Mass transfer: from fundamentals to modern industrial applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XIII, 275 S. Ill., graph. Darst. |
ISBN: | 9783527314607 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022215279 | ||
003 | DE-604 | ||
005 | 20140408 | ||
007 | t | ||
008 | 070108s2006 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N10,1650 |2 dnb | ||
015 | |a 06,A45,1215 |2 dnb | ||
020 | |a 9783527314607 |c Pp. : EUR 99.00 (freier Pr.) |9 978-3-527-31460-7 | ||
024 | 3 | |a 9783527314607 | |
028 | 5 | 2 | |a 1131460 000 |
035 | |a (OCoLC)255141929 | ||
035 | |a (DE-599)BVBBV022215279 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-92 |a DE-703 |a DE-91G |a DE-29T |a DE-634 |a DE-83 | ||
050 | 0 | |a QC318.M3 | |
082 | 0 | |a 530.475 | |
084 | |a UG 2900 |0 (DE-625)145623: |2 rvk | ||
084 | |a VE 5900 |0 (DE-625)147130:253 |2 rvk | ||
084 | |a 660 |2 sdnb | ||
084 | |a MTA 800f |2 stub | ||
084 | |a CIT 020f |2 stub | ||
100 | 1 | |a Asano, Koichi |e Verfasser |0 (DE-588)127104275 |4 aut | |
245 | 1 | 0 | |a Mass transfer |b from fundamentals to modern industrial applications |c Koichi Asano |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2006 | |
300 | |a XIII, 275 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Stoffübertragung - Lehrbuch | |
650 | 4 | |a Mass transfer | |
650 | 0 | 7 | |a Stoffübertragung |0 (DE-588)4057696-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Stoffübertragung |0 (DE-588)4057696-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-60918-5 |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2774573&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015426581&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015426581 |
Datensatz im Suchindex
_version_ | 1804136196422500352 |
---|---|
adam_text | Contents
Prefóce
XIII
Ί
Introduction
З
1.1
The Beginnings of Mass Transfer
1
1.2
Characteristics of Mass Transfer
2
1.3
Three Fundamental Laws of Transport Phenomena
3
1.3.1
Newton s Law of Viscosity
3
1.3.2
Fourier s Law of Heat Conduction
4
1.3.3
Fick s Law of Diffusion
5
1.4
Summary of Phase Equilibria in Gas-Liquid Systems
6
References
7
2
Diffusion and Mass Transfer
9
2.1
Motion of Molecules and Diffusion
9
2.1.1
Diffusion Phenomena
9
2.1.2
Definition of Diffusional Flux and Reference Velocity
of Diffusion
10
2.1.3
Binary Diffusion Flux
12
2.2
Diffusion Coefficients
14
2.2.1
Binary Diffusion Coefficients in the Gas Phase
14
2.2.2
Multicomponent Diffusion Coefficients in the Gas Phase
25
Example
2.1 36
Solution
36
2.3
Rates of Mass Transfer
36
2.3.1
Definition of Mass Flux
36
2.3.2
Unidirectional Diffusion in Binary Mass Transfer
18
2.3.3
Equimolal Counterdiffusion
38
2.3.4
Convective Mass Flux for Mass Transfer in a Mixture of Vapors
20
Example
2.2 21
Solution
21
2.4
Mass Transfer Coefficients
21
Example
2.3 24
Solution
24
Mass Transfer. From Fundamentals to Modem Industrial Applications. Koichi
Asano
Copyright
© 2006
WILEY-VCH
Verlag
GmbH
&
Co. KGaA,
Weinheim
ISBN:
3-527-31460-1
VI
Contents
2.5
Overall
Mass Transfer Coefficients
24
References
26
3
Governing Equations of Mass Transfer
27
3.1
Laminar and Turbulent Flow
27
3.2
Continuity Equation and Diffusion Equation
28
3.2.1
Continuity Equation
28
3.2.2
Diffusion Equation in Terms of Mass Fraction
29
3.2.3
Diffusion Equation in Terms of Mole Fraction
31
3.3
Equation of Motion and Energy Equation
33
3.3.1
The Equation of Motion (Navier-Stokes Equation)
33
3.3.2
The Energy Equation
33
3.3.3
Governing Equations in Cylindrical and Spherical Coordinates
33
3.4
Some Approximate Solutions of the Diffusion Equation
34
3.4.1
Film Model
34
3.4.2
Penetration Model
35
3.4.3
Surface Renewal Model
36
Example
3.1 37
Solution
37
3.5
Physical Interpretation of Some Important Dimensionless Numbers
38
3.5.1
Reynolds Number
38
3.5.2
Prandtl Number and Schmidt Number
39
3.5.3
Nusselt Number
41
