Science of synthesis: Houben-Weyl methods of molecular transformations 35 = Category 5, Compounds with one saturated carbon-heteroatom bond Chlorine, bromine, and iodine
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stuttgart [u.a.]
Thieme
2007
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXVIII, 850 Seiten Illustrationen 26 cm |
ISBN: | 9783131188717 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV022208989 | ||
003 | DE-604 | ||
005 | 20240614 | ||
007 | t | ||
008 | 070104s2007 a||| |||| 00||| eng d | ||
020 | |a 9783131188717 |9 978-3-13-118871-7 | ||
020 | |z 9781588904652 |9 978-1-58890-465-2 | ||
035 | |a (OCoLC)634671921 | ||
035 | |a (DE-599)BVBBV022208989 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-210 |a DE-20 |a DE-19 |a DE-91G |a DE-188 |a DE-11 | ||
084 | |a VK 7000 |0 (DE-625)147414:253 |2 rvk | ||
100 | 1 | |a Braun, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Science of synthesis |b Houben-Weyl methods of molecular transformations |n 35 = Category 5, Compounds with one saturated carbon-heteroatom bond |p Chlorine, bromine, and iodine |c ed. board: D. Bellus ... |
264 | 1 | |a Stuttgart [u.a.] |b Thieme |c 2007 | |
300 | |a XXXVIII, 850 Seiten |b Illustrationen |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Bellus, Daniel |e Sonstige |4 oth | |
700 | 1 | |a Schaumann, Ernst |d 1943- |0 (DE-588)1051541166 |4 edt | |
700 | 1 | |a Houben, Josef |d 1875-1940 |e Sonstige |0 (DE-588)117013870 |4 oth | |
773 | 0 | 8 | |w (DE-604)BV013247070 |g 35 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-13-183891-9 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015420318&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015420318 |
Datensatz im Suchindex
_version_ | 1807863419494203392 |
---|---|
adam_text |
XV
Table of Contents
Introduction
E. Schaumann
Introduction 1
35.1 Product Class 1: One Saturated Carbon—Chlorine Bond
35.1.1 Product Subclass 1: Chloroalkanes
E. Schaumann
35.1.1 Product Subclass 1: Chloroalkanes 15
35.1.1.1 Synthesis by Substitution of Hydrogen
J. Hartung
35.1.1.1 Synthesis by Substitution of Hydrogen 19
35.1.1.1.1 Alkanes and Cycloalkanes 21
35.1.1.1.1.1 Method 1: Reactions with Molecular Chlorine 21
35.1.1.1.1.2 Method 2: Reactions with Sulfuryl Chloride 23
35.1.1.1.1.3 Method 3: Reactions with Trichloromethanesulfonyl Chloride 24
35.1.1.1.1.4 Method 4: Reactions with Trichloromethanesulfenyl Chloride 25
35.1.1.1.1.5 Method 5: Chlorination Reagents Containing an O—CI Bond 26
35.1.1.1.1.5.1 Variation 1: tert Butyl Hypochlorite as Chlorine Atom Donor 26
35.1.1.1.1.5.2 Variation 2: Chlorination with Chlorine Monoxide 26
35.1.1.1.1.6 Method 6: Reactions with Chloroamines 27
35.1.1.1.1.7 Method 7: Chlorination with Phosphorus Pentachloride 28
35.1.1.1.1.8 Method 8: Chlorination Reagents Containing an I—Cl Bond 28
35.1.1.1.1.8.1 Variation 1: (Dichloroiodo)benzene as Chlorine Atom Donor 28
35.1.1.1.1.8.2 Variation 2: Iodine Trichloride as Chlorine Atom Donor 29
35.1.1.1.1.9 Method 9: Chlorination with Carbon Tetrachloride in the Presence of
Transition Metal Carbonyl Complexes 29
35.1.1.1.2 Haloalkanes and Halocycloalkanes 30
35.1.1.1.2.1 Method 1: Reactions with Molecular Chlorine 30
35.1.1.1.3 Alcohols 31
35.1.1.1.3.1 Method 1: Reactions with Molecular Chlorine 31
35.1.1.1.3.2 Method 2: Reactions with Chloroamines 32
35.1.1.1.4 Ethers 32
35.1.1.1.4.1 Method 1: Reactions with Molecular Chlorine 32
35.1.1.1.4.2 Method 2: Reactions with Hypohalites 34
35.1.1.1.4.3 Method 3: Chlorination with (Dichloroiodo)arenes 35
XVI Table of Contents
35.1.1.1.4.4 Method 4: Reactions with Phosphorus Pentachloride 36
35.1.1.1.5 Aldehydes 36
35.1.1.1.5.1 Method 1: Reactions with Sulfuryl Chloride 36
35.1.1.1.5.2 Method 2: Reactions with N Chlorosuccinimide 37
35.1.1.1.6 Ketones 37
35.1.1.1.6.1 Method 1: Reactions with Molecular Chlorine 37
35.1.1.1.6.2 Method 2: Reactions with Manganese(lll) Acetate and Lithium Chloride 38
35.1.1.1.6.3 Method 3: Chlorination with Sulfuryl Chloride 39
35.1.1.1.7 Carboxylic Acids and Derivatives 39
35.1.1.1.7.1 Method 1: Reactions with Molecular Chlorine 39
35.1.1.1.7.2 Method 2: Reactions with Sulfuryl Chloride 41
35.1.1.U.3 Method 3: Reactions with Chloroamines 42
35.1.1.1.8 Amines 43
35.1.1.1.8.1 Method 1: Reactions with Molecular Chlorine 43
35.1.1.2 Synthesis by Substitution of Metals
P. Margaretha
35.1.1.2 Synthesis by Substitution of Metals 47
35.1.1.2.1 Method 1: Synthesis from Organo Croup 15 Derivatives 47
35.1.1.2.2 Method 2: Synthesis from Trialkylboranes 47
35.1.1.3 Synthesis by Substitution of Carbon Functionalities
P. Margaretha
35.1.1.3 Synthesis by Substitution of Carbon Functionalities 49
35.1.1.3.1 Method 1: Decarbonylation of Acyl Chlorides 49
35.1.1.3.2 Method 2: Chlorodecarboxylation of the Heavy Metal Salts of
Carboxylic Acids 49
35.1.1.3.3 Method 3: Chlorodecarboxylation of Carboxylic Acids by Lead(IV) Acetate 50
35.1.1.3.3.1 Variation 1: Chlorodecarboxylation in the Presence of Lithium Chloride ¦•• 51
35.1.1.3.3.2 Variation 2: Chlorodecarboxylation in the Presence of N Chlorosuccinimide 52
35.1.1.3.4 Method 4: Chlorodecarboxylation of 1 (Acyloxy)pyridine 2(1H) thiones •• 53
35.1.1.4 Synthesis by Substitution of Other Halogens
P. Margaretha
35.1.1.4 Synthesis by Substitution of Other Halogens 59
35.1.1.4.1 Method 1: Substitution of Bromine 59
35.1.1.4.2 Method 2: Substitution of Bromine or Iodine 60
Table of Contents XVII
35.1.1 5 Synthesis by Substitution of Oxygen Functionalities
P. Margaretha
35.1.15 Synthesis by Substitution of Oxygen Functionalities 63
35.1.1.5.1 Method 1: Decarboxylation of Chloroformates 63
35.1.1.5.2 Method 2: Synthesis from Alkanesulfonates and a Source of Chloride Ion 64
35.1.1.5.2.1 Variation 1: Using Lithium Chloride 64
35.1.1.5.2.2 Variation 2: Using Sodium or Potassium Chloride 65
35.1.1.5.2.3 Variation 3: Using Calcium Chloride 65
35.1.1.5.2.4 Variation 4: Using Pyridinium Hydrochloride 66
35.1.1.5.2.5 Variation 5: Using Tetraalkylammonium Chlorides 66
35.1.1.5.3 Method 3: Synthesis from Alkyl Xanthates (O Alkyldithiocarbonates) or
from Thionocarbonates (O,0 Dialkylthiocarbonates) 67
35.1.1.5.4 Method 4: Replacement of an Alcoholic Hydroxy Croup with
Hydrogen Chloride or a Metal Halide 68
35.1.1.5.4.1 Variation 1: Using Hydrochloric Acid or Hydrogen Chloride 68
35.1.1.5.4.2 Variation 2: Using Sodium Chloride 69
35.1.1.5.4.3 Variation 3: Using Tin(IV) Chloride 70
35.1.1.5.5 Method 5: Replacement of an Alcoholic Hydroxy Group with
Thionyl Chloride 70
35.1.1.5.5.1 Variation 1: In an Inert Solvent in the Absence of a Base 71
35.1.1.5.5.2 Variation 2: In the Absence of a Solvent 72
35.1.1.5.5.3 Variation 3: In the Presence of an Equimolar Amount of Pyridine 72
35.1.1.5.5.4 Variation 4: In the Presence of an Equimolar Amount of IH Benzotriazole 73
35.1.1.5.5.5 Variation 5: In the Presence of Excess Triethylamine 74
35.1.1.5.6 Method 6: Replacement of an Alcoholic Hydroxy Croup with
Selenium Tetrachloride 75
35.1.1.5.7 Method 7: Replacement of an Alcoholic Hydroxy Group with Chlorides of
Phosphoric Acid and Related Compounds 76
35.1.1.5.7.1 Variation 1: Using Phosphorus Pentachloride 76
35.1.1.5.7.2 Variation 2: Using Phosphoryl Chloride 77
35.1.1.5.8 Method 8: Replacement of an Alcoholic Hydroxy Group via
Oxyphosphonium Intermediates 78
35.1.1.5.8.1 Variation 1: Using Triphenylphosphine and Tetrachloromethane 79
35.1.1.5.8.2 Variation 2: Using Triphenylphosphine/2,3 Dichloro 5,6 dicyanobenzo
1,4 quinone and a Quaternary Ammonium Chloride 81
35.1.1.5.8.3 Variation 3: Using Triphenylphosphine and Cyclic N Chloroimides 82
35.1.1.5.8.4 Variation 4: Using Triphenylphosphine and Dichloroselenuranes 83
35.1.1.5.8.5 Variation 5: Using Triphenylphosphine, Diethyl Azodicarboxylate,
and Zinc(ll) Chloride 84
35.1.1.5.9 Method 9: Replacement of an Alcoholic Hydroxy Group with
Acetyl Chloride 84
