Photonic Crystal Sensors
357
7.31
Colloidal Photonic Crystal Solar Cell
359
7.32
Thermochromic Colloidal Photonic Crystal Switch
360
7.33
Liquid Crystal Photonic Crystal
361
7.34
Encrypted Colloidal Crystals
363
7.35
Gazing into the Photonic Crystal Ball
365
7.36
References
365
Nanofood for Thought
-
Colloidal Assembly, Colloidal
Crystals, Colloidal Crxstal Devices, Structural Color
373
Cements
xxi
Chapter
8
Microporous and Mesoporous Materials
from Soft Building Blocks
379
8.1
Escape from the Zeolite Prison
379
8.2
A Periodic Table of Materials Filled with Holes
380
8.3
Modular Self-Assembly of Microporous Materials
381
8.4
Hydrogen Storage Coordination Frameworks
383
8.5
Overview and Prospects of Microporous Materials
384
8.6
Mesoscale Soft Building Blocks
385
8.7
Micelle Versus Liquid Crystal Templating Paradox
387
8.8
Designing Function into Mesoporous Materials
387
8.9
Tuning Length Scales
388
8.10
Mesostructure and Dimensionality
390
8.11
Mesocomposition
-
Nature of Precursors
390
8.12
Mesotexture
391
8.13
Periodic Mesoporous Silica-Polymer Hybrids
392
8.14
Guests in Mesopores
393
8.15
Capped Nanocluster Meets Surfactant Mesophase
394
8.16
Marking Time in Mesostructured Silica
-
New Approach
to Optical Data Storage
396
8.17
Sidearm Mesofunctionalization
397
8.18
Organics in the Backbone
398
8.19
Mesomorphology -Films, Interfaces, Mesoepitaxy
400
8.20
Stand Up and Be Counted
402
8.21
Mesomorphology
-
Spheres, Other Shapes
404
8.22
Mesomorphology
-
Patterned Films, Soft Lithography,
Micromolding
406
8.23
Mesomorphology
-
Morphosynthesis of Curved Form
408
8.24
Chiral Surfactant Micelles
-
Chiral Mesoporous Silica
410
8.25
Mesopore Replication
413
8.26
Mesochemistry and Topological Defects
414
8.27
Mesochemistry
-
Synthesis in Intermediate Dimensions
415
8.28
References
418
Nanofood for Thought
-
Soft Blocks Template Hard
Precursors, Holex Materials
430
Chapter
9
Self-Assembling Block Copolymers
435
9.1
Polymers, Polymers Everywhere in Nanochemistry
435
9.2
Block Copolymer Self-Assembly
-
Chip Off the Old
Block
435
9.3
Nanostructured Ceramics
437
9.4
Nano-objects
439
9.5
Block Copolymer Thin Films
439
9.6
Electrical Ordering
442
9.7
Spatial Confinement of Block Copolymers
442
9.8
Nanoepitaxy
444
xxii
Contents
9.9
Block Copolymer Lithography
444
9.10
Decorating Block Copolymers
446
9.! 1
A Case of Wettability
447
9.12
Nanowires from Block Copolymers
449
9.13
Making Micelles
451
9.14
Assembling Inorganic Polymers
453
9.15
Harnessing Rigid Rods
453
9.16
Supramolecular Assemblies
455
9.17
Supramolecular Mushrooms
456
9.18
Structural Color from Lightscale Block Copolymers
458
9.19
Block Copolypeptides
459
9.20
Block Copolymer Biofactories
461
9.21
References
462
Ncmofood for Thought
-
Block Copolymer Self-Assembling
Nanostructures
468
Chapter
10
Biomaterials
and
Bioinspiration 473
10.1
Nature did it First
473
10.2
To Mimic or to Use?
