Physics in nuclear medicine:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Philadelphia u.a.
Saunders
2003
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 523 S. |
ISBN: | 072168341X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022239974 | ||
003 | DE-604 | ||
005 | 20140218 | ||
007 | t | ||
008 | 070124s2003 |||| 00||| eng d | ||
020 | |a 072168341X |9 0-7216-8341-X | ||
035 | |a (OCoLC)423457895 | ||
035 | |a (DE-599)BVBBV022239974 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-29T |a DE-B768 | ||
050 | 0 | |a R895 S67 2003 | |
082 | 1 | |a 610.28 |2 22 | |
084 | |a YR 1700 |0 (DE-625)154087:12905 |2 rvk | ||
084 | |a PHY 489f |2 stub | ||
084 | |a MED 540f |2 stub | ||
084 | |a MED 280f |2 stub | ||
084 | |a PHY 005f |2 stub | ||
100 | 1 | |a Cherry, Simon R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Physics in nuclear medicine |c Simon R. Cherry, James A. Sorenson ; Michael E. Phelps |
250 | |a 3. ed. | ||
264 | 1 | |a Philadelphia u.a. |b Saunders |c 2003 | |
300 | |a XVIII, 523 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Médecine nucléaire | |
650 | 7 | |a Médecine nucléaire - Appareils et matériel |2 ram | |
650 | 2 | |a Médecine nucléaire | |
650 | 4 | |a Physique médicale | |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kernphysik |0 (DE-588)4030340-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nuklearmedizin |0 (DE-588)4042770-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nuklearmedizin |0 (DE-588)4042770-5 |D s |
689 | 0 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nuklearmedizin |0 (DE-588)4042770-5 |D s |
689 | 1 | 1 | |a Kernphysik |0 (DE-588)4030340-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Sorenson, James A. |e Verfasser |4 aut | |
700 | 1 | |a Phelps, Michael E. |d 1939- |e Verfasser |0 (DE-588)172307260 |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015450913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015450913 |
Datensatz im Suchindex
_version_ | 1804136231478493185 |
---|---|
adam_text | cjontents
Q What Is Nuclear Medicine? 1
A. Fundamental Concepts 1
B. The Power of Nuclear Medicine 1
C. Historical Overview 2
D. Current Practice of Nuclear
Medicine 3
E. The Role of Physics in Nuclear
Medicine 6
^p Basic Atomic and
Nuclear Physics 7
A. Quantities and Units 7
1. Types of Quantities and Units 7
2. Mass and Energy Units 7
B. Radiation 8
C. Atoms 9
1. Composition and Structure 9
2. Electron Binding Energies and
Energy Levels 10
3. Atomic Emissions 11
D. The Nucleus 13
1. Composition 13
2. Terminology and Notation 14
3. Nuclear Families 14
4. Forces and Energy Levels within the
Nucleus 14
5. Nuclear Emissions 16
6. Nuclear Binding Energy 16
7. Characteristics of Stable Nuclei 16
£% Modes of Radioactive
Decay 19
A. General Concepts 19
B. Chemistry and Radioactivity 19
C. Decay by p~ Emission 20
D. Decay by (p~, y) Emission 22
E. Isomeric Transition (IT) and Internal
Conversion (IC) 23
F. Electron Capture (EC) and (EC, y)
Decay 24
G. Positron (p+) and (P+, y)
Decay 25
H. Competitive p+ and EC Decay 27
I. Decay by a Emission and by Nuclear
Fission 27
J. Decay Modes and the Line of
Stability 28
K. Sources of Information on
Radionuclides 30
Q Decay of Radioactivity 31
A. Activity 31
1. The Decay Constant 31
2. Definition and Units of Activity 31
B. Exponential Decay 32
1. The Decay Factor 32
2. Half Life 33
3. Average Lifetime 33
C. Methods for Determining Decay
Factors 34
1. Tables of Decay Factors 34
2. Pocket Calculators 35
3. Graphic Methods 35
D. Image Frame Decay Corrections 36
E. Specific Activity 38
F. Decay of a Mixed Radionuclide
Sample 40
G. Parent Daughter Decay 41
1. The Bateman Equations 41
2. Secular Equilibrium 41
3. Transient Equilibrium 41
4. No Equilibrium 43
SJ Radionuclide and
Radiopharmaceutical
Production 45
A. Reactor Produced Radionuclides 45
1. Reactor Principles 45
vii
viii • • • PHYSICS IN NUCLEAR MEDICINE
2. Fission Fragments 46
3. Neutron Activation 48
B. Accelerator Produced
Radionuclides 49
1. Charged Particle Accelerators 49
2. Cyclotron Principles 49
3. Cyclotron Produced
Radionuclides 51
C. Radionuclide Generators 52
D. Equations for Radionuclide
Production 55
1. Activation Cross Sections 55
2. Activation Rates 55
3. Buildup and Decay of Activity 57
E. Radionuclides for Nuclear
Medicine 58
1. General Considerations 58
2. Specific Considerations 59
F. Radiopharmaceutical
Preparation 60
1. General Considerations 60
2. Labeling Strategies 61
3. Technetium 99m Labeled
Radiopharmaceuticals 62
4. Radiopharmaceuticals Labeled with
Positron Emitters 62
5. Radiopharmaceuticals for Therapy
Applications 62
6. Radiopharmaceuticals in Clinical
Nuclear Medicine 63
$1 Interaction of Radiation
^^ with Matter 65
A. Interactions of Charged Particles with
Matter 65
1. Charged Particle Interaction
Mechanisms 65