35.1.1.5.10 Method 10: Replacement of an Alcoholic Hydroxy Group with Chloro
methylenedimethyliminium Chloride and Related Reagents 85
35.1.1.5.11 Method 11: Replacement of an Alcoholic Hydroxy Group with
tert Butyl Chloride in an Ionic Liquid 90
XVIII Table of Contents
35.1.1.5.12 Method 12: Replacement of an Alcoholic Hydroxy Croup with
Chlorotrimethylsilane 90
35.1.1.5.12.1 Variation 1: In the Absence of Catalyst 90
35.1.1.5.12.2 Variation 2: In the Presence of Selenium Dioxide 91
35.1.1.5.12.3 Variation 3: In the Presence of Dimethyl Sulfoxide 91
35.1.1.5.12.4 Variation 4: In the Presence of Bismuth(lll) Chloride 92
35.1.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities
P. Margaretha
35.1.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities 95
35.1.1.6.1 Method 1: Chloroalkanes from Alkyl Phenyl Tellurides 95
35.1.1.7 Synthesis by Substitution of Nitrogen Functionalities
P. Margaretha
35.1.1.7 Synthesis by Substitution of Nitrogen Functionalities 99
35.1.1.7.1 Method 1: Synthesis from Primary Aliphatic Amines 99
35.1.1.7.2 Method 2: Synthesis from Tertiary Aliphatic Amines 99
35.1.1.7.3 Method 3: Synthesis from N Alkyl Substituted Amides 100
35.1.1.7.4 Method 4: Synthesis from N Alkyl N tosylhydrazines 100
35.1.1.8 Synthesis by Addition to n Type C—C Bonds
K. M. Roy
35.1.1.8 Synthesis by Addition to rr Type C—C Bonds 103
35.1.1.8.1 Method 1: Hydrochlorination of Alkynes or Allenes 103
35.1.1.8.1.1 Variation 1: Preparation of 4 Chlorobuta 1,2 diene from But 1 en 3 yne 103
35.1.1.8.2 Method 2: Hydrochlorination of Polyenes 104
35.1.1.8.2.1 Variation 1: Conversion of Natural and Synthetic Rubbers 104
35.1.1.8.3 Method 3: Hydrochlorination of 1,3 Dienes 104
35.1.1.8.3.1 Variation 1: Using Hydrogen Chloride 104
35.1.1.8.3.2 Variation 2: Synthesis of 1 Chloro 3 methylbut 2 ene Using
Thionyl Chloride/Silica Gel 105
35.1.1.8.4 Method 4: Hydrochlorination of Symmetrical Alkenes and Cycloalkenes 106
35.1.1.8.5 Method 5: Hydrochlorination of Unsymmetrical Alkenes and
Cycloalkenes (Markovnikov Addition) 106
35.1.1.8.5.1 Variation 1: Synthesis with Aqueous Hydrogen Chloride 107
35.1.1.8.5.2 Variation 2: Synthesis under Phase Transfer Conditions 108
35.1.1.8.5.3 Variation 3: Synthesis Using an Inorganic Support 108
35.1.1.8.6 Method 6: Hydrochlorination of Unsymmetrical Alkenes and
Cycloalkenes (anti Markovnikov Addition) 108
35.1.1.8.6.1 Variation 1: Synthesis via Hydroboration 109
35.1.1.8.6.2 Variation 2: Synthesis via Hydroalumination 110
35.1.1.8.7 Method 7: Enantioselective Hydrochlorination Reactions 110
35.1.1.8.8 Method 8: Hydrochlorination of Methylenecyclopropanes 111
Table of Contents XIX
35.1.1.8.8.1 Variation 1: Synthesis with Hydrogen Chloride 111
35.1.1.8.8.2 Variation 2: Synthesis with Metal Chlorides 112
35.1.1.8.9 Method 9: Hydrochlorination of Cyclopropanes 112
35.1.1.8.10 Method 10: Carbochlorination 113
35.1.1.9 Synthesis from Other Chlorine Compounds
H. Ulrich
35.1.1.9 Synthesis from Other Chlorine Compounds 117
35.1.1.9.1 Method 1: Synthesis from Chloroalkynes by Hydrogenation 117
35.1.1.9.2 Method 2: Synthesis from Chloroalkenes 117
35.1.1.9.2.1 Variation 1: By Hydrogenation 117
35.1.1.9.2.2 Variation 2: By Polymerization 118
35.1.1.9.2.3 Variation 3: Coupling Reactions 120
35.1.1.9.2.4 Variation 4: [2+ 2] Cycloaddition Reactions 120
35.1.1.9.2.5 Variation 5: [2+ 3] Cycloaddition Reactions 125
35.1.1.9.2.6 Variation 6: [2+4] Cycloaddition Reactions 126
35.1.1.9.3 Method 3: Synthesis from Chlorocarbenes 127
35.1.1.9.4 Method 4: Synthesis from Chloroalkanes 129
35.1.1.9.4.1 Variation 1: By Insertion of Methylene into C CI Bonds 129
35.1.1.9.4.2 Variation 2: Chloroalkylation Reactions 129
35.1.1.9.4.3 Variation 3: By Isomerization Reactions 130
35.1.1.9.4.4 Variation 4: Elimination of Benzeneseleninic Acid 130
35.1.2 Product Subclass 2: Propargylic Chlorides
P. Margaretha
35.1.2 Product Subclass 2: Propargylic Chlorides 133
35.1.2.1 Synthesis by Heteroatom Substitution 133
35.1.2.1.1 Synthesis by Deoxidative Halogenation of Ketones 133
35.1.2.1.1.1 Method 1: Addition of Chlorodimethylsilane to Ketones 133
35.1.2.1.2 Synthesis by Substitution of o Bonded Heteroatoms 134
35.1.2.1.2.1 Method 1: Synthesis from Propargylic Alcohols and Hydrochloric Acid 134
35.1.2.1.2.1.1 Variation 1: Chlorination Using Hydrochloric Acid, Calcium Chloride,
Copper(l) Chloride, and Copper Metal 134
35.1.2.1.2.1.2 Variation 2: Chlorination Using Gaseous Hydrogen Chloride 135
35.1.2.1.2.2 Method 2: Synthesis from Propargylic Alcohols and Thionyl Chloride ¦ ¦ ¦ 136
35.1.2.1.2.3 Method 3: Synthesis from Propargylic Alcohols and
1 Chloro N,/V,2 trimethylprop 1 en 1 amine 136
XX Table of Contents
35.1.3 Product Subclass 3: Benzylic Chlorides
35.1.3.1 Synthesis by Substitution of Hydrogen
W. D. Pfeiffer
35.1.3.1 Synthesis by Substitution of Hydrogen 139
35.1.3.1.1 Method 1: Reaction with Chlorine under Irradiation 139
35.1.3.1.2 Method 2: Reaction with Chlorine and a Catalyst 141
35.1.3.1.3 Method 3: Reaction with Liquid Chlorine 142
35.1.3.1.4 Method 4: Reaction with Benzyltrimethylammonium Tetrachloroiodate 143
35.1.3.1.5 Method 5: Reaction with tert Butyl Hypochlorite 144
35.1.3.1.6 Method 6: Reaction with Sulfuryl Chloride and a Catalyst 144
35.1.3.1.7 Method 7: Reaction with Benzenesulfonyl Chloride 146
35.1.3.1.8 Method 8: Reaction with Trichloromethanesulfonyl Chloride 147
35.1.3.1.9 Method 9: Reaction with N Chlorosuccinimide 147
35.1.3.1.10 Method 10: Reaction with 1,3,5 Trichloro 1,3,5 triazine 2,4,6(1H,3H,5H)
trione (Trichloroisocyanuric Acid) 149
35.1.3.1.11 Method 11: Reaction with Ammonium Cerium(IV) Nitrate Lithium
Chloride or Cobalt(lll) Acetate Lithium Chloride 149
35.1.3.1.12 Method 12: Reaction with Phosphorus Pentachloride 150
35.1.3.1.13 Method 13: Reaction with Phosphoryl Chloride 151
35.1.3.1.14 Method 14: Reaction with Trichloroacetyl Chloride, Chloroacetyl Chloride,
Benzoyl Chloride, or Ethyl Chloroformate 151
35.1.3.1.15 Method 15: Reaction with Trichloromethyl Chloroformate or
Bis(trichloromethyl) Carbonate 152
35.1.3.2 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer
35.1.3.2 Synthesis by Substitution of Carbonyl Oxygen 155
35.1.3.2.1 Method 1: Chloroalkylation with Aldehydes 155
35.1.3.2.1.1 Variation 1: Chloromethylation with Paraformaldehyde and
Hydrogen Chloride 155
35.1.3.2.1.2 Variation 2: Chloromethylation with Formaldehyde and
Hydrogen Chloride 158
35.1.3.2.1.3 Variation 3: Chloromethylation with 1,3,5 Trioxane 159
35.1.3.2.1.4 Variation 4: Chloroalkylation with Acetaldehyde 159
35.1.3.2.2 Method 2: Chloromethylation with Chloromethyl Methyl Ether or
Bis(chloromethyl) Ether 160
35.1.3.2.3 Method 3: Chloromethylation with Methoxyacetyl Chloride and
Aluminum Trichloride 161
35.1.3.2.4 Method 4: Chloromethylation with 1 Chloro 4 (chloromethoxy)butane or
1,4 Bis(chloromethoxy)butane 162
35.1.3.2.5 Method 5: Chloroalkylation of Arenecarbaldehydes Using
Alkylboron Dichlorides in the Presence of Oxygen 162
Table of Contents XXI
35.1.3.3 Synthesis by Substitution of o Bonded Heteroatoms
P. Margaretha
35.1.3.3 Synthesis by Substitution of o Bonded Heteroatoms 167
35.1.3.3.1 Benzylic Chlorides from Other Benzylic Halides 167
35.1.3.3.1.1 Method 1: Benzylic Chlorides from Benzylic Bromides Using
Tin(IV) Chloride 167
35.1.3.3.2 Benzylic Chlorides from Benzylic Alcohols 167
35.1.3.3.2.1 Method 1: Synthesis Using Thionyl Chloride 168
35.1.3.3.2.2 Method 2: Synthesis Using 4 Toluenesulfonyl Chloride 168
35.1.3.3.2.3 Method 3: Synthesis Using Carbon Tetrachloride 169
35.1.3.3.2.4 Method 4: Synthesis Using Silica Chloride 169
35.1.3.3.2.5 Method 5: Synthesis Using Chlorotrimethylsilane 170
35.1.3.3.2.5.1 Variation 1: With Tellurium Dioxide 170
35.1.3.3.2.5.2 Variation 2: With Dimethyl Sulfoxide 171
35.1.3.3.3 Benzylic Chlorides from Benzylic Ethers 171
35.1.3.3.3.1 Method 1: Cleavage with Zinc and Acetyl Chloride 171