474
10.3
Faux Fossils
475
10.4
Nature s Siliceous Sculptures
476
10.5
Ancient to Modern Synthetic Morphology
477
10.6
Biomimicry
478
10.7
Biomineralization and Biomimicry Analogies
479
10.8
Learning from Nature
481
10.9
Viral Cage Directed Synthesis of Nanoclusters
482
10.10
Viruses that Glitter
483
10.1 1
Polynucleotide Directed Nanocluster Assembly
484
10.12 DNA
Coded Nanocluster Chains
485
10.13
Building with
DNA 487
10.14
Bacteria Directed Materials Self-Assembly
489
10.15
Using a Virus that is Benign, to Align
491
10.16
Magnetic Spider Silk
492
10.17
Protein S-Layer Masks
493
10.18
Morphosynthesis
-
Inorganic Materials with
Complex Form
496
10.19
Echinoderm vs. Block Copolymers
498
10.20
Fishy
Тор
-Down
Photonic Crystals
499
10.21
Aluminophosphates Shape Up
501
10.22
Better Bones Through Chemistry
502
10.23
Mineralizing Nanofibers
504
10.24
Biological Lessons in Materials Design
505
10.25
Surface Binding Through Directed Evolution
505
10.26
Nanowire Evolution
508
10.27
Biomolecular Motors
-
Nanomachines Everywhere
508
Contents
xxiii
10.28 ·
How Biomolors Work
510
10.29
Kinesin
-
Walk Along
512
10.30
ATPase
-
Biomotor Nanopropellors
515
10.31
(Bio)Inspiration
516
10.32
References
517
Ncmofood for Thought
-
Organic Matrix,
Biomine
ralizatum,
Biomimetics,
Bioinspiration
527
Chapter
11
Self-Assembly of Large Building Blocks
531
11.1
Self-assembling Supra-micron Shapes
531
11.2
Synthesis Using the Capillary Bond
532
11.3
Crystallizing Large Polyhedral-Shaped Building Blocks
533
11.4
Self-Assembling 2D and
3D
Electrical Circuits and
Devices
533
11.5
Crystallizing Micron-Sized Planar Building Blocks
534
1.6
Polyhedra with Patterned Faces that
Autoconstruct
536
1.7
Large Sphere Building Blocks Self-Assemble
into
3D
Crystals
540
1.8
Synthetic MEMS?
54
1
1.9
Magnetic Self-Assembly
541
1.10
Dynamic Self-Assembly
543
1.11
Autonomous Self-Assembly
544
1.12
Self-Assembly and Synthetic Life
547
1.13
References
548
Nanofood for Thought
-
Siatie
and Dynamic, Capillary Bond,
Shape Assembly
550
Chapter
12
Nano
and Beyond
553
12.1
Assembling the Future
553
12.2
Microfluidic Computing
554
12.3
Fuel Cells
-
Hold the Membrane
554
12.4
Curved Prints
554
12.5
Beating the Ink Diffusion Dilemma
555
12.6
Tip of the Pyramid
556
12.7
Biosensing Membranes
556
12.8
Crossing Nanowires
556
12.9
Complete Crystallographi
с
Control
557
12.10
Down to the Wire
557
12.11
Shielded Nanowires
558
12.12 ■
Writing
3D
Nanofluidic and Nanophotonic Networks
559
12.13
Break-and-Glue Transistor Assembly
560
12.14
Turning Nanostructures Inside-out
560
12.15
Confining Spheres
560
12.16
Escape from the Silica and Polystyrene Prison
562
12.17
Smart Dust
562
12.18
Light Writing for Light Guiding
562
xxiv Contents
12.19 Nanoring
Around the Collar
563
12.20
A Meso
Rubbed Right
563
12.21
Fungus with the Midas Touch
564
12.22
Self-assembled Electronics
565
12.23
Gears Sink Their Teeth into the Interface
565
12.24
Materials Retro-assembly
566
12.25
Matter that Matters
-
Materials of the Next Kind
568
12.26
References
571
Nanofood for Thought
-
Nemo Potpourri
574
Chapter
13
Nanochemistry Nanolabs
579
Appendix A
:
Origin of the Term Self-Assembly
585
Appendix
В
:
Cytotoxicity of Nanoparticles
589
Appendix
С
:
Walking Macromolecules Through
Colloidal Crystals
593
Appendix
D
:
Patterning Nanochannel Alumina
Membranes With Single Channel Resolution
597
Appendix
E
:
Muscle Powered Nanomachines
599
Appendix
F
:
Bacteria Power
603
Appendix G: Chemically Driven Nanorod Motors
607
Subject Index
611
|
adam_txt |
Contents
List of Acronyms
xxv
Teaching (Nano)Materials
xxix
Learning (Nano)Materials
xxxi
About the Authors
xxxiii
Acknowledgements
xxxvii
Nanofood for Thought
-
Thinking about Nanochemistry,
Nanoscience,
N
anote
chnology and Nanosafety
xxxix
Chapter
1
Nanochemistry Basics
1
1.1
Materials Self-Assembly
1
1.2
Big Bang to the Universe
2
1.3
Why
Nano?
