Heteroepitaxy of semiconductors: theory, growth, and characterization
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2007
|
Schlagworte: | |
Online-Zugang: | Publisher description Inhaltsverzeichnis |
Beschreibung: | 455 S. Ill., graph. Darst. |
ISBN: | 0849371953 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022244317 | ||
003 | DE-604 | ||
005 | 20101011 | ||
007 | t | ||
008 | 070129s2007 xxuad|| |||| 00||| eng d | ||
010 | |a 2006050560 | ||
020 | |a 0849371953 |9 0-8493-7195-3 | ||
035 | |a (OCoLC)70878051 | ||
035 | |a (DE-599)BVBBV022244317 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-20 |a DE-91 |a DE-384 | ||
050 | 0 | |a QC611.8.C64 | |
082 | 0 | |a 537.6/22 | |
084 | |a UP 7550 |0 (DE-625)146434: |2 rvk | ||
084 | |a ELT 280f |2 stub | ||
100 | 1 | |a Ayers, John E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Heteroepitaxy of semiconductors |b theory, growth, and characterization |c John E. Ayers |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2007 | |
300 | |a 455 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Compound semiconductors | |
650 | 4 | |a Epitaxy | |
650 | 0 | 7 | |a Heteroepitaxie |0 (DE-588)4260178-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbleiter |0 (DE-588)4022993-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Halbleiter |0 (DE-588)4022993-2 |D s |
689 | 0 | 1 | |a Heteroepitaxie |0 (DE-588)4260178-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0665/2006050560-d.html |3 Publisher description | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015455200 |
Datensatz im Suchindex
_version_ | 1804136237581205504 |
---|---|
adam_text | CONTENTS
1
INTRODUCTION
.....................................................................................1
2
PROPERTIES
OF
SEMICONDUCTORS........................................................7
2.1
INTRODUCTION....................................................................................................7
2.2
CRYSTALLOGRAPHIC
PROPERTIES.........................................................................7
2.2.1
THE
DIAMOND
STRUCTURE....................................................................8
2.2.2
THE
ZINC
BLENDE
STRUCTURE...............................................................8
2.2.3
THE
WURTZITE
STRUCTURE.....................................................................9
2.2.4
SILICON
CARBIDE.................................................................................10
2.2.5
MILLER
INDICES
IN
CUBIC
CRYSTALS...................................................12
2.2.6
MILLER-BRAVAIS
INDICES
IN
HEXAGONAL
CRYSTALS...........................12
2.2.7
ORIENTATION
EFFECTS...........................................................................14
2.2.7.1
DIAMOND
SEMICONDUCTORS...............................................14
2.2.7.2
ZINC
BLENDE
SEMICONDUCTORS..........................................15
2.2.73
WURTZITE
SEMICONDUCTORS................................................16
2.2.7A
HEXAGONAL
SILICON
CARBIDE..............................................17
2.3
LATTICE
CONSTANTS
AND
THERMAL
EXPANSION
COEFFICIENTS.......................17
2.4
ELASTIC
PROPERTIES..........................................................................................19
2.4.1
HOOKE S
LAW....................................................................................20
2.4.1.1
HOOKE S
LAW
FOR
ISOTROPIC
MATERIALS.............................22
2.4.1.2
CUBIC
CRYSTALS...................................................................22
2.4.1.3
HEXAGONAL
CRYSTALS...........................................................24
2.4.2
THE
ELASTIC
MODULI..........................................................................27
2.4.2.1
CUBIC
CRYSTALS...................................................................28
2.4.2.2
HEXAGONAL
CRYSTALS...........................................................28
2.4.3
BIAXIAL
STRESSES
AND
TETRAGONAL
DISTORTION..................................30
2.4.4
STRAIN
ENERGY....................................................................................31
2.5
SURFACE
FREE
ENERGY.....................................................................................32
2.6
DISLOCATIONS...................................................................................................36
2.6.1
SCREW
DISLOCATIONS..........................................................................37
2.6.2
EDGE
DISLOCATIONS............................................................................38
2.6.3
SLIP
SYSTEMS
.....................................................................................38
2.6.4
DISLOCATIONS
IN
DIAMOND
AND
ZINC
BLENDE
CRYSTALS.................41
2.6.4.1
THREADING
DISLOCATIONS
IN
DIAMOND
AND
ZINC
BLENDE
CRYSTALS..................................................................43
2.6.4.2
MISFIT
DISLOCATIONS
IN
DIAMOND
AND
ZINC
BLENDE
CRYSTALS...............................................................................44
2.6.5
DISLOCATIONS
IN
WURTZITE
CRYSTALS.................................................48
2.6.5.1
THREADING
DISLOCATIONS
IN
WURTZITE
CRYSTALS...............48
2
.
6
.
5.2
MISFIT
DISLOCATIONS
IN
WURTZITE
CRYSTALS.......................49
2.6.6
DISLOCATIONS
IN
HEXAGONAL
SIC......................................................51
2.6.6.1
THREADING
DISLOCATIONS
IN
HEXAGONAL
SIC....................51
2.6.7
STRAIN
FIELDS
AND
LINE
ENERGIES
OF
DISLOCATIONS........................51
2.6.7.1
SCREW
DISLOCATION..............................................................52
2.6.7.2
EDGE
DISLOCATION...............................................................54
2
.
