A computational introduction to number theory and algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambrdige
Cambridge Univ. Press
2006
|
Ausgabe: | Reprint. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 517 S. |
ISBN: | 0521851548 9780521851541 9780521617253 0521617251 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022222042 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 070111s2006 |||| 00||| eng d | ||
020 | |a 0521851548 |9 0-521-85154-8 | ||
020 | |a 9780521851541 |9 978-0-521-85154-1 | ||
020 | |a 9780521617253 |9 978-0-521-61725-3 | ||
020 | |a 0521617251 |9 0-521-61725-1 | ||
035 | |a (OCoLC)255563207 | ||
035 | |a (DE-599)BVBBV022222042 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 004.0151 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
100 | 1 | |a Shoup, Victor |e Verfasser |4 aut | |
245 | 1 | 0 | |a A computational introduction to number theory and algebra |c Victor Shoup |
250 | |a Reprint. | ||
264 | 1 | |a Cambrdige |b Cambridge Univ. Press |c 2006 | |
300 | |a XVI, 517 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Algebra | |
650 | 4 | |a Computer science - Mathematics | |
650 | 4 | |a Lehrbuch | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number theory - Data processing | |
650 | 4 | |a Zahlentheorie | |
650 | 4 | |a Informatik | |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015433238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015433238 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136205977124864 |
---|---|
adam_text | Contents
Preface page x
Preliminaries xiv
1 Basic properties of the integers 1
1.1 Divisibility and primality 1
1.2 Ideals and greatest common divisors 4
1.3 Some consequences of unique factorization 8
2 Congruences 13
2.1 Definitions and basic properties 13
2.2 Solving linear congruences 15
2.3 Residue classes 20
2.4 Euler s phi function 24
2.5 Fermat s little theorem 25
2.6 Arithmetic functions and Mobius inversion 28
3 Computing with large integers 33
3.1 Asymptotic notation 33
3.2 Machine models and complexity theory 36
3.3 Basic integer arithmetic 39
3.4 Computing in Z,, 48
3.5 Faster integer arithmetic (*) 51
3.6 Notes 52
4 Euclid s algorithm 55
¦1.1 The basic Euclidean algorithm 55
4.2 The extended Euclidean algorithm 58
4.3 Computing modular inverses and Chinese remaindering 62
4.4 Speeding up algorithms via modular computation 63
4.5 Rational reconstruction and applications 66
4.6 Notes 73
v
vi Contents
5 The distribution of primes 74
5.1 Chebyshev s theorem on the density of primes 74
5.2 Bertrand s postulate 78
5.3 Mertens theorem 81
5.4 The sieve of Eratosthenes 85
5.5 The prime number theorem ... and beyond 86
5.6 Notes 94
6 Finite and discrete probability distributions 96
6.1 Finite probability distributions: basic definitions 96
6.2 Conditional probability and independence 99
6.3 Random variables 104
6.4 Expectation and variance 111
6.5 Some useful bounds 117
6.6 The birthday paradox 121
6.7 Hash functions 125
6.8 Statistical distance 130
6.9 Measures of randomness and the leftover hash lemma (*) 136
6.10 Discrete probability distributions 141
6.11 Notes 147
7 Probabilistic algorithms 148
7.1 Basic definitions 148
7.2 Approximation of functions 155
7.3 Flipping a coin until a head appears 158
7.4 Generating a random number from a given interval 159
7.5 Generating a random prime 162
7.6 Generating a random non increasing sequence 167
7.7 Generating a random factored number 170
7.8 The RSA cryptosystem 174
7.9 Notes 179
8 Abelian groups 180
8.1 Definitions, basic properties, and examples 180
8.2 Subgroups 185
8.3 Cosets and quotient groups 190
8.4 Group hoinomorphisms and isomorphisms 194
8.5 Cyclic groups 202
8.6 The structure of finite abelian groups (*) 208
9 Rings 211
9.1 Definitions, basic properties, and examples 211
9.2 Polynomial rings 220
Contents vii
9.3 Ideals and quotient rings 231
9.4 Ring homomorphisms and isomorphisms 236
10 Probabilistic primality testing 244
10.1 Trial division 244
10.2 The structure of Z* 245
10.3 The Miller Rabin test 247
10.4 Generating random primes using the Miller Rabin test 252
10.5 Perfect power testing and prime power factoring 201
10.6 Factoring and computing Euler s phi function 262
10.7 Notes 266
11 Finding generators and discrete logarithms in Z* 268
11.1 Finding a generator for Z* 268
11.2 Computing discrete logarithms Z* 270
11.3 The Dime Hellman key establishment protocol 275
11.4 Notes 281
