Number theory: 1 Tools and diophantine equations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2007
|
Schriftenreihe: | Graduate texts in mathematics
239 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 650 S. graph. Darst. |
ISBN: | 9780387499239 9780387499222 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV022220479 | ||
003 | DE-604 | ||
005 | 20081112 | ||
007 | t | ||
008 | 070110s2007 d||| |||| 00||| eng d | ||
020 | |a 9780387499239 |9 978-0-387-49923-9 | ||
020 | |a 9780387499222 |9 978-0-387-49922-2 | ||
035 | |a (OCoLC)612275210 | ||
035 | |a (DE-599)BVBBV022220479 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-824 |a DE-703 | ||
100 | 1 | |a Cohen, Henri |d 1947- |e Verfasser |0 (DE-588)1018621717 |4 aut | |
245 | 1 | 0 | |a Number theory |n 1 |p Tools and diophantine equations |c Henri Cohen |
264 | 1 | |a New York, NY |b Springer |c 2007 | |
300 | |a XXIII, 650 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 239 | |
490 | 0 | |a Graduate texts in mathematics |v ... | |
773 | 0 | 8 | |w (DE-604)BV022220354 |g 1 |
830 | 0 | |a Graduate texts in mathematics |v 239 |w (DE-604)BV000000067 |9 239 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015431701&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015431701 |
Datensatz im Suchindex
_version_ | 1804136203712200704 |
---|---|
adam_text | Table
of
Contents
Volume I
Preface
v
1.
Introduction to Diophantine Equations
................... 1
1.1
Introduction
........................................... 1
1.1.1
Examples of Diophantine Problems
................. 1
1.1.2
Local Methods
................................... 4
1.1.3
Dimensions
...................................... 6
1.2
Exercises for Chapter
1 ................................. 8
Part I. Tools
2.
Abelian Groups, Lattices, and Finite Fields
............... 11
2.1
Finitely Generated Abelian Groups
....................... 11
2.1.1
Basic Results
.................................... 11
2.1.2
Description of Subgroups
.......................... 16
2.1.3
Characters of Finite Abelian Groups
................ 17
2.1.4
The Groups (Z/mZ)*
............................. 20
2.1.5
Dirichlet Characters
.............................. 25
2.1.6
Gauss Sums
..................................... 30
2.2
The Quadratic Reciprocity Law
.......................... 33
2.2.1
The Basic Quadratic Reciprocity Law
............... 33
2.2.2
Consequences of the Basic Quadratic Reciprocity Law
36
2.2.3
Gauss s Lemma and Quadratic Reciprocity
.......... 39
2.2.4
Real Primitive Characters
......................... 43
2.2.5
The Sign of the Quadratic Gauss Sum
.............. 45
2.3
Lattices and the Geometry of Numbers
.................... 50
2.3.1
Definitions
...................................... 50
2.3.2
Hermite s Inequality
.............................. 53
2.3.3
LLL-Reduced Bases
.............................. 55
2.3.4
The LLL Algorithms
.............................. 58
2.3.5
Approximation of Linear Forms
.................... 60
2.3.6
Minkowski s Convex Body Theorem
................ 63
xii
Table
of
Contents
2.4
Basic
Properties of Finite Fields
.......................... 65
2.4.1
General Properties of Finite Fields
................. 65
2.4.2
Galois Theory of Finite Fields
..................... 69
2.4.3
Polynomials over Finite Fields
..................... 71
2.5
Bounds for the Number of Solutions in Finite Fields
........ 72
2.5.1
The Chevalley-Warning Theorem
.................. 72
2.5.2
Gauss Sums for Finite Fields
....................... 73
2.5.3
Jacobi Sums for Finite Fields
...................... 79
2.5.4
The Jacobi Sums J(xi
,χ2)
........................ 82
2.5.5
The Number of Solutions of Diagonal Equations
...... 87
2.5.6
The Weil Bounds
................................. 90
2.5.7
The Weil Conjectures (Deligne s Theorem)
.......... 92
2.6
Exercises for Chapter
2 ................................. 93
3.
Basic Algebraic Number Theory
..........................101
3.1
Field-Theoretic Algebraic Number Theory
.................101
3.1.1
Galois Theory
...................................101
3.1.2
Number Fields
...................................106
3.1.3
Examples
.......................................108
3.1.4
Characteristic Polynomial, Norm, Trace
.............109
3.1.5
Noether s Lemma
................................110
3.1.6
The Basic Theorem of
Kummer
Theory
.............