3.5.4
Sherwood Number
42
3.5.5
Dimensionless Numbers Commonly Used in Heat and Mass
Transfer
44
Example
3.2 44
Solution
44
3.6
Dimensional Analysis
47
3.6.1
Principle of Similitude and Dimensional Homogeneity
47
3.6.2
Finding Dimensionless Numbers and Pi Theorem
48
References
51
4
Mass Transfer in a Laminar Boundary Layer
53
4.1
Velocity Boundary Layer
53
4.1.1
Boundary Layer Equation
53
4.1.2
Similarity Transformation
55
4.1.3
Integral Form of the Boundary Layer Equation
57
4.1.4
Friction Factor
58
4.2
Temperature and Concentration Boundary Layers
59
4.2.1
Temperature and Concentration Boundary Layer Equations
59
4.2.2
Integral Form of Thermal and Concentration Boundary Layer
Equations
60
Example
4.1 61
Solution
61
Contents
Ivii
4.3
Numerical Solutions of the Boundary Layer Equations
62
4.3.1
Quasi-Linearization Method
62
4.3.2
Correlation of Heat and Mass Transfer Rates
64
Example
4.2 66
Solution
66
4.4
Mass and Heat Transfer in Extreme Cases
67
4.4.1
Approximate Solutions for Mass Transfer in the Case of Extremely Large
Schmidt Numbers
67
4.4.2
Approximate Solutions for Heat Transfer in the Case of Extremely Small
Prandtl Numbers
69
4.5
Effect of an Inactive Entrance
Regionon
Rates of Mass Transfer
70
4.5.1
Polynomial Approximation of Velocity Profiles and Thickness
of the Velocity Boundary Layer
70
4.5.2
Polynomial Approximation of Concentration Profiles and Thickness
of the Concentration Boundary Layer
71
4.6
Absorption of Gases by a Falling Liquid Film
73
4.6.1
Velocity Distribution in a Falling Thin Liquid Film According
to Nusselt
73
4.6.2
Gas Absorption for Short Contact Times
75
4.6.3
Gas Absorption for Long Exposure Times
76
Example
4.3 77
Solution
78
4.7
Dissolution of a Solid Wall by a Falling Liquid Film
78
4.8
High Mass Flux Effect in Heat and Mass Transfer in Laminar Boundary
Layers
80
4.8.1
High Mass Flux Effect
80
4.8.2
Mickle/s Film
Model Approach to the High Mass Flux Effect
81
4.8.3
Correlation of High Mass Flux Effect for Heat and Mass Transfer
83
Example
4.4 86
Solution
86
References
87
5
Heat and Mass Transfer in a Laminar Flow inside a Circular Pipe
89
5.1
Velocity Distribution in a Laminar Flow inside a Circular Pipe
89
5.2
Graetz Numbers for Heat and Mass Transfer
90
5.2.1
Energy Balance over a Small Volume Element of a Pipe
90
5.2.2
Material Balance over a Small Volume Element of a Pipe
92
5.3
Heat and Mass Transfer near the Entrance Region of a Circular Pipe
93
5.3.1
Heat Transfer near the Entrance Region at Constant
Wall Temperature
93
5.3.2
Mass Transfer near the Entrance Region at Constant Wall
Concentration
94
5.4
Heat and Mass Transfer in a Fully Developed Laminar Flow inside
a Circular Pipe
95
5.4.1
Heat Transfer at Constant Wall Temperature
95
Contents
5.4.2
Mass Transfer at Constant Wall Concentration
96
5.5
Mass Transfer in Wetted-Wall Columns
97
Example
5.1 98
Solution
98
References
100
6
Motion, Heat and Mass Transfer of Particles
101
6.1
Creeping Flow around a Spherical Particle
101
6.2
Motion of Spherical Particles in a Fluid
104
6.2.1
Numerical Solution of the Drag Coefficients of a Spherical Particle in the
Intermediate Reynolds Number Range
104
6.2.2
Correlation of the Drag Coefficients of a Spherical Particle
105
6.2.3
Terminal Velocity of a Particle
106
Example
6.1 107
Solution
107
6.3
Heat and Mass Transfer of Spherical Particles in a Stationary Fluid
109
6.4
Heat and Mass Transfer of Spherical Particles in a Flow Field 111
6.4.1
Numerical Approach to Mass Transfer of a Spherical Particle in a Laminar
Flow 111
6.4.2
The Ranz-Marshall Correlation and Comparison with Numerical
Data
112
Example
6.2 114
Solution
114
6.4.3
liquid-Phase Mass Transfer of a Spherical Particle in Stokes Flow
135
6.5
Drag Coefficients, Heat and Mass Transfer of a Spheroidal Particle
315
6.6
Heat and Mass Transfer in
a Fluidized
Bed
117
6.6.1
Void Function
117
6.6.2