35.1.4 Product Subclass 4: Allylic Chlorides
35.1.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond
W. D. Pfeiffer
35.1.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond 173
35.1.4.1.1 Method 1: Reaction with Chlorine 173
35.1.4.1.2 Method 2: Reaction with Hypochlorous Acid 174
35.1.4.1.3 Method 3: Reaction with Chlorine Monoxide 175
35.1.4.1.4 Method 4: Reaction with tert Butyl Hypochlorite 176
35.1.4.1.5 Method 5: Reaction with N Chloro A/ cyclohexylbenzenesulfonamide ••• 177
35.1.4.1.6 Method 6: Reaction with N Chlorosuccinimide 177
35.1.4.1.7 Method 7: Reaction with a Vilsmeier Reagent and Hydrogen Peroxide •¦ 178
35.1.4.1.8 Method 8: Synthesis by Electrochemical Chlorination 179
35.1.4.2 Synthesis by Substitution of o Bonded Heteroatoms
P. Margaretha
35.1.4.2 Synthesis by Substitution of o Bonded Heteroatoms 181
35.1.4.2.1 Methodi: Allylic Chlorides from Other Allylic Halides 181
35.1.4.2.2 Method 2: Allylic Chlorides from Allylic Alcohols 181
35.1.4.2.2.1 Variation 1: With Thionyl Chloride 182
35.1.4.2.2.2 Variation 2: With Methanesulfonyl Chloride 182
35.1.4.2.2.3 Variation 3: With N Chlorosuccinimide and Dimethyl Sulfide 183
XXII Table of Contents
35.1.4.2.2.4 Variation 4: With Carbon Tetrachloride or Hexachloroacetone and
Triphenylphosphine 183
35.1.4.2.2.5 Variation 5: With 1 Chloro N,N,2 trimethylprop 1 enylamine 185
35.1.4.2.2.6 Variation 6: With Chlorotrimethylsilane in the Presence of
Bismuth(lll) Chloride 186
35.1.4.2.2.7 Variation 7: Allylic Chlorides from Allylic Phosphates 186
35.1.4.2.3 Method 3: Allylic Chlorides from Allyloxybenzenes 187
35.1.S Product Subclass 5:1 Chloro n Heteroatom Functionalized Alkanes
(n 2) with Both Functions Formed Simultaneously
35.1.S.1 Synthesis by Addition across C=C Bonds
R. Cottlich
35.1.5.1 Synthesis by Addition across C=C Bonds 189
35.1.5.1.1 Method 1: Chlorination of Arenes 189
35.1.5.1.2 Method 2: Chlorination of Alkenes 192
35.1.5.1.2.1 Variation 1: Using Chlorine 192
35.1.5.1.2.2 Variation 2: Using Sulfuryl Chloride 198
35.1.5.1.2.3 Variation 3: Using Other Reagents 200
35.1.5.1.3 Method 3: Bromochlorination of Alkenes •••' 203
35.1.5.1.4 Method 4: lodochlorination of Alkenes 206
35.1.5.1.5 Method 5: Fluorochlorination of Alkenes 208
35.1.5.1.6 Method 6: Oxychlorination of Alkenes 210
35.1.5.1.6.1 Variation 1: Intermolecular Addition 210
35.1.5.1.6.2 Variation 2: Intramolecular Cyclization 215
35.1.5.1.7 Method 7: Sulfochlorination of Alkenes 219
35.1.5.1.8 Method 8: Selenochlorination of Alkenes 223
35.1.5.1.9 Method 9: Tellurochlorination of Alkenes 227
35.1.5.1.10 Method 10: Aminochlorination of Alkenes 228
35.1.5.1.10.1 Variation 1: Intermolecular Additions 228
35.1.5.1.10.2 Variation 2: Intramolecular Cyclization 238
35.1.5.1.11 Methodii: Phosphochlorination of Alkenes 242
35.1.5.2 Synthesis by Addition across C O Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.2 Synthesis by Addition across C 0 Bonds 251
35.1.5.2.1 Method 1: Hydrochlorination of Epoxides Using Hydrogen Chloride — 251
35.1.5.2.2 Method 2: Hydrochlorination of Epoxides Using Elemental Chlorine • • • • 252
35.1.5.2.3 Method 3: Hydrochlorination of Epoxides Using Alkali Metal Chlorides 253
35.1.5.2.4 Method 4: Hydrochlorination of Epoxides Using Chloro(imido)metal
Complexes 254
35.1.5.2.5 Method 5: Hydrochlorination of Epoxides Using Silicon Tetrachloride • • • 254
35.1.5.2.5.1 Variation 1: Enantioselective Transformations and Desymmetrization ¦ ¦ • • 255
Table of Contents XXIII
35.1.5.2.6 Method 6: Hydrochlorination of Epoxides UsingTrialkylchlorosilanes ¦•¦ 256
35.1.5.2.7 Method 7: Hydrochlorination of Epoxides Using Chloroorganostannanes 258
35.1.5.2.8 Method 8: Hydrochlorination of Epoxides Using Organoaluminum
Chlorides 259
35.1.5.2.9 Method 9: Hydrochlorination of Epoxides Using Lithium
Tetrachlorocuprate(ll) 260
35.1.5.2.10 Method 10: Hydrochlorination of Epoxides Using Niobium(V) Chloride ¦•¦ 260
35.1.5.2.11 Method 11: Hydrochlorination of Epoxides Using Titanium(IV) Chloride 261
35.1.5.2.12 Method 12: Hydrochlorination of Epoxides Using Cerium(lll) Chloride — 262
35.1.5.2.13 Method 13: Hydrochlorination of Epoxides Using Tetraalkylammonium
Chlorides 262
35.1.5.2.14 Method 14: Hydrochlorination of Epoxides Using Phosphorus Chlorides,
Phosphonium Chlorides, Thionyl Chloride, and Related
Compounds 263
35.1.5.2.15 Method 15: Hydrochlorination of Epoxides Using Chlorocarbonylated
Compounds 265
35.1.5.2.16 Method 16: Hydrochlorination of Tetrahydrofurans and
Other Cyclic Ethers 266
35.1.5 3 Synthesis by Addition across C S Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.3 Synthesis by Addition across C S Bonds 271
35.1.5.3.1 Method 1: Hydrochlorination of Thiiranes Using Hydrogen Chloride — 271
35.1.5.3.2 Method 2: Hydrochlorination of Thiiranes by Reaction of Thiirane
1 Oxides with Chloro(organo)stannanes 271
35.1.5.3.3 Method 3: Hydrochlorination of Thiiranes Using Chlorocarbonylated
Compounds 272
35.1.5.3.4 Method 4: Synthesis by Chlorination of Thiiranes 273
35.1.5.4 Synthesis by Addition across C—N Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.4 Synthesis by Addition across C N Bonds 275
35.1.5.4.1 Method 1: Hydrochlorination of Aziridines Using Hydrogen Chloride •¦• 275
35.1.5.4.2 Method 2: Hydrochlorination of Aziridines Using Alkali Metal Chlorides 276
35.1.5.4.3 Method 3: Hydrochlorination of Aziridines Using Other Metal Chlorides 277
35.1.5.4.4 Method 4: Hydrochlorination of Aziridines Using Chlorotrimethylsilane 278
35.1.5.4.5 Method 5: Hydrochlorination of Aziridines Using Activated
Dimethylformamide Complexes 278
35.1.5.5 Synthesis by Addition across C C Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.5 Synthesis by Addition across C C Bonds 281
35.1.5.5.1 Methodi: Chlorination of 1,1 Diacetylcyclopropane 281
XXIV Table of Contents
3S.2 Product Class 2: One Saturated Carbon—Bromine Bond
35.2.1 Product Subclass 1: Bromoalkanes
E. Schaumann
35.2.1 Product Subclass 1: Bromoalkanes 283
35.2.1.1 Synthesis by Substitution of Hydrogen
J. Hartung
35.2.1.1 Synthesis by Substitution of Hydrogen 287
35.2.1.1.1 Alkanes and Cycloalkanes 288
35.2.1.1.1.1 Method 1: Bromination with Bromine 288
35.2.1.1.1.2 Method 2: Reaction with tert Butyl Hypobromite 290
35.2.1.1.1.3 Method 3: Brominating Reagents Containing a C—Br Bond 291
35.2.1.1.1.3.1 Variation 1: Carbon Tetrabromide as Bromine Atom Donor 291
35.2.1.1.1.3.2 Variation 2: Bromotrichloromethane as Bromine Atom Donor 291
35.2.1.1.2 Haloalkanes and Halocycloalkanes 292
35.2.1.1.2.1 Method 1: Bromination with Bromine 292
35.2.1.1.3 Aldehydes and Ketones 293
35.2.1.1.3.1 Method 1: Bromination with Bromine 293
35.2.1.1.3.2 Method 2: Reaction with Bromomalonates 294
35.2.1.1.4 Carboxylic Acids and Carboxylic Acid Derivatives 294
35.2.1.1.4.1 Method 1: Bromination with Bromine 294
35.2.1.1.4.2 Method 2: Bromination with N Bromosuccinimide 295
35.2.1.1.5 Isocyanates and Isothiocyanates 296
35.2.1.1.5.1 Method 1: Bromination with N Bromosuccinimide 296
35.2.1.1.6 Alkylboranes and Alkylsilanes 297
35.2.1.1.6.1 Method 1: Bromination with Bromine 297
35.2.1.1.6.2 Method 2: Bromination with N Bromosuccinimide 298
35.2.1.1.7 Carbohydrates 298
35.2.1.1.7.1 Method 1: Bromination with Bromine 298
35.2.1.1.7.2 Method 2: Bromination with N Bromosuccinimide 299
35.2.1 2 Synthesis by Substitution of Metals
P. Margaretha
35.2.1.2 Synthesis by Substitution of Metals 301
35.2.1.2.1 Method 1: Bromoalkanes from Organo Group 15 Derivatives 301
35.2.1.2.2 Method 2: Bromoalkanes from Trialkylboranes 301
Table of Contents XXV
35.2.1.3 Substitution of Carbon Functionalities
P. Margaretha
35.2.1.3 Substitution of Carbon Functionalities 303
35.2.1.3.1 Method 1: Decarbonylation of Acyl Bromides 303
35.2.1.3.2 Method 2: Bromodecarboxylation of Heavy Metal Salts of
Carboxylic Acids 303
35.2.1.3.2.1 Variation 1: Bromodecarboxylation of Silver(l) Carboxylates 303