12 Quadratic residues and quadratic reciprocity 283
12.1 Quadratic residues 283
12.2 The Legendre symbol 285
12.3 The Jacobi symbol 287
12.4 Notes 289
13 Computational problems related to quadratic residues 290
13.1 Computing the Jacobi symbol 290
13.2 Testing quadratic residuosity 291
13.3 Computing modular square roots 292
13.4 The quadratic residuosity assumption 297
13.5 Notes 298
14 Modules and vector spaces 299
14.1 Definitions, basic properties, and examples 299
14.2 Submodules and quotient modules 301
14.3 Module lioniomorphisms and isomorphisms 303
14.4 Linear independence and bases 306
14.5 Vector spaces and dimension 309
15 Matrices 316
15.1 Basic definitions and properties 316
15.2 Matrices and linear maps 320
15.3 The inverse of a matrix 323
15.4 Gaussian elimination 324
15.5 Applications of Gaussian elimination 328
viii Contents
15.6 Notes 334
16 Subexponential time discrete logarithms and factoring 336
16.1 Smooth numbers 336
16.2 An algorithm for discrete logarithms 337
16.3 An algorithm for factoring integers 344
16.4 Practical improvements 352
16.5 Notes 356
17 More rings 359
17.1 Algebras 359
17.2 The field of fractions of an integral domain 363
17.3 Unique factorization of polynomials 366
17.4 Polynomial congruences 371
17.5 Polynomial quotient algebras 374
17.6 General properties of extension fields 376
17.7 Formal power series and Laurent series 378
17.8 Unique factorization domains (*) 383
17.9 Notes 397
18 Polynomial arithmetic and applications 398
18.1 Basic arithmetic 398
18.2 Computing minimal polynomials in F[X]/(/) (I) 401
18.3 Euclid s algorithm 402
18.4 Computing modular inverses and Chinese remaindering 405
18.5 Rational function reconstruction and applications 410
18.6 Faster polynomial arithmetic (*) 415
18.7 Notes 421
19 Linearly generated sequences and applications 423
19.1 Basic definitions and properties 423
19.2 Computing minimal polynomials: a special case 428
19.3 Computing minimal polynomials: a more general case 429
19.4 Solving sparse linear systems 435
19.5 Computing minimal polynomials in F[X]/(/) (II) 438
19.6 The algebra, of linear transformations (*) 440
19.7 Notes 447
20 Finite fields 448
20.1 Preliminaries 448
20.2 The existence of finite fields 450
20.3 The subfield structure and uniqueness of finite fields 454
20.4 Conjugates, norms and traces 456
Contents ix
21 Algorithms for finite fields 462
21.1 Testing and constructing irreducible polynomials 462
21.2 Computing minimal polynomials in F[X]/(f) (III) 465
21.3 Factoring polynomials: the Cantor Zassenhaus algorithm 467
21.4 Factoring polynomials: Berlekamp s algorithm 475
21.5 Deterministic factorization algorithms (*) 483
21.6 Faster square free decomposition (*) 485
21.7 Notes 487
22 Deterministic primality testing 489
22.1 The basic idea 489
22.2 The algorithm and its analysis 490
22.3 Notes 500
Appendix: Some useful facts 501
Bibliography 504
Index of notation 510
Index 512
|
adam_txt |
Contents
Preface page x
Preliminaries xiv
1 Basic properties of the integers 1
1.1 Divisibility and primality 1
1.2 Ideals and greatest common divisors 4
1.3 Some consequences of unique factorization 8
2 Congruences 13
2.1 Definitions and basic properties 13
2.2 Solving linear congruences 15
2.3 Residue classes 20
2.4 Euler's phi function 24
2.5 Fermat's little theorem 25
2.6 Arithmetic functions and Mobius inversion 28
3 Computing with large integers 33
3.1 Asymptotic notation 33
3.2 Machine models and complexity theory 36
3.3 Basic integer arithmetic 39
3.4 Computing in Z,, 48
3.5 Faster integer arithmetic (*) 51
3.6 Notes 52
4 Euclid's algorithm 55
¦1.1 The basic Euclidean algorithm 55
4.2 The extended Euclidean algorithm 58
4.3 Computing modular inverses and Chinese remaindering 62
4.4 Speeding up algorithms via modular computation 63
4.5 Rational reconstruction and applications 66
4.6 Notes 73
v
vi Contents
5 The distribution of primes 74
5.1 Chebyshev's theorem on the density of primes 74
5.2 Bertrand's postulate 78
5.3 Mertens" theorem 81
5.4 The sieve of Eratosthenes 85
5.5 The prime number theorem . and beyond 86
5.6 Notes 94
6 Finite and discrete probability distributions 96
6.1 Finite probability distributions: basic definitions 96
6.2 Conditional probability and independence 99
6.3 Random variables 104
6.4 Expectation and variance 111
6.5 Some useful bounds 117
6.6 The birthday paradox 121
6.7 Hash functions 125
6.8 Statistical distance 130
6.9 Measures of randomness and the leftover hash lemma (*) 136