Ill
3.1.7
Examples of the Use of
Kummer
Theory
............114
3.1.8
Artin-Schreier Theory
............................115
3.2
The Normal Basis Theorem
..............................117
3.2.1
Linear Independence and Hubert s Theorem
90....... 117
3.2.2
The Normal Basis Theorem in the Cyclic Case
....... 119
3.2.3
Additive Polynomials
............................. 120
3.2.4
Algebraic Independence of Homomorphisms
......... 121
3.2.5
The Normal Basis Theorem
........................ 123
3.3
Ring-Theoretic Algebraic Number Theory
................. 124
3.3.1
Gauss s Lemma on Polynomials
....................124
3.3.2
Algebraic Integers
................................125
3.3.3
Ring of Integers and Discriminant
..................128
3.3.4
Ideals and Units
..................................130
3.3.5
Decomposition of Primes and Ramification
..........132
3.3.6
Galois Properties of Prime Decomposition
...........134
3.4
Quadratic Fields
.......................................136
3.4.1
Field-Theoretic and Basic Ring-Theoretic Properties
.. 136
3.4.2
Results and Conjectures on Class and Unit Groups
... 138
3.5
Cyclotomic Fields
......................................140
3.5.1
Cyclotomic Polynomials
...........................140
3.5.2
Field-Theoretic Properties of
Q(C„).................144
3.5.3
Ring-Theoretic Properties
.........................146
3.5.4
The Totally Real Subfield of Q(Cpt
).................148
Table
of Contents
xiii
3.6
Stickelberger s Theorem
.................................150
3.6.1
Introduction and Algebraic Setting
.................150
3.6.2
Instantiation of Gauss Sums
.......................151
3.6.3
Prime Ideal Decomposition of Gauss Sums
...........154
3.6.4
The Stickelberger Ideal
............................160
3.6.5
Diagonalization of the Stickelberger Element
.........163
3.6.6
The
Eisenstein
Reciprocity Law
....................165
3.7
The Hasse-Davenport Relations
..........................170
3.7.1
Distribution Formulas
............................. 171
3.7.2
The Hasse-Davenport Relations
.................... 173
3.7.3
The
Zeta
Function of a Diagonal Hypersurface
....... 177
3.8
Exercises for Chapter
3 ................................. 179
4.
p-adic Fields
..............................................183
4.1
Absolute Values and Completions
........................183
4.1.1
Absolute Values
..................................183
4.1.2
Archimedean Absolute Values
......................184
4.1.3
Non-
Archimedean and Ultrametric Absolute Values
... 188
4.1.4
Ostrowski s Theorem and the Product Formula
......190
4.1.5
Completions
.....................................192
4.1.6
Completions of a Number Field
....................195
4.1.7
Hensel s Lemmas
.................................199
4.2
Analytic Functions in p-adic Fields
.......................205
4.2.1
Elementary Properties
............................205
4.2.2
Examples of Analytic Functions
....................208
4.2.3
Application of the Artin-Hasse Exponential
.........217
4.2.4
Mahler Expansions
...............................220
4.3
Additive and Multiplicative Structures
....................224
4.3.1
Concrete Approach
...............................224
4.3.2
Basic Reductions
.................................225
4.3.3
Study of the Groups
Щ
...........................229
4.3.4
Study of the Group
ÍA
............................231
4.3.5
The Group
Kţ/Kf
..............................234
4.4
Extensions of p-adic Fields
...............................235
4.4.1
Preliminaries on Local Field Norms
.................235
4.4.2
Krasner s Lemma
.................................238
4.4.3
General Results on Extensions
.....................239
4.4.4
Applications of the Cohomology of Cyclic Groups
.... 242
4.4.5
Characterization of Unramified Extensions
...........249
4.4.6
Properties of Unramified Extensions
................251
4.4.7
Totally Ramified Extensions
.......................253
4.4.8
Analytic Representations of pth Roots of Unity
......254
4.4.9
Factorizations in Number Fields
....................258
4.4.10
Existence of the Field Cp
..........................260
4.4.11
Some Analysis in Cp
..............................263
xiv
Table
of
Contents
4.5
The Theorems of Strassmann and
Weierstrass
..............266
4.5.1
Strassmann s Theorem
............................266
4.5.2
Krasner Analytic Functions
........................267
4.5.3
The
Weierstrass
Preparation Theorem
..............270
4.5.4
Applications of Strassmann s Theorem
..............272
4.6
Exercises for Chapter
4 .................................275
5.