2
1.4
What do we Mean by Large and Small Nanomaterials?
3
1.5
Do it Yourself Quantum Mechanics
4
1.6
What is Nanochemistry?
5
1.7
Molecular vs. Materials Self-Assembly
5
1.8
What is Hierarchical Assembly?
6
1.9
Directing Self-Assembly
6
1.10
Supramolecular Vision
7
1.11
Geneology of Self-Assembling Materials
8
1.12
Unlocking the Key to Porous Solids 1
1
1.13
Learning from
Biominerals -
Form is Function
14
1.14
Can you Curve a Crystal?
16
1.15
Patterns, Patterns Everywhere
17
1.16
Synthetic Creations with Natural Form
18
1.17
Two-Dimensional Assemblies
20
1.18
S
AMs and Soft Lithography
23
1.19
Clever Clusters
24
xvi
Contents
.20
Extending the Prospects of Nanowires
26
.21
Coercing Colloids
27
.22
Mesoscale Self-Assembly
31
.23
Materials Self-Assembly of Integrated Systems
32
.24
References
33
Nanofood for Thought
-
Nanochemistry, Genealogy Materials
Self-Assembly, Length Scales
45
Chapter
2
Chemical Patterning and Lithography
49
2.1
Soft Lithography
49
2.2
What are Self-Assembled Monolayers?
50
2.3
The Science and Art of Soft Lithography
52
2.4
Patterning Wettability?
54
2.5
Condensation Figures
55
2.6
Microlens Arrays
56
2.7
Nanoring Arrays
58
2.8
Patterning the Solid State
59
2.9
Primed for Printing Polymers
61
2.10
Beyond Molecules
-
Transfer Printing of Thin Films
63
2.11
Electrically Contacting SAMS
64
2.12
SAM Crystal Engineering
66
2.13
Learning from Nature's Biocrystal Engineering
68
2.14
Colloidal Microsphere Patterns
71
2.15
Switching SAM Function
71
2.
J
6
Patterning by Photocatalysis
73
2.17
Reversibly Switching SAMs
74
2.18
Electrowettability Switch
76
2.19
Sweet Chips
77
2.20
All Fall Down in a Row Lithography
79
2.21
References
80
Nanofood for Thought
-
Soft Lithography, SAMs, Patterning
89
Chapter
3
Layer-by-Layer Self-Assembly
95
3.1
Building One Layer at a Time
95
3.2
Electrostatic Superlattices
95
3.3
Organic Polyelectrolyte Multilayers
97
3.4
Layer-by-Layer Smart Windows
97
3.5
How Thick is Thin?