Interaction of Two Spherical Particles of the Same Size in a Coaxial
Arrangement
317
6.6.3
Simulation of the Void Function
118
References
120
7
Mass Transfer of Drops and Bubbles
323
7.1
Shapes of Bubbles and Drops
323
7.2
Drag Force of a Bubble or Drop in a Creeping Flow (Hadamard s
Flow)
322
7.2.1
Hadamard s Stream Function
322
7.2.2
Drag Coefficients and Terminal Velocities of Small Drops and
Bubbles
123
7.2.3
Motion of Small Bubbles in Liquids Containing Traces of
Contaminants
326
7.3
Flow around an Evaporating Drop
126
7.3.1
Effect of Mass Injection or Suction on the Flow around a Spherical
Particle
126
Contents
IX
7.3.2
Effect
of Mass Injection or Suction on Heat and Mass Transfer of a
Spherical Particle
128
Example
7.1 129
Solution
130
7.4
Evaporation of Fuel Sprays
131
7.4.1
Drag Coefficients, Heat and Mass Transfer of an Evaporating Drop
131
7.4.2
Behavior of an Evaporating Drop Falling Freely in the Gas Phase
132
Example
7.2 134
Solution
134
7.5
Absorption of Gases by Liquid Sprays
136
Example
7.3 137
Solution
138
7.6
Mass Transfer of Small Bubbles or Droplets in Liquids
140
7.6.1
Continuous-Phase Mass Transfer of Bubbles and Droplets in
Hadamard
Flow
140
7.6.2
Dispersed-Phase Mass Transfer of Drops in
Hadamard
Flow
141
7.6.3
Mass Transfer of Bubbles or Drops of Intermediate Size in the Liquid
Phase
141
Example
7.4 142
Solution
142
References
143
8
Turbulent Transport Phenomena
145
8.1
Fundamentals of Turbulent Flow
145
8.1.1
Turbulent Flow
145
8.1.2
Reynolds Stress
346
8.1.3
Eddy Heat Flux and Difrusional Flux J47
8.1.4
Eddy Transport Properties
348
8.1.5
Mixing Length Model
349
8.2
Velocity Distribution in a Turbulent Flow inside a Circular Pipe and
Friction Factors
350
8.2.1
1/n-th Power Law
350
8.2.2
Universal Velocity Distribution Law for Turbulent Flow inside a Circular
Pipe
353
8.2.3
Friction Factors for Turbulent Flow inside a Smooth Circular Pipe
153
Example
8.1 355
Solution
355
8.3
Analogy between Momentum, Heat, and Mass Transfer
356
8.3.1
Reynolds Analogy
157
8.3.2
Chilton-Colburn Analogy
358
Example
8.2 360
Solution
360
8.3.3 Von Ka rman
Analogy
161
8.3.4
Deissler Analogy
362
Example
8.3 364
Χ Ι
Contents
Solution
164
8.4
Friction Factor, Heat, and Mass Transfer in a Turbulent Boundary
Layer
168
8.4.1
Velocity Distribution in a Turbulent Boundary Layer
168
8.4.2
Friction Factor
169
8.4.3
Heat and Mass Transfer in a Turbulent Boundary Layer
171
8.5
Turbulent Boundary Layer with Surface Mass Injection or Suction
172
Example
8.4 173
Solution
174
References
175
9
Evaporation and Condensation
177
9.1
Characteristics of Simultaneous Heat and Mass Transfer
177
9.1.1
Mass Transfer with Phase Change
177
9.1.2
Surface Temperatures in Simultaneous Heat and Mass Transfer
178
9.2
Wet-Bulb Temperatures and
Psychrometrie
Ratios
179
Example
9.1 181
Solution
181
Example
9.2 182
Solution
182
9.3
Film Condensation of Pure Vapors
183
9.3.1
Nusselťs
Model for Film Condensation of Pure Vapors
183
9.3.2
Effect of Variable Physical Properties
187
Example
9.3 187
Solution
188
9.4
Condensation of Binary Vapor Mixtures
189
9.4.1
Total and Partial Condensation
189
9.4.2
Characteristics of the Total Condensation of Binary Vapor Mixtures
190
9.4.3
Rate of Condensation of Binary Vapors under Total Condensation
191
9.5
Condensation of Vapors in the Presence of a Non-Condensable Gas
192
9.5.1
Accumulation of a Non-Condensable Gas near the Interface
192
9.5.2
Calculation of Heat and Mass Transfer
193
9.5.3
Experimental Approach to the Effect of a Non-Condensable Gas
194
Example
9.4 195
Solution
196
9.6
Condensation of Vapors on a Circular Cylinder
200
9.6.1
Condensation of Pure Vapors on a Horizontal Cylinder
200
9.6.2
Heat and Mass Transfer in the case of a Cylinder with Surface
Mass Injection or Suction
201
9.6.3
Calculation of the Rates of Condensation of Vapors on a Horizontal Tube
in the Presence of a Non-Condensable Gas
203
Example