35.2.1.3.2.2 Variation 2: Bromodecarboxylation of Thallium(l) Carboxylates 304
35.2.1.3.3 Method 3: Bromodecarboxylation of Carboxylic Acids 305
35.2.1.3.3.1 Variation 1: Bromodecarboxylation of Carboxylic Acids in the Presence of
Mercury(ll) Oxide 306
35.2.1.3.3.2 Variation 2: Bromodecarboxylation of Carboxylic Acids with
(Diacetoxyiodo)benzene and Bromine 306
35.2.1.3.4 Method 4: Bromodecarboxylation of A/ (Acyloxy)pyridine 2(1H) thiones 307
35.2.1.4 Synthesis by Substitution of Other Halogens
M. Braun
35.2.1.4 Synthesis by Substitution of Other Halogens 313
35.2.1.4.1 Method 1: Substitution of Fluorine 313
35.2.1.4.1.1 Variation 1: Reaction with Aqueous Hydrogen Bromide 313
35.2.1.4.1.2 Variation 2: Reactions with Lewis Acids 314
35.2.1.4.2 Method 2: Substitution of Chlorine 314
35.2.1.4.2.1 Variation 1: Reaction of Chloroalkanes with Aqueous Hydrogen Bromide 315
35.2.1.4.2.2 Variation 2: Reactions of Chloroalkanes with Gaseous Hydrogen Bromide
in the Presence of Iron(lll) Bromide 315
35.2.1.4.2.3 Variation 3: Reactions of Chloroalkanes with Metal Bromides and
a Phase Transfer Catalyst 317
35.2.1.4.2.4 Variation 4: Reactions of Chloroalkanes with Bromoalkanes in
the Presence of Alkali Metal Bromides 318
35.2.1.4.3 Method 3: Substitution of Iodine 320
35.2.1.4.3.1 Variation 1: Reactions of lodoalkanes with Bromine 320
35.2.1.4.3.2 Variation 2: Reactions of lodoalkanes with Hypervalent lodo Compounds 320
35.2.1.4.3.3 Variation 3: Reactions of lodoalkanes with Bismuth(lll) Bromide 321
35.2.1.5 Synthesis by Substitution of Oxygen Functionalities
M. Braun
35.2.1.5 Synthesis by Substitution of Oxygen Functionalities 323
35.2.1.5.1 Method 1: Substitution of Acyloxy Groups in Carboxylic Esters 323
3U.1.5.1.1 Variation 1: Reaction of Carboxylic Esters with Hydrogen Bromide 323
35.2.1.5.1.2 Variation 2: Reaction of Carboxylic Esters with Bromotrimethylsilane — 324
35.2.1.5.1.3 Variation 3: Reaction of Carboxylic Esters with Bromine and Phosphorus 325
3U.1.5.1.4 Variation 4: Reaction of Carboxylic Esters with
Triphenylphosphine Bromine 326
XXVI Table of Contents _
35.2.1.5.2 Method 2: Substitution of Alcoholic Hydroxy Groups 326
35.2.1.5.2.1 Variation 1: Reaction of Alcohols with Aqueous Hydrobromic Acid 326
35.2.1.5.2.2 Variation 2: Reaction of Alcohols with Hydrobromic Acid/Sulfuric Acid ••¦ 328
35.2.1.5.2.3 Variation 3: Reaction of Alcohols with Gaseous Hydrogen Bromide 328
35.2.1.5.2.4 Variation 4: Reaction of Alcohols with Phosphorus Tribromide 329
35.2.1.5.2.5 Variation 5: Reaction of Alcohols with Polymer Bound Phosphorus
Tribromide 330
35.2.1.5.2.6 Variation 6: Reaction of Alcohols with Phosphorus Tribromide and Pyridine 331
35.2.1.5.2.7 Variation 7: Reaction of Alcohols with Triphenylphosphine Bromine 331
35.2.1.5.2.8 Variation 8: Reaction of Alcohols with Triphenylphosphine Carbon
Tetrabromide and Related Reagents 333
35.2.1.5.2.9 Variation 9: Reaction of Alcohols with Triphenylphosphine
N Bromosuccinimide 334
35.2.1.5.2.10 Variation 10: Reaction of Alcohols with Triphenyl Phosphite Bromine 335
35.2.1.5.2.11 Variation 11: Reaction of Alcohols with Bromotrimethylsilane 335
35.2.1.5.2.12 Variation 12: Preparation of Bromoalkanes from Alcohols by
a Modified Mitsunobu Procedure 336
35.2.1.5.2.13 Variations 13: Miscellaneous Reactions 337
35.2.1.5.3 Method 3: Substitution of Alcohols with Isomerization 337
35.2.1.5.3.1 Variation 1: Reaction of 1 Cyclopropylalkan 1 ols with Hydrogen Bromide 338
35.2.1.5.3.2 Variation 2: Reaction of 1 Cyclopropylalkan 1 ols with
Magnesium Bromide 339
35.2.1.5.3.3 Variation 3: Reaction of 1 Cyclopropylalkan 1 ols with
Bromotrimethylsilane Zinc(ll) Bromide 340
35.2.1.5.3.4 Variations 4: Miscellaneous Reactions 341
35.2.1.5.4 Method 4: Cleavage of Alkyl Ethers 341
35.2.1.5.4.1 Variation 1: Reaction of Ethers with Hydrobromic Acid 341
35.2.1.5.4.2 Variation 2: Reaction of Ethers with 9 Bromo 9 borabicyclo[3.3.1]nonane 342
35.2.1.5.5 Method 5: Cleavage of Silyl Ethers 343
35.2.1.5.5.1 Variation 1: Reaction of Silyl Ethers with Triphenylphosphine Bromine 343
35.2.1.5.5.2 Variation 2: Reaction of Silyl Ethers with Triphenylphosphine/
2,4,4,6 Tetrabromocyclohexa 2,5 dienone 344
35.2.1.5.5.3 Variation 3: Reaction of Silyl Ethers with Triphenylphosphine Carbon
Tetrabromide 345
35.2.1.5.5.4 Variation 4: Reaction of Silyl Ethers with Boron Tribromide 346
35.2.1.5.6 Method 6: Substitution of Sulfonyloxy Groups 347
35.2.1.5.6.1 Variation 1: Reaction of Arenesulfonates with Metal Bromides 347
35.2.1.5.6.2 Variation 2: Reaction of Methanesulfonates with Metal Bromides 349
35.2.1.5.6.3 Variations 3: Miscellaneous Reactions 350
Table of Contents XXVII
35.2.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities
M. Braun
35.2.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities 355
35.2.1.6.1 Method 1: Preparation from Sulfides and Cyanogen Bromide or
from Selenides and Bromine 355
35.2.1.7 Synthesis by Substitution of Nitrogen Functionalities
M. Braun
35.2.1.7 Synthesis by Substitution of Nitrogen Functionalities 357
35.2.1.7.1 Method 1: Synthesis from Amines by the von Braun Reaction 357
35.2.1.7.2 Method 2: Synthesis from Amines via Diazonium Salts 358
35.2.1.8 Synthesis by Addition to re Type C C Bonds
K. M. Roy
35.2.1.8 Synthesis by Addition to n Type C C Bonds 361
35.2.1.8.1 Method 1: Hydrobromination of Alkynes or Allenes 362
35.2.1.8.2 Method 2: Hydrobromination of 1,3 Dienes 362
35.2.1.8.2.1 Variation 1: Using Hydrogen Bromide 362
35.2.1.8.2.2 Variation 2: Using Phosphorus Tribromide on Silica Gel 363
35.2.1.8.2.3 Variation 3: Via Hydrozirconation 363
35.2.1.8.3 Method 3: Hydrobromination of Symmetrical Alkenes and Cycloalkenes 364
35.2.1.8.4 Method 4: Hydrobromination of Unsymmetrical Alkenes
(MarkovnikovAddition) 364
35.2.1.8.4.1 Variation 1: Using Hydrogen Bromide 364
35.2.1.8.4.2 Variation 2: Using Phase Transfer Conditions 365
35.2.1.8.4.3 Variation 3: Using an Inorganic Support 366
35.2.1.8.5 Method5: Hydrobromination of Unsymmetrical Alkenes
(anti Markovnikov Addition) 367
35.2.1.8.5.1 Variation 1: Using Hydrogen Bromide and a Radical Source 367
35.2.1.8.5.2 Variation 2: Using Benzeneselenenyl Bromide and Hydrogen Peroxide • • • 368
35.2.1.8.5.3 Variation 3: Via Hydroboration 369
35J.1.8.5.4 Variation 4: Via Hydroalumination 369
35.2.1.8.5.5 Variation 5: Via Hydrozirconation 370
35.2.1.8.6 Method 6: Asymmetric Hydrobromination of Functionalized Alkenes •¦• 370
35.2.1.8.7 Method 7: Hydrobromination of Methylenecyclopropanes 371
35.2.1.8.7.1 Variation 1: Using Hydrogen Bromide 371
35J.1.8.7.2 Variation 2: Using Titanium(IV) Bromide 371
35.2.1.8.8 Method 8: Hydrobromination of Cyclopropanes 372
35.2.1.8.9 Method 9: Carbobromination 373
35.2.1.8.9.1 Variation 1: Bromocyclization 374
XXVIII Table of Contents
35.2.1.9 Synthesis from Other Bromo Compounds
H. Ulrich
35.2.1.9 Synthesis from Other Bromo Compounds 379
35.2.1.9.1 Method 1: Synthesis from Bromoalkynes by Hydrogenation 379
35.2.1.9.2 Method 2: Synthesis from Bromoalkenes 379
35.2.1.9.2.1 Variation 1: By Hydrogenation 379
35.2.1.9.2.2 Variation 2: By Polymerization 380
35.2.1.9.2.3 Variation 3: By Cycloaddition Reactions 380
35.2.1.9.3 Method 3: Synthesis from Bromocarbenes 383
35.2.1.9.4 Method 4: Synthesis from Bromoalkanes 384
35.2.1.9.4.1 Variation 1: By Insertion of Methylene into Carbon—Halogen Bonds 384
35.2.1.9.4.2 Variation 2: By Bromoalkylation 384
35.2.1.9.4.3 Variation 3: By Isomerization Reactions 384
35.2.2 Product Subclass 2: Propargylic Bromides
M. Braun
35.2.2 Product Subclass 2: Propargylic Bromides 387
35.2.2.1 Synthesis by Heteroatom Substitution 387
35.2.2.1.1 Method 1: Substitution of Hydroxy Croups 387
35.2.2.1.2 Method 2: Substitution of Sulfonyloxy Croups 389
35.2.3 Product Subclass 3: Benzylic Bromides
35.2.3.1 Synthesis by Substitution of Hydrogen
W. D. Pfeiffer
35.2.3.1 Synthesis by Substitution of Hydrogen 391