99
3.6
Assembling
Metallopolymers 99
3.7
Directly Imaging Polyelectrolyte Multilayers
100
3.8
Polyelectrolyte-Colloid Multilayers
101
3.9
Graded Composition LbL Films
103
3.10
LbL MEMS
104
3.11
Trapping Active Proteins
106
3.12
Layering on Curved Surfaces
106
3.13
Crystal Engineering of Oriented Zeolite Film
108
Contents
,
xvii
3.14
Zeolite-Ordered Multicrystal Arrays
110
3.15
Crosslinked Crystal Arrays 111
3.16
Layering with Topological Complexity
112
3.17
Patterned Multilayers
113
3.18
Non-Electrostatic Layer-by-Layer Assembly
115
3.19
Low Pressure Layers
116
3.20
Layer-by-Layer Self-Limiting Reactions
117
3.21
References
118
Nanofood for Thought
-
Designer Monolayers, Multilayers,
Materials
Flatland
126
Chapter
4
Nanocontact Printing and Writing
-
Stamps
and Tips
131
4.1
Sub-
100
nm Soft Lithography
131
4.2
Extending
Microcontact
Printing
131
4.3
Putting on the Pressure
133
4.4
Defect Patterning
-
Topologically Directed Etching
135
4.5
Below
50
nm Nanocontact Printing
136
4.6
Nanocontact Writing
-
Dip Pen Nanolithography
137
4.7
DPN of Silicon
138
4.8
DPN on Glass
139
4.9
Nanoscale Writing on Seminconductor Nanowires
140
4.10
Sol-Gel DPN
141
4.11
Soft Patterning of Hard Magnets
142
4.12
Writing Molecular Recognition
143
4.13
DPN Writing Protein Recognition Nanostructures
145
4.14
Patterning
Bioconstructions
145
4.15
Eating Patterns
-
Enzyme DPN
147
4.16
Electrostatic DPN
148
4.17
Electrochemical DPN
148
4.18
SPM Nano-Electrochemistry
149
4.19
Beyond DPN
-
Whittling Nanostructures
151
4.20
Combi
Nano
-
DPN Combinatorial Libraries
151
4.21
Nanoplotters
153
4.22
Nanoblotters
154
4.23
Scanning Probe Contact Printing (SP-CP)
155
4.24
Dip Pen Nanolithography Stamp Tip
-
Beyond DPN CP
157
4.25
Best of Both Worlds
157
4.26
The Nanogenie is out of the Bottle
158
4.27
References
158
Nanofood for Thought
-
Sharper Chemical Patterning Tools
164
Chapter
5
Nanorod, Nanotube, Nanowire Self-Assembly
167
5.1
Building Block Assembly
167
5.2
Templating Nanowires
167
xviii Contents
5.3
Modulated Diameter Gold Nanorods
168
5.4
Modulated Composition Nanorods
170
5.5
Barcoded Nanorod Orthogonal Self-Assembly
173
5.6
Self-Assembling Nanorods
176
5.7
Magnetic Nanorods Bunch Up
177
5.8
Magnetic Nanorods and Magnetic Nanoclusters
178
5.9
An Irresistable Attraction for Biomolecules
181
5.10
Hierarchically Ordered Nanorods
183
5.11
Nanorod Devices
184
5.12
Nanotubes from Nanoporous Templates
186
5.13
Layer-by-Layer Nanotubes from Nanorods
188
5.14
Synthesis of Single Crystal Semiconductor Nanowires
189
5.15
Vapor-Liquid-Solid Synthesis of Nanowires
189
5.16
What Controls Nanowire-Oriented Growth?
191
5.17
Supercritical Fluid-Liquid-Solid Synthesis
191
5.18
Nanowire Quantum Size Effects
193
5.19
Zoo of Nanowire Compositions and Architectures
195
5.20
Single-Source Precursors
195
5.21
Manipulating Nanowires
196
5.22
Crossed Semiconductor Nanowires
-
Smallest LED
199
5.23
Nanowire Diodes and Transistors
201
5.24
Nanowire Sensors
201
5.25
Catalytic Nanowire Electronics
203
5.26
Nanowire Heterostructures
204
5.27
Longitudinal Nanowire Superlattices
206
5.28
Axial Nanowire Heterostructures
207
5.29
Nanowires Branch Out
209
5.30
Coaxially Gated Nanowire Transistor
209
5.31
Vertical Nanowire Field Effect Transistors
212
5.32
Integrated Metal-Semiconductor Nanowires
-
Nanoscale
Electrical Contacts
215
5.33
Photon-Driven Nanowire Laser
216
5.34
Electrically Driven Nanowire Laser
218
5.35
Nanowire UV Photodetectors
220
5.36
Simplifying Complex Nanowires
220
5.37
Nanowire Casting of Single-Crystal Nanolubes
222
5.38
Solution-Phase Routes to Nanowires
223
5.39
Spinning Nanowire Devices
226
5.40
Hollow Nanofibers by Electrospinning
227
5.41
Carbon Nanotubes
229
5.42
Carbon Nanotube Structure and Electrical Properties
229
5.43
Gone Ballistic
231
5.44
Carbon Nanotube Nanomechanics
233
5.45
Carbon Nanotube Chemistry
233
5.46
Carbon Nanotubes All in a Row
236
5.47
Carbon Nanotube Photonic Crystal
238
Contents . xix
5.48
Putting
Carbon Nanotubes
Exactly Where You
Want Them
240
5.49
The Nanowire Pitch Challenge
242
5.50
Integrated Nanowire Nanoelectronics
244
5.51
A Small Thought at the End of a Large Chapter
246
5.52
References
246
Nanofoodfor Thought- Wires, Rods, Tubes, Low
Dimensionality
260
Chapter
6
Nanoduster Self-Assembly
265
6.1
Building-Block Assembly
265
6.2
When is a Nanocluster a Nanocrystal or Nanoparticle?