6.73
MIXED
DISLOCATIONS...........................................................55
2.6.7.4
FRANK S
RULE.......................................................................55
2.67.5
HOLLOW-CORE
DISLOCATIONS
(MICROPIPES).......................56
2.6.8
FORCES
ON
DISLOCATIONS....................................................................56
2.6.9
DISLOCATION
MOTION..........................................................................57
2.6.10
ELECTRONIC
PROPERTIES
OF
DISLOCATIONS...........................................58
2.6.10.1
DIAMOND
AND
ZINC
BLENDE
SEMICONDUCTORS................58
2.7
PLANAR
DEFECTS...............................................................................................61
2.7.1
STACKING
FAULTS.................................................................................61
2.7.2
TWINS.................................................................................................64
2.7.3
INVERSION
DOMAIN
BOUNDARIES
(IDBS)..........................................65
PROBLEMS.................................................................................................................67
REFERENCES...............................................................................................................68
3
HETEROEPITAXIAL
GROWTH................................................................75
3.1
INTRODUCTION..................................................................................................75
3.2
VAPOR
PHASE
EPITAXY
(VPE)........................................................................76
3.2.1
VPE
MECHANISMS
AND
GROWTH
RATES...........................................76
3.2.2
HYDRODYNAMIC
CONSIDERATIONS.....................................................79
3.2.3
VAPOR
PHASE
EPITAXIAL
REACTORS....................................................81
3.2.4
METALORGANIC
VAPOR
PHASE
EPITAXY
(MOVPE)............................85
3.3
MOLECULAR
BEAM
EPITAXY
(MBE)................................................................88
3.4
SILICON,
GERMANIUM,
AND
SI^GE*
ALLOYS.................................................92
3.5
SILICON
CARBIDE.............................................................................................94
3.6
III-ARSENIDES,
ILL-PHOSPHIDES,
AND
IH-ANTIMONIDES
..............................95
3.7
ILL-NITRIDES....................................................................................................97
3.8
II-VI
SEMICONDUCTORS..................................................................................98
3.9
CONCLUSION....................................................................................................99
PROBLEMS...............................................................................................................100
REFERENCES.............................................................................................................100
4
SURFACE
AND
CHEMICAL
CONSIDERATIONS
IN
HETEROEPITAXY.......105
4.1
INTRODUCTION................................................................................................105
4.2
SURFACE
RECONSTRUCTIONS............................................................................106
4.2.1
WOOD S
NOTATION
FOR
RECONSTRUCTED
SURFACES...........................108
4.2.2
EXPERIMENTAL
OBSERVATIONS.........................................................109
4.2.2.1
SI
(001)
SURFACE................................................................109
4.2.2.2
SI
(111)
SURFACE................................................................110
4.2.2.3
GE
(111)
SURFACE...............................................................ILL
4.2.2A
6H-SIC
(0001)
SURFACE....................................................ILL
42.2.5
3C-SIC
(001).....................................................................112
4.2.2.6
3C-SIC
(111)......................................................................112
4.2.2.7
GAN
(0001).......................................................................113
4.2.2.8
ZINC
BLENDE
GAN
(001)...................................................113
4.2.2.9
GAAS(OOL)........................................................................113
4.2.2.10
INP
(001)............................................................................113
4.2.2.11
SAPPHIRE
(0001)................................................................114
4.2.3
SURFACE
RECONSTRUCTION
AND
HETEROEPITAXY..............................114
4.2.3.1
INVERSION
DOMAIN
BOUNDARIES
(IDBS).........................114
4.2.3.2
HETEROEPITAXY
OF
POLAR
SEMICONDUCTORS
WITH
DIFFERENT
IONICITIES..........................................................115
4.3
NUCLEATION
...................................................................................................117
4.3.1
HOMOGENEOUS
NUCLEATION
...........................................................117
4.3.2
HETEROGENEOUS
NUCLEATION
..........................................................120
4.3.2.1
MACROSCOPIC
MODEL
FOR
HETEROGENEOUS
NUCLEATION
........................................................................120
4.3.2.2
ATOMISTIC
MODEL..............................................................122
4.3.2.3
VICINAL
SUBSTRATES....................
125
4.4
GROWTH
MODES...........................................................................................125
4.4.1
GROWTH
MODES
IN
EQUILIBRIUM...................................................127
4.4.1.1
REGIME
I:
(*
J)..............................................................130
4.4.1.2
REGIME
II:
(FIJ
*
2
)....................................................131
4.4.1.3
REGIME
III:
(E
2
*
3
)...................................................132
4.4.1.4
REGIME
IV:
(*
E
3
)...........................................................132
4.4.2
GROWTH
MODES
AND
KINETIC
CONSIDERATIONS.............................132
4.5
NUCLEATION
LAYERS......................................................................................138
4.5.1
NUCLEATION
LAYERS
FOR
GAN
ON
SAPPHIRE..................................139
4.6
SURFACTANTS
IN
HETEROEPITAXY...................................................................140
4.6.1
SURFACTANTS
AND
GROWTH
MODE....................................................140
4.6.2
SURFACTANTS
AND
ISLAND
SHAPE......................................................142
4.6.3
SURFACTANTS
AND
MISFIT
DISLOCATIONS...........................................142
4.6.4
SURFACTANTS
AND
ORDERING
IN
INGAP...........................................143
4.7
QUANTUM
DOTS
AND
SELF-ASSEMBLY.........................................................143
4.7.1
TOPOGRAPHICALLY
GUIDED
ASSEMBLY
OF
QUANTUM
DOTS...........144
4.7.2
STRESSOR-GUIDED
ASSEMBLY
OF
QUANTUM
DOTS..........................145