35.2.3.1.1 Method 1: Reaction with Bromine 391
35.2.3.1.1.1 Variation 1: Reaction with Bromine in the Absence of a Catalyst 391
35.2.3.1.1.2 Variation 2: Reaction with Bromine in the Presence of a Catalyst 393
35.2.3.1.2 Method 2: Reaction with Copper(ll) Bromide 395
35.2.3.1.3 Method 3: Reaction with Sodium Bromide and Hydrogen Peroxide 396
35.2.3.1.4 Method 4: Reaction with Ammonium Cerium(IV) Nitrate/Bromide or
Cobalt(lll) Acetate/Bromide 397
35.2.3.1.5 Method 5: Reaction with N Bromosuccinimide 398
35.2.3.1.6 Method 6: Reaction with Ammonium Type Bromides 402
35.2.3.1.6.1 Variation 1: Reaction with a Bromine Complex of
Poly(styrene co 4 vinylpyridine) 402
35.2.3.1.6.2 Variation 2: Reaction with Pyridinium Tribromide 403
35.2.3.1.6.3 Variation 3: Reaction with 3 Methylimidazolium Tribromide 404
35.2.3.1.7 Method 7: Reaction with Trichloromethanesulfonyl Bromide 405
35.2.3.1.8 Method 8: Reaction with Bromotrichloromethane 406
Table of Contents XXIX
35.2.3.1.9 Method 9: Reaction with Carbon Tetrabromide 406
35.2.3.1.10 Method 10: Reaction with 4 Bromo 2,4,6 tri tert butylhexa 2,5 dienone 407
35.2.3.2 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer
35.2.3.2 Synthesis by Substitution of Carbonyl Oxygen 409
35.2.3.2.1 Method 1: Bromomethylation of Arenes 409
35.2.3.2.1.1 Variation 1: Using Paraformaldehyde and Hydrogen Bromide 409
35.2.3.2.1.2 Variation 2: Using Paraformaldehyde, Hydrogen Bromide, and Ultrasound 411
35.2.3.2.1.3 Variation 3: Using 1,3,5 Trioxane and Hydrogen Bromide 412
35.2.3.2.2 Method 2: Alkylation of Arenes with 1,2 Dibromo 1 ethoxyethane 413
35.2.3.2.3 Method 3: Alkylation of Arenes with 1 (Bromomethoxy) 4 chlorobutane
or 1,4 Bis(bromomethoxy)butane 413
35.2.3.2.4 Method 4: Bromoalkylation of Arenealdehydes Using
Alkylboron Dibromides 414
35.2.3 3 Synthesis by Substitution of o Bonded Heteroatoms
M. Braun
35.2.3.3 Synthesis by Substitution of o Bonded Heteroatoms 417
35.2.3.3.1 Method 1: Substitution of Other Halogens 417
35.2.3.3.2 Method 2: Substitution of Oxygen Functionalities 418
35.2.4 Product Subclass 4: Allylic Bromides
35.2.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond
W. D. Pfeiffer
35.2.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond 423
35.2.4.1.1 Method 1: Allylic Bromination Using Bromine 423
35.2.4.1.2 Method 2: Allylic Bromination Using N Bromosuccinimide 424
35.2.4.1.2.1 Variation 1: Reactions with Aliphatic and Alicyclic Alkenes 424
35.2.4.1.2.2 Variation 2: Reactions with Unsaturated Esters, Nitriles, and Heterocycles 427
35.2.4.1.2.3 Variation 3: Reaction with Allyl(trimethyl)silane 429
35.2.4.1.2.4 Variation 4: Reactions with Isoprenoids 430
35.2.4.1.2.5 Variation 5: Reactions with Steroids 431
35.2.4.1.3 Method 3: Reactions with Halogenated N Bromoacetamides 432
XXX Table of Contents _^_™^_^^™^
35.2.4.2 Synthesis by Substitution of o Bonded Heteroatoms
M. Braun
35.2.4.2 Synthesis by Substitution of o Bonded Heteroatoms 435
35.2.4.2.1 Method 1: Substitution of Other Halogens 435
35.2.4.2.2 Method 2: Substitution of Oxygen Functionalities 435
35.2.5 Product Subclass 5:1 Bromo n Heteroatom Functionalized Alkanes
(n 2) with Both Functions Formed Simultaneously
35.2.5.1 Synthesis by Addition across C=C Bonds
T. Troll
35.2.5.1 Synthesis by Addition across C=C Bonds 439
35.2.5.1.1 Method 1: Bromination of Aromatic Compounds 440
35.2.5.1.2 Method 2: Bromination of 1,3 Dienes 441
35J.5.1.3 Method 3: Bromination of Alkenes 445
35.2.5.1.3.1 Variation 1: Bromination with Bromine Amine Complexes 464
35.2.5.1.3.2 Variation 2: Generation of Electrophilic Bromine by In Situ Oxidation
of Bromide 465
35.2.5.1.4 Method 4: Hydroxy and Alkoxybromination of Alkenes 471
35.2.5.1.5 Method 5: Sulfobromination of Alkenes 484
35.2.5.1.6 Method 6: Aminobromination of Alkenes 485
3S.2.5.U Method 7: Azidobromination of Alkenes 492
35.2.5.1.8 Method 8: Phosphobromination of Alkenes 493
35.2.5.2 Synthesis by Addition across C 0 Bonds
K. Riick Braun and T. Freysoldt
35.2.5.2 Synthesis by Addition across C O Bonds 503
35.2.5.2.1 Method 1: Hydrobromination of Epoxides Using Hydrogen Bromide — 504
35.2.5.2.2 Method 2: Hydrobromination of Epoxides Using Elemental Bromine — 505
35.2.5.2.3 Method 3: Hydrobromination of Epoxides Using Alkali Metal Bromides 506
35.2.5.2.3.1 Variation 1: Catalyzed by Lewis Acids 508
35.2.5.2.4 Method 4: Hydrobromination of Epoxides Using Magnesium Bromide 508
35.2.5.2.5 Method 5: Hydrobromination of Epoxides Using Tin(ll) Bromide 510
35.2.5.2.6 Method 6: Hydrobromination of Epoxides Using Bromo(imido)metal
Complexes 510
35.2.5.2.7 Method 7: Enantioselective Hydrobromination of Epoxides Using
Azidotrialkylsilanes and Ally! Bromide 511
35J.5.2.8 Method 8: Hydrobromination of Epoxides Using Boron Bromides 512
35.2.5.2.8.1 Variation 1: Enantioselective Transformations 513
35J.5.2.9 Method 9: Hydrobromination of Epoxides Using
Lithium Tetrabromocuprate(ll) 513
Table of Contents XXXI
35.2.5.2.10 Method 10: Hydrobromination of Epoxides Using
Lithium Tetrabromonickelate(ll) 514
35.2.5.2.11 Method 11: Hydrobromination of Epoxides Using Ammonium Bromides 514
35.2.5.2.12 Method 12: Hydrobromination of Epoxides Using Phosphorus Tribromide
or Phosphonium Bromides 515
35.2.5.2.13 Method 13: Hydrobromination of Tetrahydrofurans and Oxetanes 518
35.2.5.3 Synthesis by Addition across C S Bonds
K. Riick Braun and T. Freysoldt
35.2.5.3 Synthesis by Addition across C—S Bonds 523
35.2.5.3.1 Method 1: Hydrobromination of Thiiranes Using
Methanesulfenyl Bromide 523
35.2.5.3.2 Method 2: Hydrobromination of Thiiranes Using
Bromo(organo)stannanes 523
35.2.5.3.3 Method 3: Synthesis by Bromination of Thiiranes 524
35.2.5.4 Synthesis by Addition across C N Bonds
K. Ruck Braun and T. Freysoldt
35.2.5.4 Synthesis by Addition across C N Bonds 527
35.2.5.4.1 Method 1: Hydrobromination of Aziridines Using Hydrogen Bromide ¦¦• 527
35.2.5.4.2 Method 2: Hydrobromination of Aziridines Using Alkali Metal Bromides 528
35.2.5.4.3 Method 3: Hydrobromination of Aziridines Using Other Metal Bromides 529
35.2.5.4.4 Method 4: Hydrobromination of Aziridines Using
Tetraalkylammonium Bromides 531
35.2.5.4.5 Method 5: Hydrobromination of Aziridines with Bromotrimethylsilane 532
35.2.5.4.6 Method 6: Hydrobromination of Aziridines Using Activated
Dimethylformamide Complexes 532
35.2.5.4.7 Method 7: Hydrobromination of Aziridines Using Benzyl Bromides 533
35.2.5 5 Synthesis by Addition across C C Bonds
K. Riick Braun and T. Freysoldt
35.2.5.5 Synthesis by Addition across C C Bonds 535
35.2.5.5.1 Method 1: Bromination of Pentafluoro(vinyl)cyclopropanes 535
353 Product Class 3: One Saturated Carbon—Iodine Bond
35 J.i Product Subclass 1: lodoalkanes
E. Schaumann
35J.1 Product Subclass 1: lodoalkanes 537
XXXII Table of Contents
353.1.1 Synthesis by Substitution of Hydrogen
J. Hartung
353.1.1 Synthesis by Substitution of Hydrogen 541
353.1.1.1 Method 1: Alkane Functionalization in the Presence of
Polyiodomethanes and Sodium Hydroxide 542
353.1.1.2 Method 2: Alkane Functionalization in the Presence of
Nonafluoro 1 iodobutane 543
353.1.1.3 Method 3: Alkane Functionalization in the Presence of
tert Butyl Hypoiodite 544
353.1.1.4 Method 4: Alkane Functionalization in the Presence of
Iodine and (Diacetoxyiodo)benzene in Alcohols 545
353.1.1.5 Method 5: Alkane Functionalization with Iodine in the Presence of
Aluminum Triiodide and Tetrahalomethanes 546
353.1.2 Synthesis by Substitution of Metals
S. Hartinger and M. Hartinger
353.1.2 Synthesis by Substitution of Metals 549
353.1.2.1 Method 1: Synthesis from Compounds of the Alkali or
Alkaline Earth Metals 549
353.1.2.2 Method 2: Synthesis from Organomercury Compounds 553
353.1.2.3 Method 3: Synthesis from Organozinc Reagents 555
353.1.2.4 Method 4: Synthesis from Organostannane Compounds 557
353.1.2.5 Method 5: Synthesis from Organosilicon Compounds 558