266
6.3
Synthesis of Capped Semiconductor Nanoclusters
266
6.4
Electrons and Holes in Nanocluster Boxes
268
6.5
Watching Nanoclusters Grow
270
6.6
Nanocrystals in Nanobeakers
271
6.7
Nanocluster Semiconductor Alloys and Beyond
273
6.8
Nanocluster Phase Transformation
274
6.9
Capped Gold Nanoclusters
-
Nanonugget Rush
275
6.10
Alkanethiolate Capped Nanocluster Diagnostics
277
6.11
Periodic Table of Capped Nanoclusters
278
6.12
There's Gold in Them Thar Hills!
278
6.13
Water-Soluble
Nanoclusters
279
6.14
Capped Nanocluster Architectures and Morphologies
281
6.15
Alkanethiolate Capped Silver Nanocluster Superlattice
282
6.16
Crystals of Nanocrystals
284
6.17
Beyond Crystal of Nanocrystals
-
Binary Nanocrystal
Superlattices
285
6.18
Capped Magnetic Nanocluster Superlattice
-
High
Density Data Storage Materials
286
6.19
Alloying Core-Shell Magnetic Nanoclusters
287
6.20
Soft Lithography of Capped Nanoclusters
288
6.21
Organizing Nanoclusters by Evaporation
289
6.22
Electroluminescent Semiconductor Nanoclusters
289
6.23
Full Color Nanocluster-Polymer Composites
291
6.24
Capped Semiconductor Nanocluster Meets
Biomolecule
293
6.25
Nanocluster
DNA
Sensors
-
Besting the Best
296
6.26
Semiconductor Nanoclusters Extend and Branch Out
297
6.27
Branched Nanocluster Solar Cells
299
6.28
Tetrapod of Tetrapods
-
Towards Inorganic Dendrimers
300
6.29
Golden Tips
-
Making Contact with Nanorods
301
6.30
Flipping a Nanocluster Switch
303
6.31
Photochromic Metal Nanoclusters
304
6.32
Carbon Nanoclusters
-
Buckyballs
306
6.33
Building Nanodevices with Buckyballs
307
6.34
Carbon Catalysis with Buckyball
308
xx Contents
6.35
References
309
Nanofood for Thought
-
Nanoclusters, Nanocrystals,
Quantum Dots, Quantum Size Effects
320
Chapter
7
Microspheres
-
Colors from the Beaker
325
7.1
Nature's Photonic Crystals
325
7.2
Photonic Crystals
325
7.3
Photonic Semiconductors
327
7.4
Defects, Defects, Defects
328
7.5
Computing with Light
328
7.6
Color Tunability
330
7.7
Transferring Nature's Photonic Crystal Technology to
the Chemistry Laboratory
330
7.8
Microsphere Building Blocks
331
7.9
Silica Microspheres
331
7.10
Latex Microspheres
332
7.11
Multi-Shell Microspheres
332
7.12
Basics of Microsphere Self-Assembly
333
7.13
Microsphere Self-Assembly
-
Crystals and Films
334
7.14
Colloidal Crystalline Fluids
336
7.15
Beyond Face Centered Cubic Packing of Microspheres
337
7.16
Templates
-
Confinement and Epitaxy
338
7.17
Photonic Crystal Fibers
340
7.18
Photonic Crystal Marbles
340
7.19
Optical Properties of Colloidal Crystals
-
Combined
Bragg-Snell Laws
343
7.20
Basic Optical Properties of Colloidal Crystals
343
7.21
How Perfect is Perfect?