2. Collisional Versus Radiation
Losses 67
3. Charged Particle Tracks 68
4. Deposition of Energy Along a
Charged Particle Track 69
5. The Cerenkov Effect 71
B. Charged Particle Ranges 72
1. Alpha Particles 72
2. Beta Particles and Electrons 74
C. Passage of High Energy Photons
through Matter 76
1. Photon Interaction Mechanisms 76
2. The Photoelectric Effect 77
3. Compton Scattering 77
4. Pair Production 79
5. Coherent (Rayleigh) Scattering 80
6. Deposition of Photon Energy in
Matter 80
D. Attenuation of Photon Beams 80
1. Attenuation Coefficients 80
2. Thick Absorbers, Narrow Beam
Geometry 84
3. Thick Absorbers, Broad Beam
Geometry 86
4. Polyenergetic Sources 88
^% Radiation Detectors 89
A. Gas Filled Detectors 89
1. Basic Principles 89
2. lonization Chambers 89
3. Proportional Counters 93
4. Geiger Muller Counters 94
B. Semiconductor Detectors 98
C. Scintillation Detectors 100
1. Basic Principles 100
2. Photomultiplier Tubes 101
3. Inorganic Scintillators 103
4. Organic Liquid Scintillators 106
$^ Electronic Instrumentation
^^ for Radiation Detection
Systems 109
A. Preamplifiers 109
B. Amplifiers 112
1. Amplification and Pulse Shaping
Functions 112
2. Resistor Capacitor Shaping 113
3. Baseline Shift and Pulse Pile up 114
C. Pulse Height Analyzers 115
1. Basic Functions 115
2. Single Channel Analyzers 115
3. Timing Methods 117
4. Multichannel Analyzers 117
D. Time to Amplitude Converters 121
E. Digital Counters and Rate Meters 121
1. Sealers, Timers, and Counters 121
2. Analog Rate Meters 123
F. Coincidence Units 124
G. High Voltage Power Supplies 125
H. Nuclear Instrument Modules 126
I. Cathode Ray Tube 126
1. Electron Gun 126
2. Deflection Plates 127
3. Phosphor Coated Display
Screens 128
4. Focus and Brightness
Controls 128
5. Color Cathode Ray Tubes 128
J. Oscilloscopes 129
K. Computer Monitors 129
ff% Nuclear Counting Statistics 131
A. Types of Measurement
Error 131
B. Nuclear Counting Statistics 132
1. The Poisson Distribution 132
2. The Standard Deviation 134
3. The Gaussian Distribution 134
C. Propagation of Errors 135
1. Sums and Differences 135
2. Constant Multipliers 135
3. Products and Ratios 136
4. More Complicated
Combinations 136
D. Applications of Statistical
Analysis 136
1. Effects of Averaging 136
2. Counting Rates 137
3. Significance of Differences
between Counting
Measurements 137
4. Effects of Background 137
5. Minimum Detectable Activity 138
6. Comparing Counting
Systems 138
7. Estimating Required Counting
Times 139
8. Optimal Division of Counting
Times 140
E. Statistical Tests 140
1. The x2 Test 141
2. The f Test 142
3. Treatment of Outliers 145
4. Linear Regression 146
{ft Pulse Height Spectrometry 149
A. Basic Principles 149
B. Spectrometry with Nal(TI) 150
1. The Ideal Pulse Height
Spectrum 150
2. The Actual Spectrum 151
3. Effects of Detector Size 154
4. Effects of Counting Rate 155
5. General Effects of y Ray
Energy 155
6. Energy Linearity 157
7. Energy Resolution 157
C. Spectrometry with Other
Detectors 160
Contents • • • ix
1. Semiconductor Detector
Spectrometers 160
2. Liquid Scintillation
Spectrometry 162
3. Proportional Counter
Spectrometers 163
^H Problems in Radiation
^^ Detection and
Measurement 165
A. Detection Efficiency 165
1. Components of Detection
Efficiency 165
2. Geometric Efficiency 166
3. Intrinsic Efficiency 168
4. Energy Selective Counting 169
5. Some Complicating Factors 170
6. Calibration Sources 175
B. Problems in the Detection and
Measurement of p Particles 176
C. Dead Time
1. Causes of Dead Time 178
2. Mathematical Models 179
3. Window Fraction Effects 181
4. Dead Time Correction Methods 181
D. Quality Assurance for Radiation
Measurement Systems 182
^% Counting Systems 185
A. Nal(TI) Well Counter 185
1. Detector Characteristics 185
2. Detection Efficiency 186
3. Sample Volume Effects 188
4. Assay of Absolute Activity 190
5. Shielding and Background 190
6. Energy Calibration 191
7. Multiple Radionuclide
Source Counting 191
8. Dead Time 192
9. Automatic Multiple Sample
Systems 192
10. Applications 195
B. Counting with Conventional Nal(TI)
Detectors 195
1. Large Sample Volumes 195
2. Liquid and Gas Flow
Counting 195
C. Liquid Scintillation Counters 196
1. General Characteristics 196
2. Pulse Height Spectrometry 198
3. Counting Vials 198
x • • • PHYSICS IN NUCLEAR MEDICINE
4. Energy and Efficiency
Calibrations 199
5. Quench Corrections 199
6. Sample Preparation
Techniques 201
7. Liquid and Gas Flow
Counting 202
8. Automatic Multiple Sample LS
Counters 202
9. Applications 202
D. Gas Filled Detectors 203
1. Dose Calibrators 203
2. Gas Flow Counters 204
E. Semiconductor Detector
Systems 205
1. System Components 205
2. Applications 207
F. In Vivo Counting Systems 207
1. Nal(TI) Probe Systems 207
2. Miniature y Ray Probes for Surgical
Use 207
3. Whole Body Counters 210
f% The Gamma Camera:
^^ Basic Principles 211