6.10 Discrete probability distributions 141
6.11 Notes 147
7 Probabilistic algorithms 148
7.1 Basic definitions 148
7.2 Approximation of functions 155
7.3 Flipping a coin until a head appears 158
7.4 Generating a random number from a given interval 159
7.5 Generating a random prime 162
7.6 Generating a random non increasing sequence 167
7.7 Generating a random factored number 170
7.8 The RSA cryptosystem 174
7.9 Notes 179
8 Abelian groups 180
8.1 Definitions, basic properties, and examples 180
8.2 Subgroups 185
8.3 Cosets and quotient groups 190
8.4 Group hoinomorphisms and isomorphisms 194
8.5 Cyclic groups 202
8.6 The structure of finite abelian groups (*) 208
9 Rings 211
9.1 Definitions, basic properties, and examples 211
9.2 Polynomial rings 220
Contents vii
9.3 Ideals and quotient rings 231
9.4 Ring homomorphisms and isomorphisms 236
10 Probabilistic primality testing 244
10.1 Trial division 244
10.2 The structure of Z* 245
10.3 The Miller Rabin test 247
10.4 Generating random primes using the Miller Rabin test 252
10.5 Perfect power testing and prime power factoring 201
10.6 Factoring and computing Euler"s phi function 262
10.7 Notes 266
11 Finding generators and discrete logarithms in Z* 268
11.1 Finding a generator for Z* 268
11.2 Computing discrete logarithms Z* 270
11.3 The Dime Hellman key establishment protocol 275
11.4 Notes 281
12 Quadratic residues and quadratic reciprocity 283
12.1 Quadratic residues 283
12.2 The Legendre symbol 285
12.3 The Jacobi symbol 287
12.4 Notes 289
13 Computational problems related to quadratic residues 290
13.1 Computing the Jacobi symbol 290
13.2 Testing quadratic residuosity 291
13.3 Computing modular square roots 292
13.4 The quadratic residuosity assumption 297
13.5 Notes 298
14 Modules and vector spaces 299
14.1 Definitions, basic properties, and examples 299
14.2 Submodules and quotient modules 301
14.3 Module lioniomorphisms and isomorphisms 303
14.4 Linear independence and bases 306
14.5 Vector spaces and dimension 309
15 Matrices 316
15.1 Basic definitions and properties 316
15.2 Matrices and linear maps 320
15.3 The inverse of a matrix 323
15.4 Gaussian elimination 324
15.5 Applications of Gaussian elimination 328
viii Contents
15.6 Notes 334
16 Subexponential time discrete logarithms and factoring 336
16.1 Smooth numbers 336
16.2 An algorithm for discrete logarithms 337
16.3 An algorithm for factoring integers 344
16.4 Practical improvements 352
16.5 Notes 356
17 More rings 359
17.1 Algebras 359
17.2 The field of fractions of an integral domain 363
17.3 Unique factorization of polynomials 366
17.4 Polynomial congruences 371
17.5 Polynomial quotient algebras 374
17.6 General properties of extension fields 376
17.7 Formal power series and Laurent series 378
17.8 Unique factorization domains (*) 383
17.9 Notes 397
18 Polynomial arithmetic and applications 398
18.1 Basic arithmetic 398
18.2 Computing minimal polynomials in F[X]/(/) (I) 401
18.3 Euclid"s algorithm 402
18.4 Computing modular inverses and Chinese remaindering 405
18.5 Rational function reconstruction and applications 410
18.6 Faster polynomial arithmetic (*) 415
18.7 Notes 421
19 Linearly generated sequences and applications 423
19.1 Basic definitions and properties 423
19.2 Computing minimal polynomials: a special case 428
19.3 Computing minimal polynomials: a more general case 429
19.4 Solving sparse linear systems 435
19.5 Computing minimal polynomials in F[X]/(/) (II) 438
19.6 The algebra, of linear transformations (*) 440
19.7 Notes 447
20 Finite fields 448
20.1 Preliminaries 448
20.2 The existence of finite fields 450
20.3 The subfield structure and uniqueness of finite fields 454
20.4 Conjugates, norms and traces 456
Contents ix
21 Algorithms for finite fields 462
21.1 Testing and constructing irreducible polynomials 462
21.2 Computing minimal polynomials in F[X]/(f) (III) 465
21.3 Factoring polynomials: the Cantor Zassenhaus algorithm 467
21.4 Factoring polynomials: Berlekamp's algorithm 475
21.5 Deterministic factorization algorithms (*) 483
21.6 Faster square free decomposition (*) 485
21.7 Notes 487
22 Deterministic primality testing 489
22.1 The basic idea 489
22.2 The algorithm and its analysis 490
22.3 Notes 500
Appendix: Some useful facts 501
Bibliography 504
Index of notation 510
Index 512 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Shoup, Victor |
author_facet | Shoup, Victor |
author_role | aut |
author_sort | Shoup, Victor |
author_variant | v s vs |