4.7.3
VERTICAL
ORGANIZATION
OF
QUANTUM
DOTS...................................147
4.7.4
PRECISION
LATERAL
PLACEMENT
OF
QUANTUM
DOTS........................149
PROBLEMS...............................................................................................................150
REFERENCES.............................................................................................................151
5
MISMATCHED
HETEROEPITAXIAL
GROWTH
AND
STRAIN
RELAXATION....................................................................................161
5.1
INTRODUCTION................................................................................................161
5.2
PSEUDOMORPHIC
GROWTH
AND
TIRE
CRITICAL
LAYER
THICKNESS................163
5.2.1
MATTHEWS
AND
BLAKESLEE
FORCE
BALANCE
MODEL........................165
5.2.2
MATTHEWS
ENERGY
CALCULATION.....................................................166
5.2.3
VAN
DER
MERWE
MODEL..................................................................168
5.2.4
PEOPLE
AND
BEAN
MODEL...............................................................169
5.2.5
EFFECT
OF
TIRE
SIGN
OF
MISMATCH....................................................171
5.2.6
CRITICAL
LAYER
THICKNESS
IN
ISLANDS............................................173
5.3
DISLOCATION
SOURCES...................................................................................175
5.3.1
HOMOGENEOUS
NUCLEATION
OF
DISLOCATIONS...............................177
5.3.2
HETEROGENEOUS
NUCLEATION
OF
DISLOCATIONS..............................179
5.3.3
DISLOCATION
MULTIPLICATION...........................................................179
5.3.3.1
FRANK-READ
SOURCE.........................................................180
5.3.3.2
SPIRAL
SOURCE....................................................................185
5.3.3.3
HAGEN-STRUNK
MULTIPLICATION.......................................187
5.4
INTERACTIONS
BETWEEN
MISFIT
DISLOCATIONS...............................................189
5.5
LATTICE
RELAXATION
MECHANISMS...............................................................191
5.5.1
BENDING
OF
SUBSTRATE
DISLOCATIONS..............................................191
5.5.2
GLIDE
OF
HALF-LOOPS......................................................................194
5.5.3
INJECTION
OF
EDGE
DISLOCATIONS
AT
ISLAND
BOUNDARIES..............194
5.5.4
NUCLEATION
OF
SHOCKLEY
PARTIAL
DISLOCATIONS.............................196
5.5.5
CRACKING..........................................................................................199
5.6
QUANTITATIVE
MODELS
FOR
LATTICE
RELAXATION..........................................199
5.6.1
MATTHEWS
AND
BLAKESLEE
EQUILIBRIUM
MODEL...........................200
5.6.2
MATTHEWS,
MADER,
AND
LIGHT
KINETIC
MODEL............................201
5.6.3
DODSON
AND
TSAO
KINETIC
MODEL................................................203
5.7
LATTICE
RELAXATION
ON
VICINAL
SUBSTRATES:
CRYSTALLOGRAPHIC
LILTING
OF
HETEROEPITAXIAL
LAYERS............................................................205
5.7.1
NAGAI
MODEL..................................................................................205
5.7.2
OLSEN
AND
SMITH
MODEL...............................................................207
5.7.3
AYERS,
GHANDHI,
AND
SCHOWALTER
MODEL...................................207
5.7.4
RIESZ
MODEL....................................................................................215
5.7.5
VICINAL
EPITAXY
OF
DI-NITRIDE
SEMICONDUCTORS.........................218
5.7.6
VICINAL
HETEROEPITAXY
WITH
A
CHANGE
IN
STACKING
SEQUENCE.........................................................................................220
5.7.7
VICINAL
HETEROEPITAXY
WITH
MULTILAYER
STEPS...........................221
5.7.8
TILTING
IN
GRADED
LAYERS:
LEGOUES,
MOONEY,
AND
CHU
MODEL..............................................................................................224
5.8
LATTICE
RELAXATION
IN
GRADED
LAYERS......................................................227
5.8.1
CRITICAL
THICKNESS
IN
A
LINEARLY
GRADED
LAYER........................227
5.8.2
EQUILIBRIUM
STRAIN
GRADIENT
IN
A
GRADED
LAYER......................228
5.8.3
THREADING
DISLOCATION
DENSITY
IN
A
GRADED
LAYER.................228
5.8.3.1
ABRAHAMS
ET
AL.
MODEL..................................................229
5.8.3.2
FITZGERALD
ET
AL.
MODEL...................................................230
5.9
LATTICE
RELAXATION
IN
SUPERLATTICES
AND
MULTILAYER
STRUCTURES...........231
5.10
DISLOCATION
COALESCENCE,
ANNIHILATION,
AND
REMOVAL
IN
RELAXED
HETEROEPITAXIAL
LAYERS...............................................................233
5.11
THERMAL
STRAIN
............................................................................................238
5.12
CRACKING
IN
THICK
FILMS...........................................................................239
PROBLEMS...............................................................................................................242
REFERENCES.............................................................................................................243
6
CHARACTERIZATION
OF
HETEROEPITAXIAL
LAYERS.............................249
6.1
INTRODUCTION................................................................................................249
6.2
X-RAY
DIFFRACTION.......................................................................................250
6.2.1
POSITIONS
OF
DIFFRACTED
BEAMS.....................................................251
6.2.1.1
THE
BRAGG
EQUATION........................................................251
6.2.1.2
THE
RECIPROCAL
LATTICE
AND
THE
VON
LAUE
FORMULATION
FOR
DIFFRACTION...........................................253
6.2.1.3
THE
EWALD
SPHERE...........................................................255
6.2.2
INTENSITIES
OF
DIFFRACTED
BEAMS...................................................255
6.2.2.1
SCATTERING
OF
X-RAYS
BY
A
SINGLE
ELECTRON..................256
6.2.2.2
SCATTERING
OF
X-RAYS
BY
AN
ATOM.................................257
6.2.2.3
SCATTERING
OF
X-RAYS
BY
A
UNIT
CELL.............................258
6.2.2.4
INTENSITIES
OF
DIFFRACTION
PROFILES..................................259
6.2.3
DYNAMICAL
DIFFRACTION
THEORY....................................................260
6.2.3.1
INTRINSIC
DIFFRACTION
PROFILES
FOR
PERFECT
CRYSTALS.............................................................................261
6.2.3.2
INTRINSIC
WIDTHS
OF
DIFFRACTION
PROFILES.......................262
6.2.3.3
EXTINCTION
DEPTH
AND
ABSORPTION
DEPTH....................264
6.2.4
X-RAY
DIFFRACTOMETERS..................................................................265
6.2.4.1
DOUBLE-CRYSTAL
DIFFRACTOMETER..............