345
7.22
Cracking Controversy
346
7.23
Synthesizing a Full Photonic Band Gap
348
7.24
Writing Defects
349
7.25
Getting Smart with Planar Defects
350
7.26
Switching Light with Light
353
7.27
Internal Light Sources
353
7.28
Photonic Inks
354
7.29
Color Oscillator
357
7.30
Photonic Crystal Sensors
357
7.31
Colloidal Photonic Crystal Solar Cell
359
7.32
Thermochromic Colloidal Photonic Crystal Switch
360
7.33
Liquid Crystal Photonic Crystal
361
7.34
Encrypted Colloidal Crystals
363
7.35
Gazing into the Photonic Crystal Ball
365
7.36
References
365
Nanofood for Thought
-
Colloidal Assembly, Colloidal
Crystals, Colloidal Crxstal Devices, Structural Color
373
Cements
xxi
Chapter
8
Microporous and Mesoporous Materials
from Soft Building Blocks
379
8.1
Escape from the Zeolite Prison
379
8.2
A Periodic Table of Materials Filled with Holes
380
8.3
Modular Self-Assembly of Microporous Materials
381
8.4
Hydrogen Storage Coordination Frameworks
383
8.5
Overview and Prospects of Microporous Materials
384
8.6
Mesoscale Soft Building Blocks
385
8.7
Micelle Versus Liquid Crystal Templating Paradox
387
8.8
Designing Function into Mesoporous Materials
387
8.9
'Tuning Length Scales
388
8.10
Mesostructure and Dimensionality
390
8.11
Mesocomposition
-
Nature of Precursors
390
8.12
Mesotexture
391
8.13
Periodic Mesoporous Silica-Polymer Hybrids
392
8.14
Guests in Mesopores
393
8.15
Capped Nanocluster Meets Surfactant Mesophase
394
8.16
Marking Time in Mesostructured Silica
-
New Approach
to Optical Data Storage
396
8.17
Sidearm Mesofunctionalization
397
8.18
Organics in the Backbone
398
8.19
Mesomorphology -Films, Interfaces, Mesoepitaxy
400
8.20
Stand Up and Be Counted
402
8.21
Mesomorphology
-
Spheres, Other Shapes
404
8.22
Mesomorphology
-
Patterned Films, Soft Lithography,
Micromolding
406
8.23
Mesomorphology
-
Morphosynthesis of Curved Form
408
8.24
Chiral Surfactant Micelles
-
Chiral Mesoporous Silica
410
8.25
Mesopore Replication
413
8.26
Mesochemistry and Topological Defects
414
8.27
Mesochemistry
-
Synthesis in "Intermediate" Dimensions
415
8.28
References
418
Nanofood for Thought
-
Soft Blocks Template Hard
Precursors, Holex Materials
430
Chapter
9
Self-Assembling Block Copolymers
435
9.1
Polymers, Polymers Everywhere in Nanochemistry
435
9.2
Block Copolymer Self-Assembly
-
Chip Off the Old
Block
435
9.3
Nanostructured Ceramics
437
9.4
Nano-objects
439
9.5
Block Copolymer Thin Films
439
9.6
Electrical Ordering
442
9.7
Spatial Confinement of Block Copolymers
442
9.8
Nanoepitaxy
444
xxii
Contents
9.9
Block Copolymer Lithography
444
9.10
Decorating Block Copolymers
446
9.! 1
A Case of Wettability
447
9.12
Nanowires from Block Copolymers
449
9.13
Making Micelles
451
9.14
Assembling Inorganic Polymers
453
9.15
Harnessing Rigid Rods
453
9.16
Supramolecular Assemblies
455
9.17
Supramolecular Mushrooms
456
9.18
Structural Color from Lightscale Block Copolymers
458
9.19
Block Copolypeptides
459
9.20
Block Copolymer Biofactories
461
9.21
References
462
Ncmofood for Thought
-
Block Copolymer Self-Assembling
Nanostructures
468
Chapter
10
Biomaterials
and
Bioinspiration 473
10.1
Nature did it First
473
10.2
To Mimic or to Use?