building | Verbundindex |
bvnumber | BV022222042 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 ST 600 |
ctrlnum | (OCoLC)255563207 (DE-599)BVBBV022222042 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
edition | Reprint. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02037nam a2200565 c 4500</leader><controlfield tag="001">BV022222042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070111s2006 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521851548</subfield><subfield code="9">0-521-85154-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521851541</subfield><subfield code="9">978-0-521-85154-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521617253</subfield><subfield code="9">978-0-521-61725-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521617251</subfield><subfield code="9">0-521-61725-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255563207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022222042</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shoup, Victor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A computational introduction to number theory and algebra</subfield><subfield code="c">Victor Shoup</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprint.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambrdige</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 517 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science - Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lehrbuch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory - Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zahlentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015433238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015433238</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022222042 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:29:32Z |
indexdate | 2024-07-09T20:52:42Z |
institution | BVB |
isbn | 0521851548 9780521851541 9780521617253 0521617251 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015433238 |
oclc_num | 255563207 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | XVI, 517 S. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Shoup, Victor Verfasser aut A computational introduction to number theory and algebra Victor Shoup Reprint. Cambrdige Cambridge Univ. Press 2006 XVI, 517 S. txt rdacontent n rdamedia nc rdacarrier Algebra Computer science - Mathematics Lehrbuch Number theory Number theory - Data processing Zahlentheorie Informatik Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s DE-604 Computeralgebra (DE-588)4010449-7 s Algebraische Zahlentheorie (DE-588)4001170-7 s 1\p DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015433238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shoup, Victor A computational introduction to number theory and algebra Algebra Computer science - Mathematics Lehrbuch Number theory Number theory - Data processing Zahlentheorie Informatik Algebraische Zahlentheorie (DE-588)4001170-7 gnd Computeralgebra (DE-588)4010449-7 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4001170-7 (DE-588)4010449-7 (DE-588)4067277-3 |
title | A computational introduction to number theory and algebra |
title_auth | A computational introduction to number theory and algebra |
title_exact_search | A computational introduction to number theory and algebra |
title_exact_search_txtP | A computational introduction to number theory and algebra |
title_full | A computational introduction to number theory and algebra Victor Shoup |
title_fullStr | A computational introduction to number theory and algebra Victor Shoup |
title_full_unstemmed | A computational introduction to number theory and algebra Victor Shoup |
title_short | A computational introduction to number theory and algebra |
title_sort | a computational introduction to number theory and algebra |
topic | Algebra Computer science - Mathematics Lehrbuch Number theory Number theory - Data processing Zahlentheorie Informatik Algebraische Zahlentheorie (DE-588)4001170-7 gnd Computeralgebra (DE-588)4010449-7 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Algebra Computer science - Mathematics Lehrbuch Number theory Number theory - Data processing Zahlentheorie Informatik Algebraische Zahlentheorie Computeralgebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015433238&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT shoupvictor acomputationalintroductiontonumbertheoryandalgebra |