Quadratic Forms and Local-Global Principles
............285
5.1
Basic Results on Quadratic Forms
........................285
5.1.1
Basic Properties of Quadratic Modules
..............286
5.1.2
Contiguous Bases and Witt s Theorem
..............288
5.1.3
Translations into Results on Quadratic Forms
........291
5.2
Quadratic Forms over Finite and Local Fields
..............294
5.2.1
Quadratic Forms over Finite Fields
.................294
5.2.2
Definition of the Local Hubert Symbol
..............295
5.2.3
Main Properties of the Local Hilbert Symbol
.........296
5.2.4
Quadratic Forms over Qp
..........................300
5.3
Quadratic Forms over
Q
.................................303
5.3.1
Global Properties of the Hilbert Symbol
.............303
5.3.2
Statement of the Hasse-Minkowski Theorem
.........305
5.3.3
The Hasse-Minkowski Theorem for
η
< 2 ...........306
5.3.4
The Hasse-Minkowski Theorem for
η
= 3 ...........307
5.3.5
The Hasse-Minkowski Theorem for
η
= 4 ...........308
5.3.6
The Hasse-Minkowski Theorem for
η
> 5 ...........309
5.4
Consequences of the Hasse-Minkowski Theorem
............310
5.4.1
General Results
..................................310
5.4.2
A Result of Davenport and
Casseis
.................311
5.4.3
Universal Quadratic Forms
........................312
5.4.4
Sums of Squares
..................................314
5.5
The
Hasse Norm
Principle
...............................318
5.6
The
Hasse
Principle for Powers
...........................321
5.6.1
A General Theorem on Powers
.....................321
5.6.2
The
Hasse
Principle for Powers
.....................324
5.7
Some Counterexamples to the
Hasse
Principle
..............326
5.8
Exercises for Chapter
5 .................................329
Part II. Diophantine Equations
6.
Some Diophantine Equations
.............................335
6.1
Introduction
...........................................335
6.1.1
The Use of Finite Fields
...........................335
6.1.2
Local Methods
...................................337
6.1.3
Global Methods
..................................337
6.2
Diophantine Equations of Degree
1.......................339
Table
of Contents
xv
6.3
Diophantine Equations of Degree
2.......................341
6.3.1
The General Homogeneous Equation
................341
6.3.2
The Homogeneous Ternary Quadratic Equation
......343
6.3.3
Computing a Particular Solution
...................347
6.3.4
Examples of Homogeneous Ternary Equations
........352
6.3.5
The Pell-Fermat Equation x2
-
Dy2 = N
...........354
6.4
Diophantine Equations of Degree
3.......................357
6.4.1
Introduction
.....................................358
6.4.2
The Equation axp + byp
+
czp
= 0:
Local Solubility
... 359
6.4.3
The Equation axp + byp + czp
= 0:
Number Fields
___362
6.4.4
The Equation axp
+
byp
+
czp
= 0:
Hyperelliptic Curves
..............................368
6.4.5
The Equation x3
+
y3
+
cz3
= 0....................373
6.4.6
Sums of Two or More Cubes
.......................376
6.4.7
Skolem s Equations x3
+
dy3
= 1...................385
6.4.8
Special Cases of Skolem s Equations
................386
6.4.9
The Equations y2
=
x3 ±
1
in Rational Numbers
.....387
6.5
The Equations ax4
+
by4
+
cz2
= 0
and ax6
+
by3
+
cz2
= 0 . 389
6.5.1
The Equation ax4
+
by4
+
cz2
= 0:
Local Solubility
... 389
6.5.2
The Equations x4 ± y4
=
z2 and x4
+
2y4
=
z2
.......391
6.5.3
The Equation ax4
+
by4
+
cz2
= 0:
Elliptic Curves
___392
6.5.4
The Equation ax4
+
by4
+
cz2
= 0:
Special Cases
.....393
6.5.5
The Equation ax6
+
by3
+
cz2
= 0..................396
6.6
The
Fermat
Quartics x4
+
y4
=
cz4
.......................397
6.6.1
Local Solubility
.................................. 398
6.6.2
Global Solubility: Factoring over Number Fields
...... 400
6.6.3
Global Solubility: Coverings of Elliptic Curves
....... 407
6.6.4
Conclusion, and a Small Table
..................... 409
6.7
The Equation y2
=
xn
+
t
............................... 410
6.7.1
General Results
..................................411
6.7.2
The Case
p
= 3 ..................................414
6.7.3
The Case
p
= 5 ..................................416
6.7.4
Application of the Bilu-Hanrot-Voutier Theorem
.....417
6.7.5
Special Cases with Fixed
t
.........................418
6.7.6
The Equations ty2
+ 1 =
Ίχρ
and y2
+
y
+ 1 =
3xp
... 420
6.8
Linear Recurring Sequences
..............................421
6.8.1
Squares in the Fibonacci and Lucas Sequences
.......421
6.8.2
The Square Pyramid Problem
......................424
6.9
Fermat s Last Theorem xn + yn
=
zn
...................427
6.9.1
Introduction
.....................................427
6.9.2
General Prime n: The First Case
...................428
6.9.3
Congruence Criteria
..............................429
6.9.4
The Criteria of
Wendt
and Germain
................430
6.9.5
Rummer s Criterion: Regular Primes
................431
xvi
Table
of
Contents
6.9.6
The Criteria of
Furtwängler
and Wieferich
...........434
6.9.7
General Prime n: The Second Case
.................435
6.10
An Example of Runge s Method
..........................439
6.11
First Results on Catalan s Equation
......................442
6.11.1
Introduction
.....................................442
6.11.2
The Theorems of Nagell and
Ko
Chao..............