474
10.3
Faux Fossils
475
10.4
Nature's Siliceous Sculptures
476
10.5
Ancient to Modern Synthetic Morphology
477
10.6
Biomimicry
478
10.7
Biomineralization and Biomimicry Analogies
479
10.8
Learning from Nature
481
10.9
Viral Cage Directed Synthesis of Nanoclusters
482
10.10
Viruses that Glitter
483
10.1 1
Polynucleotide Directed Nanocluster Assembly
484
10.12 DNA
Coded Nanocluster Chains
485
10.13
Building with
DNA 487
10.14
Bacteria Directed Materials Self-Assembly
489
10.15
Using a Virus that is Benign, to Align
491
10.16
Magnetic Spider Silk
492
10.17
Protein S-Layer Masks
493
10.18
Morphosynthesis
-
Inorganic Materials with
Complex Form
496
10.19
Echinoderm vs. Block Copolymers
498
10.20
Fishy
Тор
-Down
Photonic Crystals
499
10.21
Aluminophosphates Shape Up
501
10.22
Better Bones Through Chemistry
502
10.23
Mineralizing Nanofibers
504
10.24
Biological Lessons in Materials Design
505
10.25
Surface Binding Through Directed Evolution
505
10.26
Nanowire Evolution
508
10.27
Biomolecular Motors
-
Nanomachines Everywhere
508
Contents
xxiii
10.28 ·
How Biomolors Work
510
10.29
Kinesin
-
Walk Along
512
10.30
ATPase
-
Biomotor Nanopropellors
515
10.31
(Bio)Inspiration
516
10.32
References
517
Ncmofood for Thought
-
Organic Matrix,
Biomine
ralizatum,
Biomimetics,
Bioinspiration
527
Chapter
11
Self-Assembly of Large Building Blocks
531
11.1
Self-assembling Supra-micron Shapes
531
11.2
Synthesis Using the "Capillary Bond"
532
11.3
Crystallizing Large Polyhedral-Shaped Building Blocks
533
11.4
Self-Assembling 2D and
3D
Electrical Circuits and
Devices
533
11.5
Crystallizing Micron-Sized Planar Building Blocks
534
1.6
Polyhedra with Patterned Faces that
Autoconstruct
536
1.7
Large Sphere Building Blocks Self-Assemble
into
3D
Crystals
540
1.8
Synthetic MEMS?
54
1
1.9
Magnetic Self-Assembly
541
1.10
Dynamic Self-Assembly
543
1.11
Autonomous Self-Assembly
544
1.12
Self-Assembly and Synthetic Life
547
1.13
References
548
Nanofood for Thought
-
Siatie
and Dynamic, Capillary Bond,
Shape Assembly
550
Chapter
12
Nano
and Beyond
553
12.1
Assembling the Future
553
12.2
Microfluidic Computing
554
12.3
Fuel Cells
-
Hold the Membrane
554
12.4
Curved Prints
554
12.5
Beating the Ink Diffusion Dilemma
555
12.6
Tip of the Pyramid
556
12.7
Biosensing Membranes
556
12.8
Crossing Nanowires
556
12.9
Complete Crystallographi
с
Control
557
12.10
Down to the Wire
557
12.11
Shielded Nanowires
558
12.12 ■
Writing
3D
Nanofluidic and Nanophotonic Networks
559
12.13
Break-and-Glue Transistor Assembly
560
12.14
Turning Nanostructures Inside-out
560
12.15
Confining Spheres
560
12.16
Escape from the Silica and Polystyrene Prison
562
12.17
Smart Dust
562
12.18
Light Writing for Light Guiding
562
xxiv Contents
12.19 Nanoring
Around the Collar
563
12.20
A Meso
Rubbed Right
563
12.21
Fungus with the Midas Touch
564
12.22
Self-assembled Electronics
565
12.23
Gears Sink Their Teeth into the Interface
565
12.24
Materials Retro-assembly
566
12.25
Matter that Matters
-
Materials of the "Next Kind"
568
12.26
References
571
Nanofood for Thought
-
Nemo Potpourri
574
Chapter
13
Nanochemistry Nanolabs
579
Appendix A
:
Origin of the Term "Self-Assembly"
585
Appendix
В
:
Cytotoxicity of Nanoparticles
589
Appendix
С
:
Walking Macromolecules Through
Colloidal Crystals
593
Appendix
D
:
Patterning Nanochannel Alumina
Membranes With Single Channel Resolution
597
Appendix
E
:
Muscle Powered Nanomachines
599
Appendix
F
:
Bacteria Power
603
Appendix G: Chemically Driven Nanorod Motors
607
Subject Index
611 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Ozin, Geoffrey A. 1943- Arsenault, André C. 1979- |
author_GND | (DE-588)139009639 (DE-588)1044017937 |
author_facet | Ozin, Geoffrey A. 1943- Arsenault, André C. 1979- |
author_role | aut aut |
author_sort | Ozin, Geoffrey A. 1943- |
author_variant | g a o ga gao a c a ac aca |
building | Verbundindex |
bvnumber | BV022245052 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | VE 9850 ZN 3700 |
classification_tum | CHE 380f TEC 030f |