267
6.2.4.2
BARTELS
DOUBLE-AXIS
DIFFRACTOMETER.............................270
6.2.4.3
TRIPLE-AXIS
DIFFRACTOMETER.............................................271
6.3
ELECTRON
DIFFRACTION...................................................................................272
6.3.1
REFLECTION
HIGH-ENERGY
ELECTRON
DIFFRACTION
(RHEED)..........273
6.3.2
LOW-ENERGY
ELECTRON
DIFFRACTION
(LEED).................................274
6.4
MICROSCOPY..................................................................................................275
6.4.1
OPTICAL
MICROSCOPY.......................................................................276
6.4.2
TRANSMISSION
ELECTRON
MICROSCOPY
(TEM)................................276
6.4.3
SCANNING
TUNNELING
MICROSCOPY
(STM)....................................279
6.4.4
ATOMIC
FORCE
MICROSCOPY
(AFM)...............................................281
6.5
CRYSTALLOGRAPHIC
ETCHING
TECHNIQUES.....................................................282
6.6
PHOTOLUMINESCENCE....................................................................................284
6.7
GROWTH
RATE
AND
LAYER
THICKNESS.........................................................288
6.8
COMPOSITION
AND
STRAIN............................................................................290
6.8.1
BINARY
HETEROEPITAXIAL
LAYER......................................................291
6.8.2
TERNARY
HETEROEPITAXIAL
LAYER....................................................293
6.8.3
QUATERNARY
HETEROEPITAXIAL
LAYER.............................................297
6.9
DETERMINATION
OF
CRITICAL
LAYER
THICKNESS...........................................297
6.9.1
EFFECT
OF
FINITE
RESOLUTION...........................................................299
6.9.2
X-RAY
DIFFRACTION...........................................................................301
6.9.2.1
STRAIN
METHOD..................................................................301
6.9.2.2
FWHM
METHOD...............................................................307
6.9.3
X-RAY
TOPOGRAPHY........................................................................312
6.9.4
TRANSMISSION
ELECTRON
MICROSCOPY.............................................313
6.9.5
ELECTRON
BEAM-INDUCED
CURRENT
(EBIC)....................................315
6.9.6
PHOTOLUMINESCENCE........................................................................315
6.9.7
PHOTOLUMINESCENCE
MICROSCOPY..................................................317
6.9.8
REFLECTION
HIGH-ENERGY
ELECTRON
DIFFRACTION
(RHEED)..........319
6.9.9
SCANNING
TUNNELING
MICROSCOPY
(STM)....................................321
6.9.10
RUTHERFORD
BACKSCATTERING
(RBS)................................................323
6.10
CRYSTAL
ORIENTATION.......................
324
6.11
DEFECT
TYPES
AND
DENSITIES......................................................................326
6.11.1
TRANSMISSION
ELECTRON
MICROSCOPY.............................................327
6.11.2
CRYSTALLOGRAPHIC
ETCHING.............................................................329
6.11.3
X-RAY
DIFFRACTION...........................................................................331
6.12
MULTILAYERED
STRUCTURES
AND
SUPERLATTICES............................................338
6.13
GROWTH
MODE.............................................................................................342
PROBLEMS...............................................................................................................345
REFERENCES.............................................................................................................347
7
DEFECT
ENGINEERING
IN
HETEROEPITAXIAL
LAYERS........................355
7.1
INTRODUCTION................................................................................................355
7.2
BUFFER
LAYER
APPROACHES..........................................................................355
7.2.1
UNIFORM
BUFFER
LAYERS
AND
VIRTUAL
SUBSTRATES........................355
7.2.2
GRADED
BUFFER
LAYERS...................................................................359
7.2.3
SUPERLATTICE
BUFFER
LAYERS............................................................367
7.3
REDUCED
AREA
GROWTH
USING
PATTERNED
SUBSTRATES.............................372
7.4
PATTERNING
AND
ANNEALING........................................................................376
7.5
EPITAXIAL
LATERAL
OVERGROWTH
(ELO)......................................................381
7.6
PENDEO-EPITAXY..........................................................................................389
7.7
NANOHETEROEPITAXY....................................................................................391
7.7.1
NANOHETEROEPITAXY
ON
A
NONCOMPLIANT
SUBSTRATE..................392
7.7.2
NANOHETEROEPITAXY
WITH
A
COMPLIANT
SUBSTRATE.....................395
7.8
PLANAR
COMPLIANT
SUBSTRATES...................................................................399
7.8.1
COMPLIANT
SUBSTRATE
THEORY.......................................................400
7.8.2
COMPLIANT
SUBSTRATE
IMPLEMENTATION........................................403
7.8.2.1
CANTILEVERED
MEMBRANES...............................................404