444
6.11.3
Some Lemmas on Binomial Series
..................446
6.11.4
Proof of Cassels s Theorem
6.11.5..................447
6.12
Congruent Numbers
....................................450
6.12.1
Reduction to an Elliptic Curve
.....................451
6.12.2
The Use of the Birch and Swinnerton-Dyer Conjecture
452
6.12.3
Tunnell s Theorem
...............................453
6.13
Some Unsolved Diophantine Problems
.....................455
6.14
Exercises for Chapter
6 .................................456
7.
Elliptic Curves
...........................................465
7.1
Introduction and Definitions
.............................465
7.1.1
Introduction
.....................................465
7.1.2
Weierstrass
Equations
.............................465
7.1.3
Degenerate Elliptic Curves
........................467
7.1.4
The Group Law
..................................470
7.1.5 Isogenies........................................472
7.2
Transformations into
Weierstrass
Form
....................474
7.2.1
Statement of the Problem
.........................474
7.2.2
Transformation of the Intersection of Two Quadrics
... 475
7.2.3
Transformation of a Hyperelliptic Quartic
...........476
7.2.4
Transformation of a General Nonsingular Cubic
......477
7.2.5
Example: The Diophantine Equation x2
+
y4
=
2z4
.. . 480
7.3
Elliptic Curves over C, M, k(T), ¥q, and Kp
...............482
7.3.1
Elliptic Curves over
С
............................482
7.3.2
Elliptic Curves over
M
............................484
7.3.3
Elliptic Curves over k(T)
..........................486
7.3.4
Elliptic Curves over ¥q
............................494
7.3.5
Constant Elliptic Curves over
R[[T}]:
Formal Groups
.. 500
7.3.6
Reduction of Elliptic Curves over Kp
...............505
7.3.7
The p-adic Filtration for Elliptic Curves over Kp
.....507
7.4
Exercises for Chapter
7 .................................512
8.
Diophantine Aspects of Elliptic Curves
...................517
8.1
Elliptic Curves over
Q
..................................517
8.1.1
Introduction
.....................................517
8.1.2
Basic Results and Conjectures
.....................518
8.1.3
Computing the Torsion Subgroup
..................524
8.1.4
Computing the Mordell-Weil Group
................528
8.1.5
The
Naïve
and Canonical Heights
..................529
Table
of
Contents
xvii
8.2
Description
of 2-Descent with Rational
2-
Torsion
...........532
8.2.1
The Fundamental 2-Isogeny
........................532
8.2.2
Description of the Image of
φ
......................534
8.2.3
The Fundamental 2-Descent Map
...................535
8.2.4
Practical Use of 2-Descent with 2-Isogenies
..........538
8.2.5
Examples of 2-Descent using 2-Isogenies
.............542
8.2.6
An Example of Second Descent
....................546
8.3
Description of General 2-Descent
.........................548
8.3.1
The Fundamental 2-Descent Map
...................548
8.3.2
The T-Selmer Group of a Number Field
.............550
8.3.3
Description of the Image of
α
......................552
8.3.4
Practical Use of 2-Descent in the General Case
.......554
8.3.5
Examples of General 2-Descent
.....................555
8.4
Description of S-Descent with Rational
3-
Torsion Subgroup
. . 557
8.4.1
Rational 3-Torsion Subgroups
......................557
8.4.2
The Fundamental 3-Isogeny
........................558
8.4.3
Description of the Image of
φ
......................560
8.4.4
The Fundamental 3-Descent Map
...................563
8.5
The Use of L(E, s)
.....................................564
8.5.1
Introduction
.....................................564
8.5.2
The Case of Complex Multiplication
................565
8.5.3
Numerical Computation of
ІЇг)(Е,
1)...............572
8.5.4
Computation of
Гг(1,
χ)
for Small
χ
................575
8.5.5
Computation of
Гг(1,
χ)
for Large
χ
................580
8.5.6
The Famous Curve y2
+
у
=
χ3
-
7x
+ 6............582
8.6
The Heegner Point Method
..............................584
8.6.1
Introduction and the Modular Parametrization
.......584
8.6.2
Heegner Points and Complex Multiplication
.........586
8.6.3
The Use of the Theorem of Gross-Zagier
............589
8.6.4
Practical Use of the Heegner Point Method
..........591
8.6.5
Improvements to the Basic Algorithm, in Brief
.......596
8.6.6
A Complete Example
.............................598
8.7
Computation of Integral Points
...........................600
8.7.1
Introduction
.....................................600
8.7.2
An Upper Bound for the Elliptic Logarithm on
Ε (Ζ)
. 601
8.7.3
Lower Bounds for Linear Forms in Elliptic Logarithms
603
8.7.4
A Complete Example
.............................605
8.8
Exercises for Chapter
8 .................................607
Bibliography
..............................................615
Index of Notation
........................................625
Index of Names
...........................................633
General Index
............................................639
|
adam_txt |
Table
of
Contents
Volume I
Preface
v
1.