9.5 204
Solution
204
References
208
Contents 1
XI
10
Mass
Transfer in
Distillation
209
10.1
Classical Approaches to Distillation and their
Paradox 209
10.1.1
Tray Towers and Packed Columns
209
10.1.2
Tray Efficiencies in Distillation Columns
210
10.1.3
HTU as a Measure of Mass Transfer in Packed Distillation
Columns
211
10.1.4
Paradox in Tray Efficiency and HTU
212
Example
10.1 214
Solution
214
10.2
Characteristics of Heat and Mass Transfer in Distillation
236
10.2.1
Physical Picture of Heat and Mass Transfer in Distillation
216
10.2.2
Rate-Controlling Process in Distillation
217
10.2.3
Effect of Partial Condensation of Vapors on the Rates of Mass Transfer
in Binary Distillation
218
10.2.4
Dissimilarity of Mass Transfer in Gas Absorption and Distillation
221
Example
10.2 222
Solution
222
Example
10.3 222
Solution
222
10.3
Simultaneous Heat and Mass Transfer Model for Packed Distillation
Columns
225
10.3.1
Wetted Area of Packings
225
10.3.2
Apparent End Effect
227
10.3.3
Correlation of the Vapor-Phase Diffusional Fluxes in Binary
Distillation
228
10.3.4
Correlation of Vapor-Phase Diffusional Fluxes in Ternary
Distillation
230
10.3.5
Simulation of Separation Performance in Ternary Distillation on a Packed
Column under Total Reflux Conditions
231
Example
10.4 233
Solution
233
Example
10.5 239
Solution
239
10.4
Calculation of Ternary Distillations on Packed Columns under Finite Re¬
flux Ratio
239
10.4.1
Material Balance for the Column
239
10.4.2
Convergence of Terminal Composition
242
Example
10.6 244
Solution
244
10.5
Cryogenic Distillation of Air on Packed Columns
249
10.5.1
Air Separation Plant
249
10.5.2
Mass and Diffusional Fluxes in Cryogenic Distillation
249
10.5.3
Simulation of Separation Performance of a Pilot-Plant-Scale Air
Separation Plant
251
10.6
Industrial Separation of Oxygen-18 by Super Cryogenic Distillation
252
XII
I Contents
10.6.1
Oxygen-18 as Raw Material for PET Diagnostics
252
10.6.2
A New Process for Direct Separation of Oxygen-18 from Natural
Oxygen
253
10.6.3
Construction and Operation of the Plant
255
References
257
Subject Index
271
|
adam_txt |
Contents
Prefóce
XIII
Ί
Introduction
З
1.1
The Beginnings of Mass Transfer
1
1.2
Characteristics of Mass Transfer
2
1.3
Three Fundamental Laws of Transport Phenomena
3
1.3.1
Newton's Law of Viscosity
3
1.3.2
Fourier's Law of Heat Conduction
4
1.3.3
Fick's Law of Diffusion
5
1.4
Summary of Phase Equilibria in Gas-Liquid Systems
6
References
7
2
Diffusion and Mass Transfer
9
2.1
Motion of Molecules and Diffusion
9
2.1.1
Diffusion Phenomena
9
2.1.2
Definition of Diffusional Flux and Reference Velocity
of Diffusion
10
2.1.3
Binary Diffusion Flux
12
2.2
Diffusion Coefficients
14
2.2.1
Binary Diffusion Coefficients in the Gas Phase
14
2.2.2
Multicomponent Diffusion Coefficients in the Gas Phase
25
Example
2.1 36
Solution
36
2.3
Rates of Mass Transfer
36
2.3.1
Definition of Mass Flux
36
2.3.2
Unidirectional Diffusion in Binary Mass Transfer
18
2.3.3
Equimolal Counterdiffusion
38
2.3.4
Convective Mass Flux for Mass Transfer in a Mixture of Vapors
20
Example
2.2 21
Solution
21
2.4
Mass Transfer Coefficients
21
Example
2.3 24
Solution
24
Mass Transfer. From Fundamentals to Modem Industrial Applications. Koichi
Asano
Copyright
© 2006
WILEY-VCH
Verlag
GmbH
&
Co. KGaA,
Weinheim
ISBN:
3-527-31460-1
VI
Contents
2.5
Overall
Mass Transfer Coefficients
24
References
26
3
Governing Equations of Mass Transfer
27
3.1
Laminar and Turbulent Flow
27
3.2
Continuity Equation and Diffusion Equation
28
3.2.1
Continuity Equation
28
3.2.2
Diffusion Equation in Terms of Mass Fraction
29
3.2.3
Diffusion Equation in Terms of Mole Fraction
31
3.3
Equation of Motion and Energy Equation
33
3.3.1
The Equation of Motion (Navier-Stokes Equation)
33
3.3.2
The Energy Equation
33
3.3.3
Governing Equations in Cylindrical and Spherical Coordinates
33
3.4
Some Approximate Solutions of the Diffusion Equation