7.8.2.2
SILICON-ON-INSULATOR
(SOI)
AS
A
COMPLIANT
SUBSTRATE...........................................................................406
7.8.2.3
TWIST-BONDED
COMPLIANT
SUBSTRATES...........................411
7.9
FREE-STANDING
SEMICONDUCTOR
FILMS.......................................................414
7.10
CONCLUSION..................................................................................................415
PROBLEMS...............................................................................................................416
REFERENCES.............................................................................................................416
APPENDIX
A:
BANDGAP
ENGINEERING
DIAGRAMS.................................421
REFERENCES.............................................................................................................422
APPENDIX
B:
LATTICE
CONSTANTS
AND
COEFFICIENTS
OF
THERMAL
EXPANSION..............................................................................423
REFERENCES.............................................................................................................426
APPENDIX
C:
ELASTIC
CONSTANTS..........................................................427
REFERENCES.............................................................................................................430
APPENDIX
D:
CRITICAL
LAYER
THICKNESS.............................................431
REFERENCES.............................................................................................................431
APPENDIX
E:
CRYSTALLOGRAPHIC
ETCHES...............................................433
REFERENCES.............................................................................................................434
APPENDIX
F:
TABLES
FOR
X-RAY
DIFFRACTION.......................................437
INDEX
441
|
adam_txt |
CONTENTS
1
INTRODUCTION
.1
2
PROPERTIES
OF
SEMICONDUCTORS.7
2.1
INTRODUCTION.7
2.2
CRYSTALLOGRAPHIC
PROPERTIES.7
2.2.1
THE
DIAMOND
STRUCTURE.8
2.2.2
THE
ZINC
BLENDE
STRUCTURE.8
2.2.3
THE
WURTZITE
STRUCTURE.9
2.2.4
SILICON
CARBIDE.10
2.2.5
MILLER
INDICES
IN
CUBIC
CRYSTALS.12
2.2.6
MILLER-BRAVAIS
INDICES
IN
HEXAGONAL
CRYSTALS.12
2.2.7
ORIENTATION
EFFECTS.14
2.2.7.1
DIAMOND
SEMICONDUCTORS.14
2.2.7.2
ZINC
BLENDE
SEMICONDUCTORS.15
2.2.73
WURTZITE
SEMICONDUCTORS.16
2.2.7A
HEXAGONAL
SILICON
CARBIDE.17
2.3
LATTICE
CONSTANTS
AND
THERMAL
EXPANSION
COEFFICIENTS.17
2.4
ELASTIC
PROPERTIES.19
2.4.1
HOOKE'S
LAW.20
2.4.1.1
HOOKE'S
LAW
FOR
ISOTROPIC
MATERIALS.22
2.4.1.2
CUBIC
CRYSTALS.22
2.4.1.3
HEXAGONAL
CRYSTALS.24
2.4.2
THE
ELASTIC
MODULI.27
2.4.2.1
CUBIC
CRYSTALS.28
2.4.2.2
HEXAGONAL
CRYSTALS.28
2.4.3
BIAXIAL
STRESSES
AND
TETRAGONAL
DISTORTION.30
2.4.4
STRAIN
ENERGY.31
2.5
SURFACE
FREE
ENERGY.32
2.6
DISLOCATIONS.36
2.6.1
SCREW
DISLOCATIONS.37
2.6.2
EDGE
DISLOCATIONS.38
2.6.3
SLIP
SYSTEMS
.38
2.6.4
DISLOCATIONS
IN
DIAMOND
AND
ZINC
BLENDE
CRYSTALS.41
2.6.4.1
THREADING
DISLOCATIONS
IN
DIAMOND
AND
ZINC
BLENDE
CRYSTALS.43
2.6.4.2
MISFIT
DISLOCATIONS
IN
DIAMOND
AND
ZINC
BLENDE
CRYSTALS.44
2.6.5
DISLOCATIONS
IN
WURTZITE
CRYSTALS.48
2.6.5.1
THREADING
DISLOCATIONS
IN
WURTZITE
CRYSTALS.48
2
.
6
.
5.2
MISFIT
DISLOCATIONS
IN
WURTZITE
CRYSTALS.49
2.6.6
DISLOCATIONS
IN
HEXAGONAL
SIC.51
2.6.6.1
THREADING
DISLOCATIONS
IN
HEXAGONAL
SIC.51
2.6.7
STRAIN
FIELDS
AND
LINE
ENERGIES
OF
DISLOCATIONS.51
2.6.7.1
SCREW
DISLOCATION.52
2.6.7.2
EDGE
DISLOCATION.54
2
.
6.73
MIXED
DISLOCATIONS.55
2.6.7.4
FRANK'S
RULE.55
2.67.5
HOLLOW-CORE
DISLOCATIONS
(MICROPIPES).56
2.6.8
FORCES
ON
DISLOCATIONS.56
2.6.9
DISLOCATION
MOTION.57
2.6.10
ELECTRONIC
PROPERTIES
OF
DISLOCATIONS.58
2.6.10.1
DIAMOND
AND
ZINC
BLENDE
SEMICONDUCTORS.58
2.7
PLANAR
DEFECTS.61
2.7.1
STACKING
FAULTS.61
2.7.2
TWINS.64
2.7.3
INVERSION
DOMAIN
BOUNDARIES
(IDBS).65
PROBLEMS.67
REFERENCES.68
3
HETEROEPITAXIAL
GROWTH.75
3.1
INTRODUCTION.75
3.2
VAPOR
PHASE
EPITAXY
(VPE).76
3.2.1
VPE
MECHANISMS
AND
GROWTH
RATES.76
3.2.2
HYDRODYNAMIC
CONSIDERATIONS.79
3.2.3
VAPOR
PHASE
EPITAXIAL
REACTORS.81
3.2.4
METALORGANIC
VAPOR
PHASE
EPITAXY
(MOVPE).85
3.3
MOLECULAR
BEAM
EPITAXY
(MBE).88
3.4
SILICON,
GERMANIUM,
AND
SI^GE*
ALLOYS.92
3.5
SILICON
CARBIDE.94
3.6
III-ARSENIDES,
ILL-PHOSPHIDES,
AND
IH-ANTIMONIDES
.95
3.7
ILL-NITRIDES.97
3.8
II-VI
SEMICONDUCTORS.98
3.9
CONCLUSION.99
PROBLEMS.100
REFERENCES.100
4
SURFACE
AND
CHEMICAL
CONSIDERATIONS
IN
HETEROEPITAXY.105
4.1
INTRODUCTION.105
4.2
SURFACE
RECONSTRUCTIONS.106
4.2.1
WOOD'S
NOTATION
FOR
RECONSTRUCTED
SURFACES.108
4.2.2
EXPERIMENTAL
OBSERVATIONS.109
4.2.2.1
SI
(001)
SURFACE.109
4.2.2.2
SI
(111)
SURFACE.110
4.2.2.3
GE
(111)
SURFACE.ILL
4.2.2A
6H-SIC
(0001)
SURFACE.ILL
42.2.5
3C-SIC
(001).112
4.2.2.6
3C-SIC
(111).112
4.2.2.7
GAN
(0001).113
4.2.2.8
ZINC
BLENDE
GAN
(001).113
4.2.2.9
GAAS(OOL).113
4.2.2.10
INP
(001).113
4.2.2.11
SAPPHIRE
(0001).114
4.2.3
SURFACE
RECONSTRUCTION
AND
HETEROEPITAXY.114
4.2.3.1
INVERSION
DOMAIN
BOUNDARIES
(IDBS).114
4.2.3.2
HETEROEPITAXY
OF
POLAR
SEMICONDUCTORS
WITH
DIFFERENT
IONICITIES.115
4.3
NUCLEATION
.117
4.3.1
HOMOGENEOUS
NUCLEATION
.117
4.3.2
HETEROGENEOUS
NUCLEATION
.120
4.3.2.1
MACROSCOPIC
MODEL
FOR
HETEROGENEOUS
NUCLEATION
.120
4.3.2.2
ATOMISTIC
MODEL.122
4.3.2.3
VICINAL
SUBSTRATES.