Introduction to Diophantine Equations
. 1
1.1
Introduction
. 1
1.1.1
Examples of Diophantine Problems
. 1
1.1.2
Local Methods
. 4
1.1.3
Dimensions
. 6
1.2
Exercises for Chapter
1 . 8
Part I. Tools
2.
Abelian Groups, Lattices, and Finite Fields
. 11
2.1
Finitely Generated Abelian Groups
. 11
2.1.1
Basic Results
. 11
2.1.2
Description of Subgroups
. 16
2.1.3
Characters of Finite Abelian Groups
. 17
2.1.4
The Groups (Z/mZ)*
. 20
2.1.5
Dirichlet Characters
. 25
2.1.6
Gauss Sums
. 30
2.2
The Quadratic Reciprocity Law
. 33
2.2.1
The Basic Quadratic Reciprocity Law
. 33
2.2.2
Consequences of the Basic Quadratic Reciprocity Law
36
2.2.3
Gauss's Lemma and Quadratic Reciprocity
. 39
2.2.4
Real Primitive Characters
. 43
2.2.5
The Sign of the Quadratic Gauss Sum
. 45
2.3
Lattices and the Geometry of Numbers
. 50
2.3.1
Definitions
. 50
2.3.2
Hermite's Inequality
. 53
2.3.3
LLL-Reduced Bases
. 55
2.3.4
The LLL Algorithms
. 58
2.3.5
Approximation of Linear Forms
. 60
2.3.6
Minkowski's Convex Body Theorem
. 63
xii
Table
of
Contents
2.4
Basic
Properties of Finite Fields
. 65
2.4.1
General Properties of Finite Fields
. 65
2.4.2
Galois Theory of Finite Fields
. 69
2.4.3
Polynomials over Finite Fields
. 71
2.5
Bounds for the Number of Solutions in Finite Fields
. 72
2.5.1
The Chevalley-Warning Theorem
. 72
2.5.2
Gauss Sums for Finite Fields
. 73
2.5.3
Jacobi Sums for Finite Fields
. 79
2.5.4
The Jacobi Sums J(xi
,χ2)
. 82
2.5.5
The Number of Solutions of Diagonal Equations
. 87
2.5.6
The Weil Bounds
. 90
2.5.7
The Weil Conjectures (Deligne's Theorem)
. 92
2.6
Exercises for Chapter
2 . 93
3.
Basic Algebraic Number Theory
.101
3.1
Field-Theoretic Algebraic Number Theory
.101
3.1.1
Galois Theory
.101
3.1.2
Number Fields
.106
3.1.3
Examples
.108
3.1.4
Characteristic Polynomial, Norm, Trace
.109
3.1.5
Noether's Lemma
.110
3.1.6
The Basic Theorem of
Kummer
Theory
.
Ill
3.1.7
Examples of the Use of
Kummer
Theory
.114
3.1.8
Artin-Schreier Theory
.115
3.2
The Normal Basis Theorem
.117
3.2.1
Linear Independence and Hubert's Theorem
90. 117
3.2.2
The Normal Basis Theorem in the Cyclic Case
. 119
3.2.3
Additive Polynomials
. 120
3.2.4
Algebraic Independence of Homomorphisms
. 121
3.2.5
The Normal Basis Theorem
. 123
3.3
Ring-Theoretic Algebraic Number Theory
. 124
3.3.1
Gauss's Lemma on Polynomials
.124
3.3.2
Algebraic Integers
.125
3.3.3
Ring of Integers and Discriminant
.128
3.3.4
Ideals and Units
.130
3.3.5
Decomposition of Primes and Ramification
.132
3.3.6
Galois Properties of Prime Decomposition
.134
3.4
Quadratic Fields
.136
3.4.1
Field-Theoretic and Basic Ring-Theoretic Properties
. 136
3.4.2
Results and Conjectures on Class and Unit Groups
. 138
3.5
Cyclotomic Fields
.140
3.5.1
Cyclotomic Polynomials
.140
3.5.2
Field-Theoretic Properties of
Q(C„).144
3.5.3
Ring-Theoretic Properties
.146
3.5.4
The Totally Real Subfield of Q(Cpt
).148
Table
of Contents
xiii
3.6
Stickelberger's Theorem
.150
3.6.1
Introduction and Algebraic Setting
.150
3.6.2
Instantiation of Gauss Sums
.151
3.6.3
Prime Ideal Decomposition of Gauss Sums
.154
3.6.4
The Stickelberger Ideal
.160
3.6.5
Diagonalization of the Stickelberger Element
.163
3.6.6
The
Eisenstein
Reciprocity Law
.165
3.7
The Hasse-Davenport Relations
.170
3.7.1
Distribution Formulas
. 171
3.7.2
The Hasse-Davenport Relations
. 173
3.7.3
The
Zeta
Function of a Diagonal Hypersurface
. 177
3.8
Exercises for Chapter
3 . 179
4.