A. General Concepts of Radionuclide
Imaging 211
B. Basic Principles of the Gamma
Camera 212
1. System Components 212
2. Detector System and
Electronics 213
3. Collimators 218
4. Event Detection in a Gamma
Camera 222
C. Types of Gamma Cameras and
Their Clinical Uses 223
tf^ The Gamma Camera:
^ ^ Performance
Characteristics 227
A. Basic Performance
Characteristics 227
1. Intrinsic Spatial Resolution 227
2. Detection Efficiency 229
3. Energy Resolution 230
4. Performance at High Counting
Rates 231
B. Detector Limitations: Nonuniformity
and Nonlinearity 234
1. Image Nonlinearity 234
2. Image Nonuniformity 235
3. Nonuniformity Correction
Techniques 236
4. Gamma Camera Tuning 238
C. Design and Performance
Characteristics of Parallel Hole
Collimators 239
1. Basic Limitations in Collimator
Performance 239
2. Septal Thickness 239
3. Geometry of Collimator Holes 241
4. System Resolution 244
D. Performance Characteristics of
Converging, Diverging, and
Pinhole Collimators 245
E. Measurements of Gamma Camera
Performance 247
1. Intrinsic Resolution 248
2. System Resolution 249
3. Spatial Linearity 249
4. Uniformity 249
5. Counting Rate Performance 250
6. Energy Resolution 250
7. System Sensitivity 250
^ Image Quality in
^^ Nuclear Medicine 253
A. Basic Methods for Characterizing
and Evaluating Image
Quality 253
B. Spatial Resolution 253
1. Factors Affecting Spatial
Resolution 253
2. Methods for Evaluating Spatial
Resolution 254
C. Contrast 259
D. Noise 263
1. Types of Image Noise 263
2. Random Noise and
Contrast to Noise Ratio 263
E. Observer Performance Studies 268
1. Contrast Detail (C D) Studies 268
2. Receiver Operating Characteristic
(ROC) Studies 270
tf Tomographic
^^ Reconstruction
in Nuclear Medicine 273
A. General Concepts, Notation, and
Terminology 274
B. Backprojection and Fourier Based
Techniques 276
1. Simple Backprojection 276
2. Direct Fourier Transform
Reconstruction 278
3. Filtered Backprojection 280
4. Multislice Imaging 283
C. Image Quality in Fourier Transform
and Filtered Backprojection
Techniques 283
1. Effects of Sampling on Image
Quality 283
2. Sampling Coverage and
Consistency Requirements 286
3. Noise Propagation, Signal to Noise
Ratio, and Contrast to Noise
Ratio 287
D. Iterative Reconstruction
Algorithms 291
1. General Concepts of Iterative
Reconstruction 291
2. Expectation Maximization
Reconstruction 293
E. Reconstruction of Fan Beam and
Cone Beam Data 294
^% Single Photon Emission
^^ Computed Tomography 299
A. SPECT Systems 299
1. Gamma Camera
SPECT Systems 299
2. Advanced SPECT Systems 300
3. Combined Modality
Systems 302
B. Practical Implementation
of SPECT 303
1. Attenuation Effects
and Conjugate Counting 305
2. Attenuation Correction 310
3. Transmission Scans and Attenuation
Maps 313
4. Scatter Corrections 315
5. Partial Volume Effects 317
C. Performance Characteristics of
SPECT Systems 319
1. Spatial Resolution 319
2. Volume Sensitivity 320
3. Other Measurements of
Performance 321
4. Quality Assurance in SPECT 321
D. Clinical Applications of
SPECT 322
Contents • • • xt
{% Positron Emission
^^ Tomography 325
A. Annihilation Coincidence
Detection 325
1. Basic Principles of Annihilation
Coincidence Detection 325
2. Time of Flight PET 327
3. Spatial Resolution: Detectors 328
4. Spatial Resolution: Positron
Physics 328
5. Spatial Resolution:
Depth of lnteraction Effect 334
6. Spatial Resolution: Sampling 336
7. Spatial Resolution:
Reconstruction Filters 336
8. Sensitivity 337
9. Event Types in Annihilation
Coincidence Detection 340
B. PET Detector and Scanner
Designs 342
1. Block Detectors 342
2. Modified Block Detectors 344
3. Dedicated PET Systems 346
4. Gamma Camera Systems
for PET 348
C. Data Acquisition for PET 350
1. Two Dimensional Data
Acquisition 350
2. Three Dimensional Data
Acquisition 351
3. Data Acquisition for Dynamic
Studies and Whole Body
Scans 353
D. Data Corrections and
Quantitative Aspects of PET 353
1. Normalization 353
2. Correction for Random
Coincidences 354
3. Correction for Scattered
Radiation 355
4. Attenuation Correction 355
5. Dead Time Corrections 357
6. Absolute Quantification of
PET Images 357
E. Clinical and Research
Applications of PET 358
tfk Digital Image Processing in
w Nuclear Medicine 361
A. Digital Images 362
1. Basic Characteristics and
Terminology 362
xii • • • PHYSICS IN NUCLEAR MEDICINE
2. Spatial Resolution and
Matrix Size 364
3. Image Display 365
4. Acquisition Modes 366
B. Digital Image Processing
Techniques 367
1. Image Visualization 367
2. Regions and Volumes of
Interest 370
3. Time Activity Curves 371
4. Image Smoothing 371
5. Edge Detection and Segmentation 371
6. Co registration of Images 373
C. Processing Environment 375
@ Tracer Kinetic Modeling 377
A. Basic Concepts 377
B. Tracers and Compartments 378
1. Definition of a Tracer 378
2. Definition of a Compartment 380