125
4.4
GROWTH
MODES.125
4.4.1
GROWTH
MODES
IN
EQUILIBRIUM.127
4.4.1.1
REGIME
I:
(*
J).130
4.4.1.2
REGIME
II:
(FIJ
*
2
).131
4.4.1.3
REGIME
III:
(E
2
*
3
).132
4.4.1.4
REGIME
IV:
(*
E
3
).132
4.4.2
GROWTH
MODES
AND
KINETIC
CONSIDERATIONS.132
4.5
NUCLEATION
LAYERS.138
4.5.1
NUCLEATION
LAYERS
FOR
GAN
ON
SAPPHIRE.139
4.6
SURFACTANTS
IN
HETEROEPITAXY.140
4.6.1
SURFACTANTS
AND
GROWTH
MODE.140
4.6.2
SURFACTANTS
AND
ISLAND
SHAPE.142
4.6.3
SURFACTANTS
AND
MISFIT
DISLOCATIONS.142
4.6.4
SURFACTANTS
AND
ORDERING
IN
INGAP.143
4.7
QUANTUM
DOTS
AND
SELF-ASSEMBLY.143
4.7.1
TOPOGRAPHICALLY
GUIDED
ASSEMBLY
OF
QUANTUM
DOTS.144
4.7.2
STRESSOR-GUIDED
ASSEMBLY
OF
QUANTUM
DOTS.145
4.7.3
VERTICAL
ORGANIZATION
OF
QUANTUM
DOTS.147
4.7.4
PRECISION
LATERAL
PLACEMENT
OF
QUANTUM
DOTS.149
PROBLEMS.150
REFERENCES.151
5
MISMATCHED
HETEROEPITAXIAL
GROWTH
AND
STRAIN
RELAXATION.161
5.1
INTRODUCTION.161
5.2
PSEUDOMORPHIC
GROWTH
AND
TIRE
CRITICAL
LAYER
THICKNESS.163
5.2.1
MATTHEWS
AND
BLAKESLEE
FORCE
BALANCE
MODEL.165
5.2.2
MATTHEWS
ENERGY
CALCULATION.166
5.2.3
VAN
DER
MERWE
MODEL.168
5.2.4
PEOPLE
AND
BEAN
MODEL.169
5.2.5
EFFECT
OF
TIRE
SIGN
OF
MISMATCH.171
5.2.6
CRITICAL
LAYER
THICKNESS
IN
ISLANDS.173
5.3
DISLOCATION
SOURCES.175
5.3.1
HOMOGENEOUS
NUCLEATION
OF
DISLOCATIONS.177
5.3.2
HETEROGENEOUS
NUCLEATION
OF
DISLOCATIONS.179
5.3.3
DISLOCATION
MULTIPLICATION.179
5.3.3.1
FRANK-READ
SOURCE.180
5.3.3.2
SPIRAL
SOURCE.185
5.3.3.3
HAGEN-STRUNK
MULTIPLICATION.187
5.4
INTERACTIONS
BETWEEN
MISFIT
DISLOCATIONS.189
5.5
LATTICE
RELAXATION
MECHANISMS.191
5.5.1
BENDING
OF
SUBSTRATE
DISLOCATIONS.191
5.5.2
GLIDE
OF
HALF-LOOPS.194
5.5.3
INJECTION
OF
EDGE
DISLOCATIONS
AT
ISLAND
BOUNDARIES.194
5.5.4
NUCLEATION
OF
SHOCKLEY
PARTIAL
DISLOCATIONS.196
5.5.5
CRACKING.199
5.6
QUANTITATIVE
MODELS
FOR
LATTICE
RELAXATION.199
5.6.1
MATTHEWS
AND
BLAKESLEE
EQUILIBRIUM
MODEL.200
5.6.2
MATTHEWS,
MADER,
AND
LIGHT
KINETIC
MODEL.201
5.6.3
DODSON
AND
TSAO
KINETIC
MODEL.203
5.7
LATTICE
RELAXATION
ON
VICINAL
SUBSTRATES:
CRYSTALLOGRAPHIC
LILTING
OF
HETEROEPITAXIAL
LAYERS.205
5.7.1
NAGAI
MODEL.205
5.7.2
OLSEN
AND
SMITH
MODEL.207
5.7.3
AYERS,
GHANDHI,
AND
SCHOWALTER
MODEL.207
5.7.4
RIESZ
MODEL.215
5.7.5
VICINAL
EPITAXY
OF
DI-NITRIDE
SEMICONDUCTORS.218
5.7.6
VICINAL
HETEROEPITAXY
WITH
A
CHANGE
IN
STACKING
SEQUENCE.220
5.7.7
VICINAL
HETEROEPITAXY
WITH
MULTILAYER
STEPS.221
5.7.8
TILTING
IN
GRADED
LAYERS:
LEGOUES,
MOONEY,
AND
CHU
MODEL.224
5.8
LATTICE
RELAXATION
IN
GRADED
LAYERS.227
5.8.1
CRITICAL
THICKNESS
IN
A
LINEARLY
GRADED
LAYER.227
5.8.2
EQUILIBRIUM
STRAIN
GRADIENT
IN
A
GRADED
LAYER.228
5.8.3
THREADING
DISLOCATION
DENSITY
IN
A
GRADED
LAYER.228
5.8.3.1
ABRAHAMS
ET
AL.