p-adic Fields
.183
4.1
Absolute Values and Completions
.183
4.1.1
Absolute Values
.183
4.1.2
Archimedean Absolute Values
.184
4.1.3
Non-
Archimedean and Ultrametric Absolute Values
. 188
4.1.4
Ostrowski's Theorem and the Product Formula
.190
4.1.5
Completions
.192
4.1.6
Completions of a Number Field
.195
4.1.7
Hensel's Lemmas
.199
4.2
Analytic Functions in p-adic Fields
.205
4.2.1
Elementary Properties
.205
4.2.2
Examples of Analytic Functions
.208
4.2.3
Application of the Artin-Hasse Exponential
.217
4.2.4
Mahler Expansions
.220
4.3
Additive and Multiplicative Structures
.224
4.3.1
Concrete Approach
.224
4.3.2
Basic Reductions
.225
4.3.3
Study of the Groups
Щ
.229
4.3.4
Study of the Group
ÍA
.231
4.3.5
The Group
Kţ/Kf
.234
4.4
Extensions of p-adic Fields
.235
4.4.1
Preliminaries on Local Field Norms
.235
4.4.2
Krasner's Lemma
.238
4.4.3
General Results on Extensions
.239
4.4.4
Applications of the Cohomology of Cyclic Groups
. 242
4.4.5
Characterization of Unramified Extensions
.249
4.4.6
Properties of Unramified Extensions
.251
4.4.7
Totally Ramified Extensions
.253
4.4.8
Analytic Representations of pth Roots of Unity
.254
4.4.9
Factorizations in Number Fields
.258
4.4.10
Existence of the Field Cp
.260
4.4.11
Some Analysis in Cp
.263
xiv
Table
of
Contents
4.5
The Theorems of Strassmann and
Weierstrass
.266
4.5.1
Strassmann's Theorem
.266
4.5.2
Krasner Analytic Functions
.267
4.5.3
The
Weierstrass
Preparation Theorem
.270
4.5.4
Applications of Strassmann's Theorem
.272
4.6
Exercises for Chapter
4 .275
5.
Quadratic Forms and Local-Global Principles
.285
5.1
Basic Results on Quadratic Forms
.285
5.1.1
Basic Properties of Quadratic Modules
.286
5.1.2
Contiguous Bases and Witt's Theorem
.288
5.1.3
Translations into Results on Quadratic Forms
.291
5.2
Quadratic Forms over Finite and Local Fields
.294
5.2.1
Quadratic Forms over Finite Fields
.294
5.2.2
Definition of the Local Hubert Symbol
.295
5.2.3
Main Properties of the Local Hilbert Symbol
.296
5.2.4
Quadratic Forms over Qp
.300
5.3
Quadratic Forms over
Q
.303
5.3.1
Global Properties of the Hilbert Symbol
.303
5.3.2
Statement of the Hasse-Minkowski Theorem
.305
5.3.3
The Hasse-Minkowski Theorem for
η
< 2 .306
5.3.4
The Hasse-Minkowski Theorem for
η
= 3 .307
5.3.5
The Hasse-Minkowski Theorem for
η
= 4 .308
5.3.6
The Hasse-Minkowski Theorem for
η
> 5 .309
5.4
Consequences of the Hasse-Minkowski Theorem
.310
5.4.1
General Results
.310
5.4.2
A Result of Davenport and
Casseis
.311
5.4.3
Universal Quadratic Forms
.312
5.4.4
Sums of Squares
.314
5.5
The
Hasse Norm
Principle
.318
5.6
The
Hasse
Principle for Powers
.321
5.6.1
A General Theorem on Powers
.321
5.6.2
The
Hasse
Principle for Powers
.324
5.7
Some Counterexamples to the
Hasse
Principle
.326
5.8
Exercises for Chapter
5 .329
Part II. Diophantine Equations
6.