34
3.4.1
Film Model
34
3.4.2
Penetration Model
35
3.4.3
Surface Renewal Model
36
Example
3.1 37
Solution
37
3.5
Physical Interpretation of Some Important Dimensionless Numbers
38
3.5.1
Reynolds Number
38
3.5.2
Prandtl Number and Schmidt Number
39
3.5.3
Nusselt Number
41
3.5.4
Sherwood Number
42
3.5.5
Dimensionless Numbers Commonly Used in Heat and Mass
Transfer
44
Example
3.2 44
Solution
44
3.6
Dimensional Analysis
47
3.6.1
Principle of Similitude and Dimensional Homogeneity
47
3.6.2
Finding Dimensionless Numbers and Pi Theorem
48
References
51
4
Mass Transfer in a Laminar Boundary Layer
53
4.1
Velocity Boundary Layer
53
4.1.1
Boundary Layer Equation
53
4.1.2
Similarity Transformation
55
4.1.3
Integral Form of the Boundary Layer Equation
57
4.1.4
Friction Factor
58
4.2
Temperature and Concentration Boundary Layers
59
4.2.1
Temperature and Concentration Boundary Layer Equations
59
4.2.2
Integral Form of Thermal and Concentration Boundary Layer
Equations
60
Example
4.1 61
Solution
61
Contents
Ivii
4.3
Numerical Solutions of the Boundary Layer Equations
62
4.3.1
Quasi-Linearization Method
62
4.3.2
Correlation of Heat and Mass Transfer Rates
64
Example
4.2 66
Solution
66
4.4
Mass and Heat Transfer in Extreme Cases
67
4.4.1
Approximate Solutions for Mass Transfer in the Case of Extremely Large
Schmidt Numbers
67
4.4.2
Approximate Solutions for Heat Transfer in the Case of Extremely Small
Prandtl Numbers
69
4.5
Effect of an Inactive Entrance
Regionon
Rates of Mass Transfer
70
4.5.1
Polynomial Approximation of Velocity Profiles and Thickness
of the Velocity Boundary Layer
70
4.5.2
Polynomial Approximation of Concentration Profiles and Thickness
of the Concentration Boundary Layer
71
4.6
Absorption of Gases by a Falling Liquid Film
73
4.6.1
Velocity Distribution in a Falling Thin Liquid Film According
to Nusselt
73
4.6.2
Gas Absorption for Short Contact Times
75
4.6.3
Gas Absorption for Long Exposure Times
76
Example
4.3 77
Solution
78
4.7
Dissolution of a Solid Wall by a Falling Liquid Film
78
4.8
High Mass Flux Effect in Heat and Mass Transfer in Laminar Boundary
Layers
80
4.8.1
High Mass Flux Effect
80
4.8.2
Mickle/s Film
Model Approach to the High Mass Flux Effect
81
4.8.3
Correlation of High Mass Flux Effect for Heat and Mass Transfer
83
Example
4.4 86
Solution
86
References
87
5
Heat and Mass Transfer in a Laminar Flow inside a Circular Pipe
89
5.1
Velocity Distribution in a Laminar Flow inside a Circular Pipe
89
5.2
Graetz Numbers for Heat and Mass Transfer
90
5.2.1
Energy Balance over a Small Volume Element of a Pipe
90
5.2.2
Material Balance over a Small Volume Element of a Pipe
92
5.3
Heat and Mass Transfer near the Entrance Region of a Circular Pipe
93
5.3.1
Heat Transfer near the Entrance Region at Constant
Wall Temperature
93
5.3.2
Mass Transfer near the Entrance Region at Constant Wall
Concentration
94
5.4
Heat and Mass Transfer in a Fully Developed Laminar Flow inside
a Circular Pipe
95
5.4.1
Heat Transfer at Constant Wall Temperature
95
Contents
5.4.2
Mass Transfer at Constant Wall Concentration
96
5.5
Mass Transfer in Wetted-Wall Columns
97
Example
5.1 98
Solution
98
References
100
6
Motion, Heat and Mass Transfer of Particles
101
6.1
Creeping Flow around a Spherical Particle
101
6.2
Motion of Spherical Particles in a Fluid
104
6.2.1
Numerical Solution of the Drag Coefficients of a Spherical Particle in the
Intermediate Reynolds Number Range
104
6.2.2
Correlation of the Drag Coefficients of a Spherical Particle
105
6.2.3
Terminal Velocity of a Particle
106
Example
6.1 107
Solution
107
6.3
Heat and Mass Transfer of Spherical Particles in a Stationary Fluid
109
6.4
Heat and Mass Transfer of Spherical Particles in a Flow Field 111
6.4.1
Numerical Approach to Mass Transfer of a Spherical Particle in a Laminar
Flow 111
6.4.2
The Ranz-Marshall Correlation and Comparison with Numerical