3. Distribution Volume and Partition
Coefficient 380
4. Flux 381
5. Rate Constants 382
6. Steady State 383
C. Tracer Delivery and Transport 385
1. Blood Flow, Extraction,
and Clearance 385
2. Transport 387
D. Formulation of
a Compartmental Model 388
E. Examples of Dynamic Imaging
and Tracer Kinetic Models 391
1. Cardiac Function and
Ejection Fraction 391
2. Blood Flow Models 392
3. Blood Flow: Trapped
Radiotracers 392
4. Blood Flow: Clearance
Techniques 394
5. Enzyme Kinetics: Glucose
Metabolism 395
6. Receptor Ligand Assays 401
F. Summary 402
% Internal Radiation
^^ Dosimetry 405
A. Radiation Dose and Equivalent Dose:
Quantities and Units 405
B. Calculation of Radiation Dose
(MIRD Method) 406
1. Basic Procedure and Some
Practical Problems 406
2. Cumulated Activity, A 407
3. Equilibrium Absorbed Dose
Constant, A 411
4. Absorbed Fraction, | 412
5. Specific Absorbed Fraction, J ,
and the Dose Reciprocity
Theorem 414
6. Mean Dose per Cumulated
Activity, S 414
7. Whole Body Dose, Effective Dose,
and Effective Dose
Equivalent 416
8. Limitations of the MIRD
Method 417
% Radiation Safety and
w Health Physics 427
A. Quantities and Units 428
1. Dose Modifying Factors 428
2. Exposure and Air Kerma 428
B. Regulations Pertaining to
the Use of Radionuclides 430
1. Nuclear Regulatory Commission
Licensing and Regulations 430
2. Restricted and Unrestricted
Areas 430
3. Dose Limits 431
4. Concentrations for Airborne
Radioactivity in Restricted
Areas 431
5. Environmental Concentrations
and Concentrations for
Sewage Disposal 431
6. Record Keeping
Requirements 432
7. Recommendations of Advisory
Bodies 432
C. Safe Handling of Radioactive
Materials 433
1. The ALARA Concept 433
2. Reduction of Radiation Doses from
External Sources 433
3. Reduction of Radiation Doses from
Internal Sources 436
4. Laboratory Design 437
5. Procedures for Handling
Spills 438
D. Disposal of Radioactive
Waste 439
E. Radiation Monitoring 439
1. Survey Meters and Laboratory
Monitors 439
2. Personnel Dosimeters 440
3. Wipe Testing 440
Appendix A: Unit Conversions 443
Appendix B: Properties of the
Elements 444
Appendix C: Characteristics of
Some Medically
Important
Radionuclides 447
Appendix D: Mass Attenuation
Coefficients for Water,
Sodium Iodide, BGO, CZT,
and Lead 479
Contents • • • xiii
Appendix f: Effective Dose Equivalent
(mSv/MBq) and Radiation
Absorbed Dose Estimates
(mGy/MBq) to Adult
Subjects from Selected
Internally Administered
Radiopharmaceuticals 480
Appendix F: The Fourier Transform 483
A. The FT: What It
Represents 483
B. Calculating FTs 484
C. Some Properties of FTs 485
D. Some Examples of FTs 488
Appendix G: Convolutions 493
Index 499
|
adam_txt |
cjontents
Q What Is Nuclear Medicine? 1
A. Fundamental Concepts 1
B. The Power of Nuclear Medicine 1
C. Historical Overview 2
D. Current Practice of Nuclear
Medicine 3
E. The Role of Physics in Nuclear
Medicine 6
^p Basic Atomic and
Nuclear Physics 7
A. Quantities and Units 7
1. Types of Quantities and Units 7
2. Mass and Energy Units 7
B. Radiation 8
C. Atoms 9
1. Composition and Structure 9
2. Electron Binding Energies and
Energy Levels 10
3. Atomic Emissions 11
D. The Nucleus 13
1. Composition 13
2. Terminology and Notation 14
3. Nuclear Families 14
4. Forces and Energy Levels within the
Nucleus 14
5. Nuclear Emissions 16
6. Nuclear Binding Energy 16
7. Characteristics of Stable Nuclei 16
£% Modes of Radioactive
Decay 19
A. General Concepts 19
B. Chemistry and Radioactivity 19
C. Decay by p~ Emission 20
D. Decay by (p~, y) Emission 22
E. Isomeric Transition (IT) and Internal
Conversion (IC) 23
F. Electron Capture (EC) and (EC, y)
Decay 24
G. Positron (p+) and (P+, y)
Decay 25
H. Competitive p+ and EC Decay 27
I. Decay by a Emission and by Nuclear
Fission 27
J. Decay Modes and the Line of
Stability 28
K. Sources of Information on
Radionuclides 30
Q Decay of Radioactivity 31
A. Activity 31
1. The Decay Constant 31
2. Definition and Units of Activity 31
B. Exponential Decay 32
1. The Decay Factor 32
2. Half Life 33
3. Average Lifetime 33
C. Methods for Determining Decay
Factors 34
1. Tables of Decay Factors 34
2. Pocket Calculators 35
3. Graphic Methods 35
D. Image Frame Decay Corrections 36
E. Specific Activity 38
F. Decay of a Mixed Radionuclide
Sample 40
G. Parent Daughter Decay 41
1. The Bateman Equations 41
2. Secular Equilibrium 41
3. Transient Equilibrium 41
4. No Equilibrium 43
SJ Radionuclide and
Radiopharmaceutical
Production 45
A. Reactor Produced Radionuclides 45
1. Reactor Principles 45
vii
viii • • • PHYSICS IN NUCLEAR MEDICINE
2. Fission Fragments 46
3. Neutron Activation 48
B. Accelerator Produced
Radionuclides 49
1. Charged Particle Accelerators 49
2. Cyclotron Principles 49
3. Cyclotron Produced
Radionuclides 51
C. Radionuclide Generators 52
D. Equations for Radionuclide
Production 55
1. Activation Cross Sections 55