Some Diophantine Equations
.335
6.1
Introduction
.335
6.1.1
The Use of Finite Fields
.335
6.1.2
Local Methods
.337
6.1.3
Global Methods
.337
6.2
Diophantine Equations of Degree
1.339
Table
of Contents
xv
6.3
Diophantine Equations of Degree
2.341
6.3.1
The General Homogeneous Equation
.341
6.3.2
The Homogeneous Ternary Quadratic Equation
.343
6.3.3
Computing a Particular Solution
.347
6.3.4
Examples of Homogeneous Ternary Equations
.352
6.3.5
The Pell-Fermat Equation x2
-
Dy2 = N
.354
6.4
Diophantine Equations of Degree
3.357
6.4.1
Introduction
.358
6.4.2
The Equation axp + byp
+
czp
= 0:
Local Solubility
. 359
6.4.3
The Equation axp + byp + czp
= 0:
Number Fields
_362
6.4.4
The Equation axp
+
byp
+
czp
= 0:
Hyperelliptic Curves
.368
6.4.5
The Equation x3
+
y3
+
cz3
= 0.373
6.4.6
Sums of Two or More Cubes
.376
6.4.7
Skolem's Equations x3
+
dy3
= 1.385
6.4.8
Special Cases of Skolem's Equations
.386
6.4.9
The Equations y2
=
x3 ±
1
in Rational Numbers
.387
6.5
The Equations ax4
+
by4
+
cz2
= 0
and ax6
+
by3
+
cz2
= 0 . 389
6.5.1
The Equation ax4
+
by4
+
cz2
= 0:
Local Solubility
. 389
6.5.2
The Equations x4 ± y4
=
z2 and x4
+
2y4
=
z2
.391
6.5.3
The Equation ax4
+
by4
+
cz2
= 0:
Elliptic Curves
_392
6.5.4
The Equation ax4
+
by4
+
cz2
= 0:
Special Cases
.393
6.5.5
The Equation ax6
+
by3
+
cz2
= 0.396
6.6
The
Fermat
Quartics x4
+
y4
=
cz4
.397
6.6.1
Local Solubility
. 398
6.6.2
Global Solubility: Factoring over Number Fields
. 400
6.6.3
Global Solubility: Coverings of Elliptic Curves
. 407
6.6.4
Conclusion, and a Small Table
. 409
6.7
The Equation y2
=
xn
+
t
. 410
6.7.1
General Results
.411
6.7.2
The Case
p
= 3 .414
6.7.3
The Case
p
= 5 .416
6.7.4
Application of the Bilu-Hanrot-Voutier Theorem
.417
6.7.5
Special Cases with Fixed
t
.418
6.7.6
The Equations ty2
+ 1 =
Ίχρ
and y2
+
y
+ 1 =
3xp
. 420
6.8
Linear Recurring Sequences
.421
6.8.1
Squares in the Fibonacci and Lucas Sequences
.421
6.8.2
The Square Pyramid Problem
.424
6.9
Fermat's "Last Theorem" xn + yn
=
zn
.427
6.9.1
Introduction
.427
6.9.2
General Prime n: The First Case
.428
6.9.3
Congruence Criteria
.429
6.9.4
The Criteria of
Wendt
and Germain
.430
6.9.5
Rummer's Criterion: Regular Primes
.431
xvi
Table
of
Contents
6.9.6
The Criteria of
Furtwängler
and Wieferich
.434
6.9.7
General Prime n: The Second Case
.435
6.10
An Example of Runge's Method
.439
6.11
First Results on Catalan's Equation
.442
6.11.1
Introduction
.442
6.11.2
The Theorems of Nagell and
Ko
Chao.
444
6.11.3
Some Lemmas on Binomial Series
.446
6.11.4
Proof of Cassels's Theorem
6.11.5.447
6.12
Congruent Numbers
.450
6.12.1
Reduction to an Elliptic Curve
.451
6.12.2
The Use of the Birch and Swinnerton-Dyer Conjecture
452
6.12.3
Tunnell's Theorem
.453
6.13
Some Unsolved Diophantine Problems
.455
6.14
Exercises for Chapter
6 .456
7.
Elliptic Curves
.465
7.1
Introduction and Definitions
.465
7.1.1
Introduction
.465
7.1.2
Weierstrass
Equations
.465
7.1.3
Degenerate Elliptic Curves
.467
7.1.4
The Group Law
.470
7.1.5 Isogenies.472
7.2
Transformations into
Weierstrass
Form
.474
7.2.1
Statement of the Problem
.474
7.2.2
Transformation of the Intersection of Two Quadrics
. 475
7.2.3
Transformation of a Hyperelliptic Quartic
.476
7.2.4
Transformation of a General Nonsingular Cubic
.477
7.2.5
Example: The Diophantine Equation x2
+
y4
=
2z4
. . 480
7.3
Elliptic Curves over C, M, k(T), ¥q, and Kp
.482
7.3.1
Elliptic Curves over
С
.482
7.3.2
Elliptic Curves over
M
.484
7.3.3
Elliptic Curves over k(T)
.486
7.3.4
Elliptic Curves over ¥q
.494
7.3.5
Constant Elliptic Curves over
R[[T}]:
Formal Groups
. 500
7.3.6
Reduction of Elliptic Curves over Kp
.505
7.3.7
The p-adic Filtration for Elliptic Curves over Kp
.507
7.4
Exercises for Chapter
7 .512
8.