Data
112
Example
6.2 114
Solution
114
6.4.3
liquid-Phase Mass Transfer of a Spherical Particle in Stokes' Flow
135
6.5
Drag Coefficients, Heat and Mass Transfer of a Spheroidal Particle
315
6.6
Heat and Mass Transfer in
a Fluidized
Bed
117
6.6.1
Void Function
117
6.6.2
Interaction of Two Spherical Particles of the Same Size in a Coaxial
Arrangement
317
6.6.3
Simulation of the Void Function
118
References
120
7
Mass Transfer of Drops and Bubbles
323
7.1
Shapes of Bubbles and Drops
323
7.2
Drag Force of a Bubble or Drop in a Creeping Flow (Hadamard's
Flow)
322
7.2.1
Hadamard's Stream Function
322
7.2.2
Drag Coefficients and Terminal Velocities of Small Drops and
Bubbles
123
7.2.3
Motion of Small Bubbles in Liquids Containing Traces of
Contaminants
326
7.3
Flow around an Evaporating Drop
126
7.3.1
Effect of Mass Injection or Suction on the Flow around a Spherical
Particle
126
Contents
IX
7.3.2
Effect
of Mass Injection or Suction on Heat and Mass Transfer of a
Spherical Particle
128
Example
7.1 129
Solution
130
7.4
Evaporation of Fuel Sprays
131
7.4.1
Drag Coefficients, Heat and Mass Transfer of an Evaporating Drop
131
7.4.2
Behavior of an Evaporating Drop Falling Freely in the Gas Phase
132
Example
7.2 134
Solution
134
7.5
Absorption of Gases by Liquid Sprays
136
Example
7.3 137
Solution
138
7.6
Mass Transfer of Small Bubbles or Droplets in Liquids
140
7.6.1
Continuous-Phase Mass Transfer of Bubbles and Droplets in
Hadamard
Flow
140
7.6.2
Dispersed-Phase Mass Transfer of Drops in
Hadamard
Flow
141
7.6.3
Mass Transfer of Bubbles or Drops of Intermediate Size in the Liquid
Phase
141
Example
7.4 142
Solution
142
References
143
8
Turbulent Transport Phenomena
145
8.1
Fundamentals of Turbulent Flow
145
8.1.1
Turbulent Flow
145
8.1.2
Reynolds Stress
346
8.1.3
Eddy Heat Flux and Difrusional Flux J47
8.1.4
Eddy Transport Properties
348
8.1.5
Mixing Length Model
349
8.2
Velocity Distribution in a Turbulent Flow inside a Circular Pipe and
Friction Factors
350
8.2.1
1/n-th Power Law
350
8.2.2
Universal Velocity Distribution Law for Turbulent Flow inside a Circular
Pipe
353
8.2.3
Friction Factors for Turbulent Flow inside a Smooth Circular Pipe
153
Example
8.1 355
Solution
355
8.3
Analogy between Momentum, Heat, and Mass Transfer
356
8.3.1
Reynolds Analogy
157
8.3.2
Chilton-Colburn Analogy
358
Example
8.2 360
Solution
360
8.3.3 Von Ka'rman
Analogy
161
8.3.4
Deissler Analogy
362
Example
8.3 364
Χ Ι
Contents
Solution
164
8.4
Friction Factor, Heat, and Mass Transfer in a Turbulent Boundary
Layer
168
8.4.1
Velocity Distribution in a Turbulent Boundary Layer
168
8.4.2
Friction Factor
169
8.4.3
Heat and Mass Transfer in a Turbulent Boundary Layer
171
8.5
Turbulent Boundary Layer with Surface Mass Injection or Suction
172
Example
8.4 173
Solution
174
References
175
9
Evaporation and Condensation
177
9.1
Characteristics of Simultaneous Heat and Mass Transfer
177
9.1.1
Mass Transfer with Phase Change
177
9.1.2
Surface Temperatures in Simultaneous Heat and Mass Transfer
178
9.2
Wet-Bulb Temperatures and
Psychrometrie
Ratios
179
Example
9.1 181
Solution
181
Example
9.2 182
Solution
182
9.3
Film Condensation of Pure Vapors
183
9.3.1
Nusselťs
Model for Film Condensation of Pure Vapors
183
9.3.2
Effect of Variable Physical Properties
187
Example
9.3 187
Solution
188
9.4
Condensation of Binary Vapor Mixtures
189
9.4.1
Total and Partial Condensation
189
9.4.2
Characteristics of the Total Condensation of Binary Vapor Mixtures
190
9.4.3
Rate of Condensation of Binary Vapors under Total Condensation
191
9.5
Condensation of Vapors in the Presence of a Non-Condensable Gas
192
9.5.1
Accumulation of a Non-Condensable Gas near the Interface
192
9.5.2
Calculation of Heat and Mass Transfer
193
9.5.3
Experimental Approach to the Effect of a Non-Condensable Gas
194
Example
9.4 195
Solution
196
9.6
Condensation of Vapors on a Circular Cylinder
200