353.1.2.6 Method 6: Synthesis from Organoboranes or
Organoaluminum Compounds 560
353.1.3 Synthesis by Substitution of Carbon Functionalities
S. Hartinger and M. Hartinger
353.1.3 Synthesis by Substitution of Carbon Functionalities 565
353.1.3.1 Method 1: Synthesis from Aliphatic Acids by Decarboxylation with
Hypervalent Iodine Compounds 565
353.1.3.2 Method 2: Synthesis from Aliphatic Acids by Decarboxylation with
tert Butyl Hypoiodite 567
353.1.3.3 Method 3: Synthesis from Aliphatic Acids by Decarboxylation with
Organic Peroxides 568
353.1.3.4 Method 4: Synthesis from N (Acyloxy)pyridine 2(1H) thiones by
Degradation 569
353.1.3.5 Method 5: Synthesis from Salts of Aliphatic Acids by Degradation
(Hunsdiecker Reaction) 571
353.1.3.5.1 Variation 1: Synthesis from Mercury(ll) Carboxylates of Aliphatic Acids •¦ 572
353.1.3.5.2 Variation 2: Synthesis from Lead(IV) Salts of Aliphatic Acids 573
353.1.3.6 Method 6: Synthesis from Aliphatic Esters or Acid Chlorides by
O Silylation 574
^ Table of Contents .„„_„., „.„„„„., XXXIII
35.3.1.3.7 Method 7: Synthesis from Aliphatic Peroxyacids and Hydroperoxides by
Degradation 575
35.3.1.4 Synthesis by Substitution of Other Halogens
S. Hartinger and M. Hartinger
353.1.4 Synthesis by Substitution of Other Halogens 579
353.1.4.1 Method 1: Synthesis from Chloro or Bromoalkanes with
Alkali Metal Iodides 579
353.1.4.2 Method 2: Synthesis from Chloro and Bromoalkanes under
Phase Transfer Catalysis 581
353.1.4.3 Method 3: Synthesis from Haloalkanes by Iodide Catalyzed
Exchange Reactions 582
353.1.4.4 Method 4: Synthesis from Haloalkanes with Hydriodic Acid 583
353.1.4.5 Method 5: Synthesis from Haloalkanes with lodosilanes 584
353.1.5 Synthesis by Substitution of Oxygen Functionalities
S. Hartinger
353.1.5 Synthesis by Substitution of Oxygen Functionalities 589
353.1.5.1 Method 1: Synthesis from Aliphatic Carbonyl Compounds or Acetals ¦•¦ 589
353.1.5.1.1 Variation 1: Reductive lodination with an Amine Borane Complex 590
353.1.5.1.2 Variation 2: Reductive lodination with Diiodosilane 591
353.1.5.1.3 Variation 3: Direct lodination of the Tetrahydropyran 2 yloxy Group 592
353.1.5.2 Method 2: Synthesis from Aliphatic Carboxylic Acid Esters 593
353.1.5.2.1 Variation 1: Cleavage with Hydriodic Acid 594
353.1.5.2.2 Variation 2: Metal Catalyzed lodinolysis 595
353.1.5.2.3 Variation 3: Cleavage of an Acyloxy or a Chloroalkyl Carbonate Group
with Metal Iodides 596
353.1.5.2.4 Variation 4: Cleavage of an Acyloxy, Formyloxy, or Carbamate Group
with lodotrimethylsilane 598
353.1.5.2.5 Variation 5: Reaction with lodomethane 599
353.1.5.2.6 Variation 6: Decarboxylation of a Chloroformate Group 600
353.1.5.3 Method 3: Synthesis from Cyclic Alcohols or Ketones, Lactols,
or Hydroxymethyl Substituted Cycloalkanes by
Isomerization and Fragmentation 601
353.1.5.3.1 Variation 1: Alkoxyl Radical Mediated Reactions 601
353.1.5.3.2 Variation 2: Ring Expanded Iodides by Wagner Meerwein Rearrangement 609
353.1.5.3.3 Variation 3: Ring Opening and Fragmentation Reactions of
Cyclopropyl Alcohols 610
353.1.5.3.4 Variation 4: Ring Opening Reactions of Cyclobutanones 612
353.1.5.4 Method 4: Synthesis from Ethers 613
353.1.5.4.1 Variation 1: Cleavage with Hydriodic Acid 613
353.1.5.4.2 Variation 2: Cleavage with Alkali Metal Iodides and Acids 615
353.1.5.4.3 Variation 3: lodinolysis with Borohydride Reagents 616
353.1.5.4.4 Variation 4: Cleavage with lodosilane Reagents 617
XXXIV Table of Contents _™_™_
353.1.5.4.5 Variation 5: Cleavage of a Trimethylsiloxy Group 619
353.1.5.4.6 Variation 6: Cleavage with Carboxylic Acid Iodides 620
35.3.1.5.4.7 Variation?: Activation with Metal Containing Lewis Acids 622
353.1.5.5 Method 5: Synthesis from Esters of Sulfur, Nitrogen,
or Phosphorus Oxyacids 623
353.1.5.5.1 Variation 1: Cleavage of a Sulfonyloxy Group with Metal Iodides 623
353.1.5.5.2 Variation 2: Phase Transfer Catalyzed Cleavage of a Sulfonyloxy Group ¦• 628
353.1.5.5.3 Variation 3: Nucleophilic Substitution in Ionic Liquids 631
35.3.1.5.5.4 Variation 4: Cleavage of Ammonioalkanesulfonate Esters 632
353.1.5.5.5 Variation 5: Cleavage of Dialkyl Sulfates 633
353.1.5.5.6 Variation 6: Cleavage of Esters or Amides of Mononuclear Oxyacids of
Phosphorus 633
353.1.5.6 Method 6: Synthesis from Alcohols 635
353.1.5.6.1 Variation 1: Direct lodinolysis 635
353.1.5.6.2 Variation 2: lodination with Hydriodic Acid 636
353.1.5.6.3 Variation 3: lodination with Metal Iodides and Acid as a Source of
Hydriodic Acid 638
353.1.5.6.4 Variation 4: lodination with Metal Iodides and
70% Hydrogen Fluoride/Pyridine 639
353.1.5.6.5 Variation 5: lodination with Metal Iodides 640
353.1.5.6.6 Variation 6: Iodine Transfer from Organic or Organometallic Iodides 642
353.1.5.6.7 Variation?: Activation with Diazolides 643
353.1.5.6.8 Variation 8: Activation with O Alkylisoureas 644
353.1.5.6.9 Variation 9: Activation with Alkoxyformamidinium Salts 646
353.1.5.6.10 Variation 10: Activation with Onium Salts of 2 Fluoroazaarenes 647
353.1.5.6.H Variation 11: lodination with Phosphorus and Iodine or
with Phosphorus Triiodide 648
353.1.5.6.12 Variation 12: Activation with Phosphite Esters or Phosphorus Amides 649
353.1.5.6.13 Variation 13: Activation with Phosphine Reagents 652
353.1.5.6.14 Variation 14: lodination with lodosilane Reagents 656
353.1.5.6.15 Variation 15: lodinolysis with Borane or Boronate Reagents 657
353.1.5.6.16 Variation 16: lodination in Ionic Liquids 659
353.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities
S. Hartinger and M. Hartinger
353.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities 673
353.1.6.1 Method 1: Reaction of Aliphatic Sulfur or Selenium Compounds with
Phosphine Reagents and Iodine 673
353.1.6.2 Method 2: Synthesis from Alkyl Sulfides via Formation of Sulfonium Salts 675
Table of Contents XXXV
353.1.7 Synthesis by Substitution of Nitrogen Functionalities
S. Hartinger and M. Hartinger
35.3.1.7 Synthesis by Substitution of Nitrogen Functionalities 679
353.1.7.1 Method 1: Synthesis from Alkylamines via Formation of
Trialkylammonium Salts 679
353.1.7.2 Method 2: Synthesis from Alkylamines via Pyrolysis of
1 Alkylpyridinium Salts 680
353.1.7.3 Method 3: Synthesis from Alkylamines via Formation of
N Alkyl N.N disulfonylamines 681
353.1.7.4 Method 4: Synthesis from Hydrazines by lodinolysis 682
353.1.7.5 Method 5: Synthesis from Nitroalkanes by Substitution 683
353.1.8 Synthesis by Addition to Ji Type C—C Bonds
K. M. Roy
353.1.8 Synthesis by Addition to Jt Type C C Bonds 685
353.1.8.1 Method!: Hydroiodination of 1,3 Dienes 685
353.1.8.1.1 Variation 1: Synthesis of 1 lodo 3 methylbut 2 ene with
Phosphorus Triiodide/Silica Gel 685
353.1.8.2 Method 2: Hydroiodination of Alkenes and Cycloalkenes
(Markovnikov Addition) 686
353.1.8.2.1 Variation 1: Synthesis Using Hydrogen Iodide 686
353.1.8.2.2 Variation 2: Surface Mediated Synthesis 687
353.1.8.3 Method 3: Hydroiodination of Alkenes and Cycloalkenes
(anti Markovnikov Addition) 688
353.1.8.3.1 Variation 1: Synthesis via Hydroboration 688
353.1.8.3.2 Variation 2: Synthesis via Hydroalumination 689
353.1.8.3.3 Variation 3: Synthesis via Hydrozirconation 690
353.1.8.4 Method 4: Hydroiodination of Methylenecyclopropanes 691
353.1.8.5 Method 5: Hydroiodination of Cyclopropanes 691
353.1.8.6 Method 6: Carboiodination 692
353.1.8.6.1 Variation 1: lodocyclization 693
353.1.9 Synthesis from Other lodo Compounds
H. Ulrich
353.1.9 Synthesis from Other lodo Compounds 697
353.1.9.1 Method 1: Synthesis from lodoalkynes 697
353.1.9.1.1 Variation 1: By Cycloaddition Reactions 697
353.1.9.2 Method 2: Synthesis from lodoalkenes 697
353.1.9.2.1 Variation 1: By Hydrogenation 697
353.1.9.2.2 Variation 2: By Polymerization 697
353.1.9.2.3 Variation 3: By Cycloaddition Reactions 698
353.1.9.3 Method 3: Synthesis from lodocarbenes 698
353.1.9.4 Method 4: Synthesis from lodoalkanes 699
XXXVI Table of Contents ._.