2. Activation Rates 55
3. Buildup and Decay of Activity 57
E. Radionuclides for Nuclear
Medicine 58
1. General Considerations 58
2. Specific Considerations 59
F. Radiopharmaceutical
Preparation 60
1. General Considerations 60
2. Labeling Strategies 61
3. Technetium 99m Labeled
Radiopharmaceuticals 62
4. Radiopharmaceuticals Labeled with
Positron Emitters 62
5. Radiopharmaceuticals for Therapy
Applications 62
6. Radiopharmaceuticals in Clinical
Nuclear Medicine 63
\$1 Interaction of Radiation
^^ with Matter 65
A. Interactions of Charged Particles with
Matter 65
1. Charged Particle Interaction
Mechanisms 65
2. Collisional Versus Radiation
Losses 67
3. Charged Particle Tracks 68
4. Deposition of Energy Along a
Charged Particle Track 69
5. The Cerenkov Effect 71
B. Charged Particle Ranges 72
1. Alpha Particles 72
2. Beta Particles and Electrons 74
C. Passage of High Energy Photons
through Matter 76
1. Photon Interaction Mechanisms 76
2. The Photoelectric Effect 77
3. Compton Scattering 77
4. Pair Production 79
5. Coherent (Rayleigh) Scattering 80
6. Deposition of Photon Energy in
Matter 80
D. Attenuation of Photon Beams 80
1. Attenuation Coefficients 80
2. Thick Absorbers, Narrow Beam
Geometry 84
3. Thick Absorbers, Broad Beam
Geometry 86
4. Polyenergetic Sources 88
^% Radiation Detectors 89
A. Gas Filled Detectors 89
1. Basic Principles 89
2. lonization Chambers 89
3. Proportional Counters 93
4. Geiger Muller Counters 94
B. Semiconductor Detectors 98
C. Scintillation Detectors 100
1. Basic Principles 100
2. Photomultiplier Tubes 101
3. Inorganic Scintillators 103
4. Organic Liquid Scintillators 106
\$^ Electronic Instrumentation
^^ for Radiation Detection
Systems 109
A. Preamplifiers 109
B. Amplifiers 112
1. Amplification and Pulse Shaping
Functions 112
2. Resistor Capacitor Shaping 113
3. Baseline Shift and Pulse Pile up 114
C. Pulse Height Analyzers 115
1. Basic Functions 115
2. Single Channel Analyzers 115
3. Timing Methods 117
4. Multichannel Analyzers 117
D. Time to Amplitude Converters 121
E. Digital Counters and Rate Meters 121
1. Sealers, Timers, and Counters 121
2. Analog Rate Meters 123
F. Coincidence Units 124
G. High Voltage Power Supplies 125
H. Nuclear Instrument Modules 126
I. Cathode Ray Tube 126
1. Electron Gun 126
2. Deflection Plates 127
3. Phosphor Coated Display
Screens 128
4. Focus and Brightness
Controls 128
5. Color Cathode Ray Tubes 128
J. Oscilloscopes 129
K. Computer Monitors 129
ff% Nuclear Counting Statistics 131
A. Types of Measurement
Error 131
B. Nuclear Counting Statistics 132
1. The Poisson Distribution 132
2. The Standard Deviation 134
3. The Gaussian Distribution 134
C. Propagation of Errors 135
1. Sums and Differences 135
2. Constant Multipliers 135
3. Products and Ratios 136
4. More Complicated
Combinations 136
D. Applications of Statistical
Analysis 136
1. Effects of Averaging 136
2. Counting Rates 137
3. Significance of Differences
between Counting
Measurements 137
4. Effects of Background 137
5. Minimum Detectable Activity 138
6. Comparing Counting
Systems 138
7. Estimating Required Counting
Times 139
8. Optimal Division of Counting
Times 140
E. Statistical Tests 140
1. The x2 Test 141
2. The f Test 142
3. Treatment of "Outliers" 145
4. Linear Regression 146
{ft Pulse Height Spectrometry 149
A. Basic Principles 149
B. Spectrometry with Nal(TI) 150
1. The Ideal Pulse Height
Spectrum 150
2. The Actual Spectrum 151
3. Effects of Detector Size 154
4. Effects of Counting Rate 155
5. General Effects of y Ray
Energy 155
6. Energy Linearity 157
7. Energy Resolution 157
C. Spectrometry with Other
Detectors 160
Contents • • • ix
1. Semiconductor Detector
Spectrometers 160
2. Liquid Scintillation
Spectrometry 162
3. Proportional Counter
Spectrometers 163
^H Problems in Radiation
^^ Detection and
Measurement 165
A. Detection Efficiency 165
1. Components of Detection
Efficiency 165
2. Geometric Efficiency 166
3. Intrinsic Efficiency 168
4. Energy Selective Counting 169
5. Some Complicating Factors 170
6. Calibration Sources 175
B. Problems in the Detection and
Measurement of p Particles 176
C. Dead Time
1. Causes of Dead Time 178
2. Mathematical Models 179
3. Window Fraction Effects 181
4. Dead Time Correction Methods 181
D. Quality Assurance for Radiation
Measurement Systems 182
^% Counting Systems 185
A. Nal(TI) Well Counter 185
1. Detector Characteristics 185
2. Detection Efficiency 186
3. Sample Volume Effects 188
4. Assay of Absolute Activity 190
5. Shielding and Background 190
6. Energy Calibration 191
7. Multiple Radionuclide
Source Counting 191
8. Dead Time 192
9. Automatic Multiple Sample
Systems 192
10. Applications 195
B. Counting with Conventional Nal(TI)
Detectors 195
1. Large Sample Volumes 195
2. Liquid and Gas Flow
Counting 195
C. Liquid Scintillation Counters 196
1. General Characteristics 196