9.6.1
Condensation of Pure Vapors on a Horizontal Cylinder
200
9.6.2
Heat and Mass Transfer in the case of a Cylinder with Surface
Mass Injection or Suction
201
9.6.3
Calculation of the Rates of Condensation of Vapors on a Horizontal Tube
in the Presence of a Non-Condensable Gas
203
Example
9.5 204
Solution
204
References
208
Contents 1
XI
10
Mass
Transfer in
Distillation
209
10.1
Classical Approaches to Distillation and their
Paradox 209
10.1.1
Tray Towers and Packed Columns
209
10.1.2
Tray Efficiencies in Distillation Columns
210
10.1.3
HTU as a Measure of Mass Transfer in Packed Distillation
Columns
211
10.1.4
Paradox in Tray Efficiency and HTU
212
Example
10.1 214
Solution
214
10.2
Characteristics of Heat and Mass Transfer in Distillation
236
10.2.1
Physical Picture of Heat and Mass Transfer in Distillation
216
10.2.2
Rate-Controlling Process in Distillation
217
10.2.3
Effect of Partial Condensation of Vapors on the Rates of Mass Transfer
in Binary Distillation
218
10.2.4
Dissimilarity of Mass Transfer in Gas Absorption and Distillation
221
Example
10.2 222
Solution
222
Example
10.3 222
Solution
222
10.3
Simultaneous Heat and Mass Transfer Model for Packed Distillation
Columns
225
10.3.1
Wetted Area of Packings
225
10.3.2
Apparent End Effect
227
10.3.3
Correlation of the Vapor-Phase Diffusional Fluxes in Binary
Distillation
228
10.3.4
Correlation of Vapor-Phase Diffusional Fluxes in Ternary
Distillation
230
10.3.5
Simulation of Separation Performance in Ternary Distillation on a Packed
Column under Total Reflux Conditions
231
Example
10.4 233
Solution
233
Example
10.5 239
Solution
239
10.4
Calculation of Ternary Distillations on Packed Columns under Finite Re¬
flux Ratio
239
10.4.1
Material Balance for the Column
239
10.4.2
Convergence of Terminal Composition
242
Example
10.6 244
Solution
244
10.5
Cryogenic Distillation of Air on Packed Columns
249
10.5.1
Air Separation Plant
249
10.5.2
Mass and Diffusional Fluxes in Cryogenic Distillation
249
10.5.3
Simulation of Separation Performance of a Pilot-Plant-Scale Air
Separation Plant
251
10.6
Industrial Separation of Oxygen-18 by Super Cryogenic Distillation
252
XII
I Contents
10.6.1
Oxygen-18 as Raw Material for PET Diagnostics
252
10.6.2
A New Process for Direct Separation of Oxygen-18 from Natural
Oxygen
253
10.6.3
Construction and Operation of the Plant
255
References
257
Subject Index
271 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Asano, Koichi |
author_GND | (DE-588)127104275 |
author_facet | Asano, Koichi |
author_role | aut |
author_sort | Asano, Koichi |
author_variant | k a ka |
building | Verbundindex |
bvnumber | BV022215279 |
callnumber-first | Q - Science |
callnumber-label | QC318 |
callnumber-raw | QC318.M3 |
callnumber-search | QC318.M3 |
callnumber-sort | QC 3318 M3 |
callnumber-subject | QC - Physics |
classification_rvk | UG 2900 VE 5900 |
classification_tum | MTA 800f CIT 020f |
ctrlnum | (OCoLC)255141929 (DE-599)BVBBV022215279 |
dewey-full | 530.475 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.475 |
dewey-search | 530.475 |
dewey-sort | 3530.475 |
dewey-tens | 530 - Physics |
discipline | Chemie / Pharmazie Physik Chemie-Ingenieurwesen |
discipline_str_mv | Chemie / Pharmazie Physik Chemie-Ingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01970nam a2200517 c 4500</leader><controlfield tag="001">BV022215279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140408 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070108s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N10,1650</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,A45,1215</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527314607</subfield><subfield code="c">Pp. : EUR 99.00 (freier Pr.)