353.1.9.4.1 Variation 1: By lodoalkylation Reactions 699
353.1.9.4.2 Variation 2: By Isomerization Reactions 699
35.3.2 Product Subclass 2: Propargylic Iodides
S. Hartinger
353.2 Product Subclass 2: Propargylic Iodides 701
353.2.1 Synthesis of Product Subclass 2 701
353.2.1.1 Method 1: Chemoselective Substitution of Heteroatoms 701
353.2.1.2 Method 2: Modification of the Carbon Skeleton 702
353.3 Product Subclass 3: Benzylic Iodides
353.3.1 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer
353.3.1 Synthesis by Substitution of Carbonyl Oxygen 705
353.3.1.1 Method 1: Photochemical lodination at the Benzylic Position 705
353.3.1.2 Method 2: lodomethylation of an Arene Using Chloromethyl Methyl Ether
and Hydrogen Iodide 705
353.3.2 Substitution of o Bonded Heteroatoms
S. Hartinger and M. Hartinger
353.3.2 Substitution of o Bonded Heteroatoms 707
353.3.2.1 Method 1: Synthesis by Substitution of o Bonded Heteroatoms 707
353.4 Product Subclass 4: Alh/lic Iodides
S. Hartinger
353.4 Product Subclass 4: Allylk Iodides 711
353.4.1 Synthesis of Product Subclass 4 711
353.4.1.1 Method 1: Synthesis by Regioselective Substitution of Heteroatoms — 711
353.4.1.2 Method 2: Synthesis by Regioselective Addition to the Carbon Skeleton 712
Table of Contents XXXVII
35.3.5 Product Subclass 5:1 lodo n Heteroatom Functionalized Alkanes
(n 2) with Both Functions Formed Simultaneously
353.5.1 Synthesis by Addition across C=C Bonds
T. Troll
353.5.1 Synthesis by Addition across C=C Bonds 717
353.5.1.1 Method 1: lodination of Alkenes 717
353.5.1.2 Method 2: Hydroxy or Alkoxyiodination of Alkenes 718
353.5.1.2.1 Variation 1: Oxidation of Iodide by Hydrogen Peroxide 718
353.5.1.2.2 Variation 2: lodocyclization of Enols 719
353.5.1.2.3 Variation 3: lodination To Form lodo Acetates 720
353.5.1.2.4 Variation 4: lodohydrins Using Hypoiodous Acid 720
353.5.1.2.5 Variation 5: lodohydrins Using Hypervalent Iodine Compounds 722
353.5.1.2.6 Variation 6: lodohydrins Using /V lodosuccinimide 725
353.5.1.3 Method 3: lodosulfonation of Alkenes 729
353.5.1.4 Method 4: Azido and Aminoiodination of Alkenes 731
353.5.2 Synthesis by Addition across C O Bonds
K. Riick Braun and T. Freysoldt
353.5.2 Synthesis by Addition across C O Bonds 741
353.5.2.1 Method 1: Hydroiodination of Epoxides Using Hydrogen Iodide 741
353.5.2.2 Method 2: Hydroiodination of Epoxides Using Elemental Iodine 742
353.5.2.3 Method 3: Hydroiodination of Epoxides Using Alkali Metal Iodides 743
353.5.2.3.1 Variation 1: Catalyzed by Lewis Acids 745
353.5.2.4 Method 4: Hydroiodination of Epoxides Using Magnesium Iodide 746
353.5.2.5 Method 5: Enantioselective Hydroiodination of Epoxides Using
Trialkylazidosilanes and Allyl Iodide 747
353.5.2.6 Method 6: Hydroiodination of Epoxides Using Samarium(ll) Iodide 748
353.5.2.7 Method 7: Hydroiodination of Epoxides Using Phosphorus Iodides and
Phosphonium Iodides 749
353.5.2.8 Method 8: lodination of Epoxides and Other Cyclic Ethers 750
353.5.3 Synthesis by Addition across C—S Bonds
K. RCick Braun and T. Freysoldt
353.5.3 Synthesis by Addition across C S Bonds 753
353.5.3.1 Method 1: Synthesis by lodination of Thiiranes 753
XXXVIII Table of Contents
353.5.4 Synthesis by Addition across C—N Bonds
K. Ruck Braun and T. Freysoldt
35.3.5.4 Synthesis by Addition across C—N Bonds 757
353.5.4.1 Method 1: Hydroiodination of Aziridines Using Hydrogen Iodide 757
353.5.4.2 Method 2: Hydroiodination of Aziridines Using Alkali Metal Iodides 757
353.5.4.3 Method 3: Hydroiodination of Aziridines Using Other Metal Iodides — 759
353.5.4.4 Method 4: Hydroiodination of Aziridines Using Indium(lll) or
Zinc(ll) Iodide 759
353.5.4.5 Method 5: Hydroiodination of Aziridines Using Samarium(ll) Iodide — 760
353.5.4.6 Method 6: Hydroiodination of Aziridines Using lodotrimethylsilane 761
353.5.5 Synthesis by Addition across C—C Bonds
K. Ruck Braun and T. Freysoldt
353.5.5 Synthesis by Addition across C—C Bonds 763
353.5.5.1 Method 1: Ring Opening of Cyclopropanes Using Mercury(ll) Salts and
Iodine 763
353.5.5.2 Method 2: Ring Opening of Vinylcyclopropanes 764
353.5.5.3 Method 3: lodination of 1,1 Diacetylcyclopropane 765
Keyword Index 767
Author Index 805
Abbreviations 845 |
adam_txt |
XV
Table of Contents
Introduction
E. Schaumann
Introduction 1
35.1 Product Class 1: One Saturated Carbon—Chlorine Bond
35.1.1 Product Subclass 1: Chloroalkanes
E. Schaumann
35.1.1 Product Subclass 1: Chloroalkanes 15
35.1.1.1 Synthesis by Substitution of Hydrogen
J. Hartung
35.1.1.1 Synthesis by Substitution of Hydrogen 19
35.1.1.1.1 Alkanes and Cycloalkanes 21
35.1.1.1.1.1 Method 1: Reactions with Molecular Chlorine 21
35.1.1.1.1.2 Method 2: Reactions with Sulfuryl Chloride 23
35.1.1.1.1.3 Method 3: Reactions with Trichloromethanesulfonyl Chloride 24
35.1.1.1.1.4 Method 4: Reactions with Trichloromethanesulfenyl Chloride 25
35.1.1.1.1.5 Method 5: Chlorination Reagents Containing an O—CI Bond 26
35.1.1.1.1.5.1 Variation 1: tert Butyl Hypochlorite as Chlorine Atom Donor 26
35.1.1.1.1.5.2 Variation 2: Chlorination with Chlorine Monoxide 26
35.1.1.1.1.6 Method 6: Reactions with Chloroamines 27
35.1.1.1.1.7 Method 7: Chlorination with Phosphorus Pentachloride 28
35.1.1.1.1.8 Method 8: Chlorination Reagents Containing an I—Cl Bond 28
35.1.1.1.1.8.1 Variation 1: (Dichloroiodo)benzene as Chlorine Atom Donor 28
35.1.1.1.1.8.2 Variation 2: Iodine Trichloride as Chlorine Atom Donor 29
35.1.1.1.1.9 Method 9: Chlorination with Carbon Tetrachloride in the Presence of
Transition Metal Carbonyl Complexes 29
35.1.1.1.2 Haloalkanes and Halocycloalkanes 30
35.1.1.1.2.1 Method 1: Reactions with Molecular Chlorine 30
35.1.1.1.3 Alcohols 31
35.1.1.1.3.1 Method 1: Reactions with Molecular Chlorine 31
35.1.1.1.3.2 Method 2: Reactions with Chloroamines 32
35.1.1.1.4 Ethers 32
35.1.1.1.4.1 Method 1: Reactions with Molecular Chlorine 32
35.1.1.1.4.2 Method 2: Reactions with Hypohalites 34
35.1.1.1.4.3 Method 3: Chlorination with (Dichloroiodo)arenes 35
XVI Table of Contents
35.1.1.1.4.4 Method 4: Reactions with Phosphorus Pentachloride 36
35.1.1.1.5 Aldehydes 36
35.1.1.1.5.1 Method 1: Reactions with Sulfuryl Chloride 36
35.1.1.1.5.2 Method 2: Reactions with N Chlorosuccinimide 37
35.1.1.1.6 Ketones 37
35.1.1.1.6.1 Method 1: Reactions with Molecular Chlorine 37
35.1.1.1.6.2 Method 2: Reactions with Manganese(lll) Acetate and Lithium Chloride 38
35.1.1.1.6.3 Method 3: Chlorination with Sulfuryl Chloride 39
35.1.1.1.7 Carboxylic Acids and Derivatives 39
35.1.1.1.7.1 Method 1: Reactions with Molecular Chlorine 39
35.1.1.1.7.2 Method 2: Reactions with Sulfuryl Chloride 41
35.1.1.U.3 Method 3: Reactions with Chloroamines 42
35.1.1.1.8 Amines 43
35.1.1.1.8.1 Method 1: Reactions with Molecular Chlorine 43
35.1.1.2 Synthesis by Substitution of Metals
P. Margaretha
35.1.1.2 Synthesis by Substitution of Metals 47
35.1.1.2.1 Method 1: Synthesis from Organo Croup 15 Derivatives 47
35.1.1.2.2 Method 2: Synthesis from Trialkylboranes 47
35.1.1.3 Synthesis by Substitution of Carbon Functionalities
P. Margaretha
35.1.1.3 Synthesis by Substitution of Carbon Functionalities 49
35.1.1.3.1 Method 1: Decarbonylation of Acyl Chlorides 49
35.1.1.3.2 Method 2: Chlorodecarboxylation of the Heavy Metal Salts of
Carboxylic Acids 49
35.1.1.3.3 Method 3: Chlorodecarboxylation of Carboxylic Acids by Lead(IV) Acetate 50
35.1.1.3.3.1 Variation 1: Chlorodecarboxylation in the Presence of Lithium Chloride ¦•• 51
35.1.1.3.3.2 Variation 2: Chlorodecarboxylation in the Presence of N Chlorosuccinimide 52
35.1.1.3.4 Method 4: Chlorodecarboxylation of 1 (Acyloxy)pyridine 2(1H) thiones •• 53
35.1.1.4 Synthesis by Substitution of Other Halogens
P. Margaretha
35.1.1.4 Synthesis by Substitution of Other Halogens 59
35.1.1.4.1 Method 1: Substitution of Bromine 59
35.1.1.4.2 Method 2: Substitution of Bromine or Iodine 60
Table of Contents XVII
35.1.1 5 Synthesis by Substitution of Oxygen Functionalities
P. Margaretha
35.1.15 Synthesis by Substitution of Oxygen Functionalities 63