2. Pulse Height Spectrometry 198
3. Counting Vials 198
x • • • PHYSICS IN NUCLEAR MEDICINE
4. Energy and Efficiency
Calibrations 199
5. Quench Corrections 199
6. Sample Preparation
Techniques 201
7. Liquid and Gas Flow
Counting 202
8. Automatic Multiple Sample LS
Counters 202
9. Applications 202
D. Gas Filled Detectors 203
1. Dose Calibrators 203
2. Gas Flow Counters 204
E. Semiconductor Detector
Systems 205
1. System Components 205
2. Applications 207
F. In Vivo Counting Systems 207
1. Nal(TI) Probe Systems 207
2. Miniature y Ray Probes for Surgical
Use 207
3. Whole Body Counters 210
f% The Gamma Camera:
^^ Basic Principles 211
A. General Concepts of Radionuclide
Imaging 211
B. Basic Principles of the Gamma
Camera 212
1. System Components 212
2. Detector System and
Electronics 213
3. Collimators 218
4. Event Detection in a Gamma
Camera 222
C. Types of Gamma Cameras and
Their Clinical Uses 223
tf^ The Gamma Camera:
^"^ Performance
Characteristics 227
A. Basic Performance
Characteristics 227
1. Intrinsic Spatial Resolution 227
2. Detection Efficiency 229
3. Energy Resolution 230
4. Performance at High Counting
Rates 231
B. Detector Limitations: Nonuniformity
and Nonlinearity 234
1. Image Nonlinearity 234
2. Image Nonuniformity 235
3. Nonuniformity Correction
Techniques 236
4. Gamma Camera Tuning 238
C. Design and Performance
Characteristics of Parallel Hole
Collimators 239
1. Basic Limitations in Collimator
Performance 239
2. Septal Thickness 239
3. Geometry of Collimator Holes 241
4. System Resolution 244
D. Performance Characteristics of
Converging, Diverging, and
Pinhole Collimators 245
E. Measurements of Gamma Camera
Performance 247
1. Intrinsic Resolution 248
2. System Resolution 249
3. Spatial Linearity 249
4. Uniformity 249
5. Counting Rate Performance 250
6. Energy Resolution 250
7. System Sensitivity 250
^ Image Quality in
^^ Nuclear Medicine 253
A. Basic Methods for Characterizing
and Evaluating Image
Quality 253
B. Spatial Resolution 253
1. Factors Affecting Spatial
Resolution 253
2. Methods for Evaluating Spatial
Resolution 254
C. Contrast 259
D. Noise 263
1. Types of Image Noise 263
2. Random Noise and
Contrast to Noise Ratio 263
E. Observer Performance Studies 268
1. Contrast Detail (C D) Studies 268
2. Receiver Operating Characteristic
(ROC) Studies 270
tf Tomographic
^^ Reconstruction
in Nuclear Medicine 273
A. General Concepts, Notation, and
Terminology 274
B. Backprojection and Fourier Based
Techniques 276
1. Simple Backprojection 276
2. Direct Fourier Transform
Reconstruction 278
3. Filtered Backprojection 280
4. Multislice Imaging 283
C. Image Quality in Fourier Transform
and Filtered Backprojection
Techniques 283
1. Effects of Sampling on Image
Quality 283
2. Sampling Coverage and
Consistency Requirements 286
3. Noise Propagation, Signal to Noise
Ratio, and Contrast to Noise
Ratio 287
D. Iterative Reconstruction
Algorithms 291
1. General Concepts of Iterative
Reconstruction 291
2. Expectation Maximization
Reconstruction 293
E. Reconstruction of Fan Beam and
Cone Beam Data 294
^% Single Photon Emission
^^ Computed Tomography 299
A. SPECT Systems 299
1. Gamma Camera
SPECT Systems 299
2. Advanced SPECT Systems 300
3. Combined Modality
Systems 302
B. Practical Implementation
of SPECT 303
1. Attenuation Effects
and Conjugate Counting 305
2. Attenuation Correction 310
3. Transmission Scans and Attenuation
Maps 313
4. Scatter Corrections 315
5. Partial Volume Effects 317
C. Performance Characteristics of
SPECT Systems 319
1. Spatial Resolution 319
2. Volume Sensitivity 320
3. Other Measurements of
Performance 321
4. Quality Assurance in SPECT 321
D. Clinical Applications of
SPECT 322
Contents • • • xt
{% Positron Emission
^^ Tomography 325
A. Annihilation Coincidence
Detection 325
1. Basic Principles of Annihilation
Coincidence Detection 325
2. Time of Flight PET 327
3. Spatial Resolution: Detectors 328
4. Spatial Resolution: Positron
Physics 328
5. Spatial Resolution:
Depth of lnteraction Effect 334
6. Spatial Resolution: Sampling 336
7. Spatial Resolution:
Reconstruction Filters 336
8. Sensitivity 337
9. Event Types in Annihilation
Coincidence Detection 340
B. PET Detector and Scanner
Designs 342
1. Block Detectors 342
2. Modified Block Detectors 344
3. Dedicated PET Systems 346
4. Gamma Camera Systems
for PET 348
C. Data Acquisition for PET 350
1. Two Dimensional Data
Acquisition 350
2. Three Dimensional Data
Acquisition 351
3. Data Acquisition for Dynamic
Studies and Whole Body
Scans 353
D. Data Corrections and
Quantitative Aspects of PET 353
1. Normalization 353
2. Correction for Random
Coincidences 354
3. Correction for Scattered
Radiation 355
4. Attenuation Correction 355
5. Dead Time Corrections 357
6. Absolute Quantification of
PET Images 357
E. Clinical and Research
Applications of PET 358
tfk Digital Image Processing in