</subfield><subfield code="9">978-3-527-31460-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527314607</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131460 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255141929</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022215279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC318.M3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.475</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2900</subfield><subfield code="0">(DE-625)145623:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5900</subfield><subfield code="0">(DE-625)147130:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 800f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Asano, Koichi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)127104275</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mass transfer</subfield><subfield code="b">from fundamentals to modern industrial applications</subfield><subfield code="c">Koichi Asano</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 275 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stoffübertragung - Lehrbuch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass transfer</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-60918-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2774573&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015426581&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015426581</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022215279 |
illustrated | Illustrated |
index_date | 2024-07-02T16:27:06Z |
indexdate | 2024-07-09T20:52:33Z |
institution | BVB |
isbn | 9783527314607 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015426581 |
oclc_num | 255141929 |
open_access_boolean | |
owner | DE-92 DE-703 DE-91G DE-BY-TUM DE-29T DE-634 DE-83 |
owner_facet | DE-92 DE-703 DE-91G DE-BY-TUM DE-29T DE-634 DE-83 |
physical | XIII, 275 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Asano, Koichi Verfasser (DE-588)127104275 aut Mass transfer from fundamentals to modern industrial applications Koichi Asano Weinheim Wiley-VCH 2006 XIII, 275 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Stoffübertragung - Lehrbuch Mass transfer Stoffübertragung (DE-588)4057696-6 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Stoffübertragung (DE-588)4057696-6 s DE-604 Erscheint auch als Online-Ausgabe 978-3-527-60918-5 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2774573&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015426581&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Asano, Koichi Mass transfer from fundamentals to modern industrial applications Stoffübertragung - Lehrbuch Mass transfer Stoffübertragung (DE-588)4057696-6 gnd |
subject_GND | (DE-588)4057696-6 (DE-588)4123623-3 |
title | Mass transfer from fundamentals to modern industrial applications |
title_auth | Mass transfer from fundamentals to modern industrial applications |
title_exact_search | Mass transfer from fundamentals to modern industrial applications |
title_exact_search_txtP | Mass transfer from fundamentals to modern industrial applications |
title_full | Mass transfer from fundamentals to modern industrial applications Koichi Asano |
title_fullStr | Mass transfer from fundamentals to modern industrial applications Koichi Asano |
title_full_unstemmed | Mass transfer from fundamentals to modern industrial applications Koichi Asano |
title_short | Mass transfer |
title_sort | mass transfer from fundamentals to modern industrial applications |
title_sub | from fundamentals to modern industrial applications |
topic | Stoffübertragung - Lehrbuch Mass transfer Stoffübertragung (DE-588)4057696-6 gnd |
topic_facet | Stoffübertragung - Lehrbuch Mass transfer Stoffübertragung Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2774573&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015426581&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT asanokoichi masstransferfromfundamentalstomodernindustrialapplications |