MODEL.229
5.8.3.2
FITZGERALD
ET
AL.
MODEL.230
5.9
LATTICE
RELAXATION
IN
SUPERLATTICES
AND
MULTILAYER
STRUCTURES.231
5.10
DISLOCATION
COALESCENCE,
ANNIHILATION,
AND
REMOVAL
IN
RELAXED
HETEROEPITAXIAL
LAYERS.233
5.11
THERMAL
STRAIN
.238
5.12
CRACKING
IN
THICK
FILMS.239
PROBLEMS.242
REFERENCES.243
6
CHARACTERIZATION
OF
HETEROEPITAXIAL
LAYERS.249
6.1
INTRODUCTION.249
6.2
X-RAY
DIFFRACTION.250
6.2.1
POSITIONS
OF
DIFFRACTED
BEAMS.251
6.2.1.1
THE
BRAGG
EQUATION.251
6.2.1.2
THE
RECIPROCAL
LATTICE
AND
THE
VON
LAUE
FORMULATION
FOR
DIFFRACTION.253
6.2.1.3
THE
EWALD
SPHERE.255
6.2.2
INTENSITIES
OF
DIFFRACTED
BEAMS.255
6.2.2.1
SCATTERING
OF
X-RAYS
BY
A
SINGLE
ELECTRON.256
6.2.2.2
SCATTERING
OF
X-RAYS
BY
AN
ATOM.257
6.2.2.3
SCATTERING
OF
X-RAYS
BY
A
UNIT
CELL.258
6.2.2.4
INTENSITIES
OF
DIFFRACTION
PROFILES.259
6.2.3
DYNAMICAL
DIFFRACTION
THEORY.260
6.2.3.1
INTRINSIC
DIFFRACTION
PROFILES
FOR
PERFECT
CRYSTALS.261
6.2.3.2
INTRINSIC
WIDTHS
OF
DIFFRACTION
PROFILES.262
6.2.3.3
EXTINCTION
DEPTH
AND
ABSORPTION
DEPTH.264
6.2.4
X-RAY
DIFFRACTOMETERS.265
6.2.4.1
DOUBLE-CRYSTAL
DIFFRACTOMETER.
267
6.2.4.2
BARTELS
DOUBLE-AXIS
DIFFRACTOMETER.270
6.2.4.3
TRIPLE-AXIS
DIFFRACTOMETER.271
6.3
ELECTRON
DIFFRACTION.272
6.3.1
REFLECTION
HIGH-ENERGY
ELECTRON
DIFFRACTION
(RHEED).273
6.3.2
LOW-ENERGY
ELECTRON
DIFFRACTION
(LEED).274
6.4
MICROSCOPY.275
6.4.1
OPTICAL
MICROSCOPY.276
6.4.2
TRANSMISSION
ELECTRON
MICROSCOPY
(TEM).276
6.4.3
SCANNING
TUNNELING
MICROSCOPY
(STM).279
6.4.4
ATOMIC
FORCE
MICROSCOPY
(AFM).281
6.5
CRYSTALLOGRAPHIC
ETCHING
TECHNIQUES.282
6.6
PHOTOLUMINESCENCE.284
6.7
GROWTH
RATE
AND
LAYER
THICKNESS.288
6.8
COMPOSITION
AND
STRAIN.290
6.8.1
BINARY
HETEROEPITAXIAL
LAYER.291
6.8.2
TERNARY
HETEROEPITAXIAL
LAYER.293
6.8.3
QUATERNARY
HETEROEPITAXIAL
LAYER.297
6.9
DETERMINATION
OF
CRITICAL
LAYER
THICKNESS.297
6.9.1
EFFECT
OF
FINITE
RESOLUTION.299
6.9.2
X-RAY
DIFFRACTION.301
6.9.2.1
STRAIN
METHOD.301
6.9.2.2
FWHM
METHOD.307
6.9.3
X-RAY
TOPOGRAPHY.312
6.9.4
TRANSMISSION
ELECTRON
MICROSCOPY.313
6.9.5
ELECTRON
BEAM-INDUCED
CURRENT
(EBIC).315
6.9.6
PHOTOLUMINESCENCE.315
6.9.7
PHOTOLUMINESCENCE
MICROSCOPY.317
6.9.8
REFLECTION
HIGH-ENERGY
ELECTRON
DIFFRACTION
(RHEED).319
6.9.9
SCANNING
TUNNELING
MICROSCOPY
(STM).321
6.9.10
RUTHERFORD
BACKSCATTERING
(RBS).323
6.10
CRYSTAL
ORIENTATION.