w Nuclear Medicine 361
A. Digital Images 362
1. Basic Characteristics and
Terminology 362
xii • • • PHYSICS IN NUCLEAR MEDICINE
2. Spatial Resolution and
Matrix Size 364
3. Image Display 365
4. Acquisition Modes 366
B. Digital Image Processing
Techniques 367
1. Image Visualization 367
2. Regions and Volumes of
Interest 370
3. Time Activity Curves 371
4. Image Smoothing 371
5. Edge Detection and Segmentation 371
6. Co registration of Images 373
C. Processing Environment 375
@ Tracer Kinetic Modeling 377
A. Basic Concepts 377
B. Tracers and Compartments 378
1. Definition of a Tracer 378
2. Definition of a Compartment 380
3. Distribution Volume and Partition
Coefficient 380
4. Flux 381
5. Rate Constants 382
6. Steady State 383
C. Tracer Delivery and Transport 385
1. Blood Flow, Extraction,
and Clearance 385
2. Transport 387
D. Formulation of
a Compartmental Model 388
E. Examples of Dynamic Imaging
and Tracer Kinetic Models 391
1. Cardiac Function and
Ejection Fraction 391
2. Blood Flow Models 392
3. Blood Flow: Trapped
Radiotracers 392
4. Blood Flow: Clearance
Techniques 394
5. Enzyme Kinetics: Glucose
Metabolism 395
6. Receptor Ligand Assays 401
F. Summary 402
% Internal Radiation
^^ Dosimetry 405
A. Radiation Dose and Equivalent Dose:
Quantities and Units 405
B. Calculation of Radiation Dose
(MIRD Method) 406
1. Basic Procedure and Some
Practical Problems 406
2. Cumulated Activity, A 407
3. Equilibrium Absorbed Dose
Constant, A 411
4. Absorbed Fraction, | 412
5. Specific Absorbed Fraction, J ,
and the Dose Reciprocity
Theorem 414
6. Mean Dose per Cumulated
Activity, S 414
7. Whole Body Dose, Effective Dose,
and Effective Dose
Equivalent 416
8. Limitations of the MIRD
Method 417
% Radiation Safety and
w Health Physics 427
A. Quantities and Units 428
1. Dose Modifying Factors 428
2. Exposure and Air Kerma 428
B. Regulations Pertaining to
the Use of Radionuclides 430
1. Nuclear Regulatory Commission
Licensing and Regulations 430
2. Restricted and Unrestricted
Areas 430
3. Dose Limits 431
4. Concentrations for Airborne
Radioactivity in Restricted
Areas 431
5. Environmental Concentrations
and Concentrations for
Sewage Disposal 431
6. Record Keeping
Requirements 432
7. Recommendations of Advisory
Bodies 432
C. Safe Handling of Radioactive
Materials 433
1. The ALARA Concept 433
2. Reduction of Radiation Doses from
External Sources 433
3. Reduction of Radiation Doses from
Internal Sources 436
4. Laboratory Design 437
5. Procedures for Handling
Spills 438
D. Disposal of Radioactive
Waste 439
E. Radiation Monitoring 439
1. Survey Meters and Laboratory
Monitors 439
2. Personnel Dosimeters 440
3. Wipe Testing 440
Appendix A: Unit Conversions 443
Appendix B: Properties of the
Elements 444
Appendix C: Characteristics of
Some Medically
Important
Radionuclides 447
Appendix D: Mass Attenuation
Coefficients for Water,
Sodium Iodide, BGO, CZT,
and Lead 479
Contents • • • xiii
Appendix f: Effective Dose Equivalent
(mSv/MBq) and Radiation
Absorbed Dose Estimates
(mGy/MBq) to Adult
Subjects from Selected
Internally Administered
Radiopharmaceuticals 480
Appendix F: The Fourier Transform 483
A. The FT: What It
Represents 483
B. Calculating FTs 484
C. Some Properties of FTs 485
D. Some Examples of FTs 488
Appendix G: Convolutions 493
Index 499 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cherry, Simon R. Sorenson, James A. Phelps, Michael E. 1939- |
author_GND | (DE-588)172307260 |
author_facet | Cherry, Simon R. Sorenson, James A. Phelps, Michael E. 1939- |
author_role | aut aut aut |
author_sort | Cherry, Simon R. |
author_variant | s r c sr src j a s ja jas m e p me mep |
building | Verbundindex |
bvnumber | BV022239974 |
callnumber-first | R - Medicine |
callnumber-label | R895 S67 2003 |
callnumber-raw | R895 S67 2003 |
callnumber-search | R895 S67 2003 |
callnumber-sort | R 3895 S67 42003 |
callnumber-subject | R - General Medicine |
classification_rvk | YR 1700 |
classification_tum | PHY 489f MED 540f MED 280f PHY 005f |
ctrlnum | (OCoLC)423457895 (DE-599)BVBBV022239974 |
dewey-full | 610.28 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 610 - Medicine and health |
dewey-raw | 610.28 |
dewey-search | 610.28 |
dewey-sort | 3610.28 |
dewey-tens | 610 - Medicine and health |
discipline | Physik Medizin |