Diophantine Aspects of Elliptic Curves
.517
8.1
Elliptic Curves over
Q
.517
8.1.1
Introduction
.517
8.1.2
Basic Results and Conjectures
.518
8.1.3
Computing the Torsion Subgroup
.524
8.1.4
Computing the Mordell-Weil Group
.528
8.1.5
The
Naïve
and Canonical Heights
.529
Table
of
Contents
xvii
8.2
Description
of 2-Descent with Rational
2-
Torsion
.532
8.2.1
The Fundamental 2-Isogeny
.532
8.2.2
Description of the Image of
φ
.534
8.2.3
The Fundamental 2-Descent Map
.535
8.2.4
Practical Use of 2-Descent with 2-Isogenies
.538
8.2.5
Examples of 2-Descent using 2-Isogenies
.542
8.2.6
An Example of Second Descent
.546
8.3
Description of General 2-Descent
.548
8.3.1
The Fundamental 2-Descent Map
.548
8.3.2
The T-Selmer Group of a Number Field
.550
8.3.3
Description of the Image of
α
.552
8.3.4
Practical Use of 2-Descent in the General Case
.554
8.3.5
Examples of General 2-Descent
.555
8.4
Description of S-Descent with Rational
3-
Torsion Subgroup
. . 557
8.4.1
Rational 3-Torsion Subgroups
.557
8.4.2
The Fundamental 3-Isogeny
.558
8.4.3
Description of the Image of
φ
.560
8.4.4
The Fundamental 3-Descent Map
.563
8.5
The Use of L(E, s)
.564
8.5.1
Introduction
.564
8.5.2
The Case of Complex Multiplication
.565
8.5.3
Numerical Computation of
ІЇг)(Е,
1).572
8.5.4
Computation of
Гг(1,
χ)
for Small
χ
.575
8.5.5
Computation of
Гг(1,
χ)
for Large
χ
.580
8.5.6
The Famous Curve y2
+
у
=
χ3
-
7x
+ 6.582
8.6
The Heegner Point Method
.584
8.6.1
Introduction and the Modular Parametrization
.584
8.6.2
Heegner Points and Complex Multiplication
.586
8.6.3
The Use of the Theorem of Gross-Zagier
.589
8.6.4
Practical Use of the Heegner Point Method
.591
8.6.5
Improvements to the Basic Algorithm, in Brief
.596
8.6.6
A Complete Example
.598
8.7
Computation of Integral Points
.600
8.7.1
Introduction
.600
8.7.2
An Upper Bound for the Elliptic Logarithm on
Ε (Ζ)
. 601
8.7.3
Lower Bounds for Linear Forms in Elliptic Logarithms
603
8.7.4
A Complete Example
.605
8.8
Exercises for Chapter
8 .607
Bibliography
.615
Index of Notation
.625
Index of Names
.633
General Index
.639 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cohen, Henri 1947- |
author_GND | (DE-588)1018621717 |
author_facet | Cohen, Henri 1947- |
author_role | aut |
author_sort | Cohen, Henri 1947- |
author_variant | h c hc |
building | Verbundindex |
bvnumber | BV022220479 |
ctrlnum | (OCoLC)612275210 (DE-599)BVBBV022220479 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01285nam a2200325 cc4500</leader><controlfield tag="001">BV022220479</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081112 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070110s2007 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387499239</subfield><subfield code="9">978-0-387-49923-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387499222</subfield><subfield code="9">978-0-387-49922-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)612275210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022220479</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Henri</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018621717</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Number theory</subfield><subfield code="n">1</subfield><subfield code="p">Tools and diophantine equations</subfield><subfield code="c">Henri Cohen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 650 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">239</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">...</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV022220354</subfield><subfield code="g">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">239</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">239</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015431701&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015431701</subfield></datafield></record></collection> |
id | DE-604.BV022220479 |
illustrated | Illustrated |
index_date | 2024-07-02T16:29:00Z |
indexdate | 2024-07-09T20:52:40Z |
institution | BVB |
isbn | 9780387499239 9780387499222 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015431701 |
oclc_num | 612275210 |
open_access_boolean | |
owner | DE-20 DE-824 DE-703 |
owner_facet | DE-20 DE-824 DE-703 |
physical | XXIII, 650 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Cohen, Henri 1947- Verfasser (DE-588)1018621717 aut Number theory 1 Tools and diophantine equations Henri Cohen New York, NY Springer 2007 XXIII, 650 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 239 Graduate texts in mathematics ... (DE-604)BV022220354 1 Graduate texts in mathematics 239 (DE-604)BV000000067 239 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015431701&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cohen, Henri 1947- Number theory Graduate texts in mathematics |
title | Number theory |
title_auth | Number theory |
title_exact_search | Number theory |
title_exact_search_txtP | Number theory |
title_full | Number theory 1 Tools and diophantine equations Henri Cohen |
title_fullStr | Number theory 1 Tools and diophantine equations Henri Cohen |
title_full_unstemmed | Number theory 1 Tools and diophantine equations Henri Cohen |
title_short | Number theory |
title_sort | number theory tools and diophantine equations |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015431701&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022220354 (DE-604)BV000000067 |
work_keys_str_mv | AT cohenhenri numbertheory1 |