324
6.11
DEFECT
TYPES
AND
DENSITIES.326
6.11.1
TRANSMISSION
ELECTRON
MICROSCOPY.327
6.11.2
CRYSTALLOGRAPHIC
ETCHING.329
6.11.3
X-RAY
DIFFRACTION.331
6.12
MULTILAYERED
STRUCTURES
AND
SUPERLATTICES.338
6.13
GROWTH
MODE.342
PROBLEMS.345
REFERENCES.347
7
DEFECT
ENGINEERING
IN
HETEROEPITAXIAL
LAYERS.355
7.1
INTRODUCTION.355
7.2
BUFFER
LAYER
APPROACHES.355
7.2.1
UNIFORM
BUFFER
LAYERS
AND
VIRTUAL
SUBSTRATES.355
7.2.2
GRADED
BUFFER
LAYERS.359
7.2.3
SUPERLATTICE
BUFFER
LAYERS.367
7.3
REDUCED
AREA
GROWTH
USING
PATTERNED
SUBSTRATES.372
7.4
PATTERNING
AND
ANNEALING.376
7.5
EPITAXIAL
LATERAL
OVERGROWTH
(ELO).381
7.6
PENDEO-EPITAXY.389
7.7
NANOHETEROEPITAXY.391
7.7.1
NANOHETEROEPITAXY
ON
A
NONCOMPLIANT
SUBSTRATE.392
7.7.2
NANOHETEROEPITAXY
WITH
A
COMPLIANT
SUBSTRATE.395
7.8
PLANAR
COMPLIANT
SUBSTRATES.399
7.8.1
COMPLIANT
SUBSTRATE
THEORY.400
7.8.2
COMPLIANT
SUBSTRATE
IMPLEMENTATION.403
7.8.2.1
CANTILEVERED
MEMBRANES.404
7.8.2.2
SILICON-ON-INSULATOR
(SOI)
AS
A
COMPLIANT
SUBSTRATE.406
7.8.2.3
TWIST-BONDED
COMPLIANT
SUBSTRATES.411
7.9
FREE-STANDING
SEMICONDUCTOR
FILMS.414
7.10
CONCLUSION.415
PROBLEMS.416
REFERENCES.416
APPENDIX
A:
BANDGAP
ENGINEERING
DIAGRAMS.421
REFERENCES.422
APPENDIX
B:
LATTICE
CONSTANTS
AND
COEFFICIENTS
OF
THERMAL
EXPANSION.423
REFERENCES.426
APPENDIX
C:
ELASTIC
CONSTANTS.427
REFERENCES.430
APPENDIX
D:
CRITICAL
LAYER
THICKNESS.431
REFERENCES.431
APPENDIX
E:
CRYSTALLOGRAPHIC
ETCHES.433
REFERENCES.434
APPENDIX
F:
TABLES
FOR
X-RAY
DIFFRACTION.437
INDEX
441 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Ayers, John E. |
author_facet | Ayers, John E. |
author_role | aut |
author_sort | Ayers, John E. |
author_variant | j e a je jea |
building | Verbundindex |
bvnumber | BV022244317 |
callnumber-first | Q - Science |
callnumber-label | QC611 |
callnumber-raw | QC611.8.C64 |
callnumber-search | QC611.8.C64 |
callnumber-sort | QC 3611.8 C64 |
callnumber-subject | QC - Physics |
classification_rvk | UP 7550 |
classification_tum | ELT 280f |
ctrlnum | (OCoLC)70878051 (DE-599)BVBBV022244317 |
dewey-full | 537.6/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.6/22 |
dewey-search | 537.6/22 |
dewey-sort | 3537.6 222 |
dewey-tens | 530 - Physics |
discipline | Physik Elektrotechnik |
discipline_str_mv | Physik Elektrotechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01608nam a2200433zc 4500</leader><controlfield tag="001">BV022244317</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101011 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070129s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006050560</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0849371953</subfield><subfield code="9">0-8493-7195-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70878051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022244317</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC611.8.C64</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537.6/22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 7550</subfield><subfield code="0">(DE-625)146434:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 280f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ayers, John E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heteroepitaxy of semiconductors</subfield><subfield code="b">theory, growth, and characterization</subfield><subfield code="c">John E. Ayers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">455 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compound semiconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epitaxy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Heteroepitaxie</subfield><subfield code="0">(DE-588)4260178-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Heteroepitaxie</subfield><subfield code="0">(DE-588)4260178-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0665/2006050560-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015455200</subfield></datafield></record></collection> |
id | DE-604.BV022244317 |
illustrated | Illustrated |
index_date | 2024-07-02T16:37:10Z |
indexdate | 2024-07-09T20:53:13Z |
institution | BVB |
isbn | 0849371953 |
language | English |
lccn | 2006050560 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015455200 |
oclc_num | 70878051 |
open_access_boolean | |
owner | DE-703 DE-20 DE-91 DE-BY-TUM DE-384 |
owner_facet | DE-703 DE-20 DE-91 DE-BY-TUM DE-384 |
physical | 455 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | CRC Press |
record_format | marc |
spelling | Ayers, John E. Verfasser aut Heteroepitaxy of semiconductors theory, growth, and characterization John E. Ayers Boca Raton [u.a.] CRC Press 2007 455 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Compound semiconductors Epitaxy Heteroepitaxie (DE-588)4260178-2 gnd rswk-swf Halbleiter (DE-588)4022993-2 gnd rswk-swf Halbleiter (DE-588)4022993-2 s Heteroepitaxie (DE-588)4260178-2 s DE-604 http://www.loc.gov/catdir/enhancements/fy0665/2006050560-d.html Publisher description HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ayers, John E. Heteroepitaxy of semiconductors theory, growth, and characterization Compound semiconductors Epitaxy Heteroepitaxie (DE-588)4260178-2 gnd Halbleiter (DE-588)4022993-2 gnd |
subject_GND | (DE-588)4260178-2 (DE-588)4022993-2 |
title | Heteroepitaxy of semiconductors theory, growth, and characterization |
title_auth | Heteroepitaxy of semiconductors theory, growth, and characterization |
title_exact_search | Heteroepitaxy of semiconductors theory, growth, and characterization |
title_exact_search_txtP | Heteroepitaxy of semiconductors theory, growth, and characterization |
title_full | Heteroepitaxy of semiconductors theory, growth, and characterization John E. Ayers |
title_fullStr | Heteroepitaxy of semiconductors theory, growth, and characterization John E. Ayers |
title_full_unstemmed | Heteroepitaxy of semiconductors theory, growth, and characterization John E. Ayers |
title_short | Heteroepitaxy of semiconductors |
title_sort | heteroepitaxy of semiconductors theory growth and characterization |
title_sub | theory, growth, and characterization |
topic | Compound semiconductors Epitaxy Heteroepitaxie (DE-588)4260178-2 gnd Halbleiter (DE-588)4022993-2 gnd |
topic_facet | Compound semiconductors Epitaxy Heteroepitaxie Halbleiter |
url | http://www.loc.gov/catdir/enhancements/fy0665/2006050560-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015455200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ayersjohne heteroepitaxyofsemiconductorstheorygrowthandcharacterization |