discipline_str_mv | Physik Medizin |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01981nam a2200541 c 4500</leader><controlfield tag="001">BV022239974</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140218 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070124s2003 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">072168341X</subfield><subfield code="9">0-7216-8341-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)423457895</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022239974</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-B768</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R895 S67 2003</subfield></datafield><datafield tag="082" ind1="1" ind2=" "><subfield code="a">610.28</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">YR 1700</subfield><subfield code="0">(DE-625)154087:12905</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 489f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MED 540f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MED 280f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 005f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cherry, Simon R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics in nuclear medicine</subfield><subfield code="c">Simon R. Cherry, James A. Sorenson ; Michael E. Phelps</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia u.a.</subfield><subfield code="b">Saunders</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 523 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Médecine nucléaire</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Médecine nucléaire - Appareils et matériel</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Médecine nucléaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique médicale</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernphysik</subfield><subfield code="0">(DE-588)4030340-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nuklearmedizin</subfield><subfield code="0">(DE-588)4042770-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nuklearmedizin</subfield><subfield code="0">(DE-588)4042770-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nuklearmedizin</subfield><subfield code="0">(DE-588)4042770-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kernphysik</subfield><subfield code="0">(DE-588)4030340-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sorenson, James A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phelps, Michael E.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172307260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015450913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015450913</subfield></datafield></record></collection> |
id | DE-604.BV022239974 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:35:40Z |
indexdate | 2024-07-09T20:53:07Z |
institution | BVB |
isbn | 072168341X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015450913 |
oclc_num | 423457895 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-29T DE-B768 |
owner_facet | DE-91G DE-BY-TUM DE-29T DE-B768 |
physical | XVIII, 523 S. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Saunders |
record_format | marc |
spelling | Cherry, Simon R. Verfasser aut Physics in nuclear medicine Simon R. Cherry, James A. Sorenson ; Michael E. Phelps 3. ed. Philadelphia u.a. Saunders 2003 XVIII, 523 S. txt rdacontent n rdamedia nc rdacarrier Médecine nucléaire Médecine nucléaire - Appareils et matériel ram Physique médicale Physik (DE-588)4045956-1 gnd rswk-swf Kernphysik (DE-588)4030340-8 gnd rswk-swf Nuklearmedizin (DE-588)4042770-5 gnd rswk-swf Nuklearmedizin (DE-588)4042770-5 s Physik (DE-588)4045956-1 s DE-604 Kernphysik (DE-588)4030340-8 s Sorenson, James A. Verfasser aut Phelps, Michael E. 1939- Verfasser (DE-588)172307260 aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015450913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cherry, Simon R. Sorenson, James A. Phelps, Michael E. 1939- Physics in nuclear medicine Médecine nucléaire Médecine nucléaire - Appareils et matériel ram Physique médicale Physik (DE-588)4045956-1 gnd Kernphysik (DE-588)4030340-8 gnd Nuklearmedizin (DE-588)4042770-5 gnd |
subject_GND | (DE-588)4045956-1 (DE-588)4030340-8 (DE-588)4042770-5 |
title | Physics in nuclear medicine |
title_auth | Physics in nuclear medicine |
title_exact_search | Physics in nuclear medicine |
title_exact_search_txtP | Physics in nuclear medicine |
title_full | Physics in nuclear medicine Simon R. Cherry, James A. Sorenson ; Michael E. Phelps |
title_fullStr | Physics in nuclear medicine Simon R. Cherry, James A. Sorenson ; Michael E. Phelps |
title_full_unstemmed | Physics in nuclear medicine Simon R. Cherry, James A. Sorenson ; Michael E. Phelps |
title_short | Physics in nuclear medicine |
title_sort | physics in nuclear medicine |
topic | Médecine nucléaire Médecine nucléaire - Appareils et matériel ram Physique médicale Physik (DE-588)4045956-1 gnd Kernphysik (DE-588)4030340-8 gnd Nuklearmedizin (DE-588)4042770-5 gnd |
topic_facet | Médecine nucléaire Médecine nucléaire - Appareils et matériel Physique médicale Physik Kernphysik Nuklearmedizin |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015450913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cherrysimonr physicsinnuclearmedicine AT sorensonjamesa physicsinnuclearmedicine AT phelpsmichaele physicsinnuclearmedicine |