ctrlnum | (OCoLC)255840889 (DE-599)BVBBV022245052 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Technik Chemie Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Technik Chemie Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | Reprinted |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01933nam a2200505 c 4500</leader><controlfield tag="001">BV022245052</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071018 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070129s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">085404664X</subfield><subfield code="9">0-85404-664-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255840889</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022245052</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 380f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 030f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozin, Geoffrey A.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139009639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanochemistry</subfield><subfield code="b">a chemical approach to nanomaterials</subfield><subfield code="c">Geoffrey A. Ozin and André C. Arsenault</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprinted</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">RSC Publishing</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XL, 628 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie - Nanostrukturiertes Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanoscience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arsenault, André C.</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1044017937</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455926&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015455926</subfield></datafield></record></collection> |
id | DE-604.BV022245052 |
illustrated | Illustrated |
index_date | 2024-07-02T16:37:23Z |
indexdate | 2024-07-09T20:53:14Z |
institution | BVB |
isbn | 085404664X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015455926 |
oclc_num | 255840889 |
open_access_boolean | |
owner | DE-384 DE-11 |
owner_facet | DE-384 DE-11 |
physical | XL, 628 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | RSC Publishing |
record_format | marc |
spelling | Ozin, Geoffrey A. 1943- Verfasser (DE-588)139009639 aut Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin and André C. Arsenault Reprinted Cambridge RSC Publishing 2006 XL, 628 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chemie - Nanostrukturiertes Material Nanoscience Nanostructured materials Chemie (DE-588)4009816-3 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Nanopartikel (DE-588)4333369-2 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 s Chemie (DE-588)4009816-3 s DE-604 Nanopartikel (DE-588)4333369-2 s b DE-604 Arsenault, André C. 1979- Verfasser (DE-588)1044017937 aut Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455926&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ozin, Geoffrey A. 1943- Arsenault, André C. 1979- Nanochemistry a chemical approach to nanomaterials Chemie - Nanostrukturiertes Material Nanoscience Nanostructured materials Chemie (DE-588)4009816-3 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Nanopartikel (DE-588)4333369-2 gnd |
subject_GND | (DE-588)4009816-3 (DE-588)4342626-8 (DE-588)4333369-2 |
title | Nanochemistry a chemical approach to nanomaterials |
title_auth | Nanochemistry a chemical approach to nanomaterials |
title_exact_search | Nanochemistry a chemical approach to nanomaterials |
title_exact_search_txtP | Nanochemistry a chemical approach to nanomaterials |
title_full | Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin and André C. Arsenault |
title_fullStr | Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin and André C. Arsenault |
title_full_unstemmed | Nanochemistry a chemical approach to nanomaterials Geoffrey A. Ozin and André C. Arsenault |
title_short | Nanochemistry |
title_sort | nanochemistry a chemical approach to nanomaterials |
title_sub | a chemical approach to nanomaterials |
topic | Chemie - Nanostrukturiertes Material Nanoscience Nanostructured materials Chemie (DE-588)4009816-3 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd Nanopartikel (DE-588)4333369-2 gnd |
topic_facet | Chemie - Nanostrukturiertes Material Nanoscience Nanostructured materials Chemie Nanostrukturiertes Material Nanopartikel |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455926&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ozingeoffreya nanochemistryachemicalapproachtonanomaterials AT arsenaultandrec nanochemistryachemicalapproachtonanomaterials |