35.1.1.5.1 Method 1: Decarboxylation of Chloroformates 63
35.1.1.5.2 Method 2: Synthesis from Alkanesulfonates and a Source of Chloride Ion 64
35.1.1.5.2.1 Variation 1: Using Lithium Chloride 64
35.1.1.5.2.2 Variation 2: Using Sodium or Potassium Chloride 65
35.1.1.5.2.3 Variation 3: Using Calcium Chloride 65
35.1.1.5.2.4 Variation 4: Using Pyridinium Hydrochloride 66
35.1.1.5.2.5 Variation 5: Using Tetraalkylammonium Chlorides 66
35.1.1.5.3 Method 3: Synthesis from Alkyl Xanthates (O Alkyldithiocarbonates) or
from Thionocarbonates (O,0 Dialkylthiocarbonates) 67
35.1.1.5.4 Method 4: Replacement of an Alcoholic Hydroxy Croup with
Hydrogen Chloride or a Metal Halide 68
35.1.1.5.4.1 Variation 1: Using Hydrochloric Acid or Hydrogen Chloride 68
35.1.1.5.4.2 Variation 2: Using Sodium Chloride 69
35.1.1.5.4.3 Variation 3: Using Tin(IV) Chloride 70
35.1.1.5.5 Method 5: Replacement of an Alcoholic Hydroxy Group with
Thionyl Chloride 70
35.1.1.5.5.1 Variation 1: In an Inert Solvent in the Absence of a Base 71
35.1.1.5.5.2 Variation 2: In the Absence of a Solvent 72
35.1.1.5.5.3 Variation 3: In the Presence of an Equimolar Amount of Pyridine 72
35.1.1.5.5.4 Variation 4: In the Presence of an Equimolar Amount of IH Benzotriazole 73
35.1.1.5.5.5 Variation 5: In the Presence of Excess Triethylamine 74
35.1.1.5.6 Method 6: Replacement of an Alcoholic Hydroxy Croup with
Selenium Tetrachloride 75
35.1.1.5.7 Method 7: Replacement of an Alcoholic Hydroxy Group with Chlorides of
Phosphoric Acid and Related Compounds 76
35.1.1.5.7.1 Variation 1: Using Phosphorus Pentachloride 76
35.1.1.5.7.2 Variation 2: Using Phosphoryl Chloride 77
35.1.1.5.8 Method 8: Replacement of an Alcoholic Hydroxy Group via
Oxyphosphonium Intermediates 78
35.1.1.5.8.1 Variation 1: Using Triphenylphosphine and Tetrachloromethane 79
35.1.1.5.8.2 Variation 2: Using Triphenylphosphine/2,3 Dichloro 5,6 dicyanobenzo
1,4 quinone and a Quaternary Ammonium Chloride 81
35.1.1.5.8.3 Variation 3: Using Triphenylphosphine and Cyclic N Chloroimides 82
35.1.1.5.8.4 Variation 4: Using Triphenylphosphine and Dichloroselenuranes 83
35.1.1.5.8.5 Variation 5: Using Triphenylphosphine, Diethyl Azodicarboxylate,
and Zinc(ll) Chloride 84
35.1.1.5.9 Method 9: Replacement of an Alcoholic Hydroxy Group with
Acetyl Chloride 84
35.1.1.5.10 Method 10: Replacement of an Alcoholic Hydroxy Group with Chloro
methylenedimethyliminium Chloride and Related Reagents 85
35.1.1.5.11 Method 11: Replacement of an Alcoholic Hydroxy Group with
tert Butyl Chloride in an Ionic Liquid 90
XVIII Table of Contents
35.1.1.5.12 Method 12: Replacement of an Alcoholic Hydroxy Croup with
Chlorotrimethylsilane 90
35.1.1.5.12.1 Variation 1: In the Absence of Catalyst 90
35.1.1.5.12.2 Variation 2: In the Presence of Selenium Dioxide 91
35.1.1.5.12.3 Variation 3: In the Presence of Dimethyl Sulfoxide 91
35.1.1.5.12.4 Variation 4: In the Presence of Bismuth(lll) Chloride 92
35.1.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities
P. Margaretha
35.1.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities 95
35.1.1.6.1 Method 1: Chloroalkanes from Alkyl Phenyl Tellurides 95
35.1.1.7 Synthesis by Substitution of Nitrogen Functionalities
P. Margaretha
35.1.1.7 Synthesis by Substitution of Nitrogen Functionalities 99
35.1.1.7.1 Method 1: Synthesis from Primary Aliphatic Amines 99
35.1.1.7.2 Method 2: Synthesis from Tertiary Aliphatic Amines 99
35.1.1.7.3 Method 3: Synthesis from N Alkyl Substituted Amides 100
35.1.1.7.4 Method 4: Synthesis from N Alkyl N tosylhydrazines 100
35.1.1.8 Synthesis by Addition to n Type C—C Bonds
K. M. Roy
35.1.1.8 Synthesis by Addition to rr Type C—C Bonds 103
35.1.1.8.1 Method 1: Hydrochlorination of Alkynes or Allenes 103
35.1.1.8.1.1 Variation 1: Preparation of 4 Chlorobuta 1,2 diene from But 1 en 3 yne 103
35.1.1.8.2 Method 2: Hydrochlorination of Polyenes 104
35.1.1.8.2.1 Variation 1: Conversion of Natural and Synthetic Rubbers 104
35.1.1.8.3 Method 3: Hydrochlorination of 1,3 Dienes 104
35.1.1.8.3.1 Variation 1: Using Hydrogen Chloride 104
35.1.1.8.3.2 Variation 2: Synthesis of 1 Chloro 3 methylbut 2 ene Using
Thionyl Chloride/Silica Gel 105
35.1.1.8.4 Method 4: Hydrochlorination of Symmetrical Alkenes and Cycloalkenes 106
35.1.1.8.5 Method 5: Hydrochlorination of Unsymmetrical Alkenes and
Cycloalkenes (Markovnikov Addition) 106
35.1.1.8.5.1 Variation 1: Synthesis with Aqueous Hydrogen Chloride 107
35.1.1.8.5.2 Variation 2: Synthesis under Phase Transfer Conditions 108
35.1.1.8.5.3 Variation 3: Synthesis Using an Inorganic Support 108
35.1.1.8.6 Method 6: Hydrochlorination of Unsymmetrical Alkenes and
Cycloalkenes (anti Markovnikov Addition) 108
35.1.1.8.6.1 Variation 1: Synthesis via Hydroboration 109
35.1.1.8.6.2 Variation 2: Synthesis via Hydroalumination 110
35.1.1.8.7 Method 7: Enantioselective Hydrochlorination Reactions 110
35.1.1.8.8 Method 8: Hydrochlorination of Methylenecyclopropanes 111
Table of Contents XIX
35.1.1.8.8.1 Variation 1: Synthesis with Hydrogen Chloride 111
35.1.1.8.8.2 Variation 2: Synthesis with Metal Chlorides 112
35.1.1.8.9 Method 9: Hydrochlorination of Cyclopropanes 112
35.1.1.8.10 Method 10: Carbochlorination 113
35.1.1.9 Synthesis from Other Chlorine Compounds
H. Ulrich
35.1.1.9 Synthesis from Other Chlorine Compounds 117
35.1.1.9.1 Method 1: Synthesis from Chloroalkynes by Hydrogenation 117
35.1.1.9.2 Method 2: Synthesis from Chloroalkenes 117
35.1.1.9.2.1 Variation 1: By Hydrogenation 117
35.1.1.9.2.2 Variation 2: By Polymerization 118
35.1.1.9.2.3 Variation 3: Coupling Reactions 120
35.1.1.9.2.4 Variation 4: [2+ 2] Cycloaddition Reactions 120
35.1.1.9.2.5 Variation 5: [2+ 3] Cycloaddition Reactions 125
35.1.1.9.2.6 Variation 6: [2+4] Cycloaddition Reactions 126
35.1.1.9.3 Method 3: Synthesis from Chlorocarbenes 127
35.1.1.9.4 Method 4: Synthesis from Chloroalkanes 129
35.1.1.9.4.1 Variation 1: By Insertion of Methylene into C CI Bonds 129
35.1.1.9.4.2 Variation 2: Chloroalkylation Reactions 129
35.1.1.9.4.3 Variation 3: By Isomerization Reactions 130
35.1.1.9.4.4 Variation 4: Elimination of Benzeneseleninic Acid 130
35.1.2 Product Subclass 2: Propargylic Chlorides
P. Margaretha
35.1.2 Product Subclass 2: Propargylic Chlorides 133
35.1.2.1 Synthesis by Heteroatom Substitution 133
35.1.2.1.1 Synthesis by Deoxidative Halogenation of Ketones 133
35.1.2.1.1.1 Method 1: Addition of Chlorodimethylsilane to Ketones 133
35.1.2.1.2 Synthesis by Substitution of o Bonded Heteroatoms 134
35.1.2.1.2.1 Method 1: Synthesis from Propargylic Alcohols and Hydrochloric Acid 134
35.1.2.1.2.1.1 Variation 1: Chlorination Using Hydrochloric Acid, Calcium Chloride,
Copper(l) Chloride, and Copper Metal 134
35.1.2.1.2.1.2 Variation 2: Chlorination Using Gaseous Hydrogen Chloride 135
35.1.2.1.2.2 Method 2: Synthesis from Propargylic Alcohols and Thionyl Chloride ¦ ¦ ¦ 136
35.1.2.1.2.3 Method 3: Synthesis from Propargylic Alcohols and
1 Chloro N,/V,2 trimethylprop 1 en 1 amine 136
XX Table of Contents
35.1.3 Product Subclass 3: Benzylic Chlorides
35.1.3.1 Synthesis by Substitution of Hydrogen
W. D. Pfeiffer
35.1.3.1 Synthesis by Substitution of Hydrogen 139
35.1.3.1.1 Method 1: Reaction with Chlorine under Irradiation 139
35.1.3.1.2 Method 2: Reaction with Chlorine and a Catalyst 141
35.1.3.1.3 Method 3: Reaction with Liquid Chlorine 142
35.1.3.1.4 Method 4: Reaction with Benzyltrimethylammonium Tetrachloroiodate 143
35.1.3.1.5 Method 5: Reaction with tert Butyl Hypochlorite 144
35.1.3.1.6 Method 6: Reaction with Sulfuryl Chloride and a Catalyst 144
35.1.3.1.7 Method 7: Reaction with Benzenesulfonyl Chloride 146
35.1.3.1.8 Method 8: Reaction with Trichloromethanesulfonyl Chloride 147
35.1.3.1.9 Method 9: Reaction with N Chlorosuccinimide 147
35.1.3.1.10 Method 10: Reaction with 1,3,5 Trichloro 1,3,5 triazine 2,4,6(1H,3H,5H)
trione (Trichloroisocyanuric Acid) 149
35.1.3.1.11 Method 11: Reaction with Ammonium Cerium(IV) Nitrate Lithium
Chloride or Cobalt(lll) Acetate Lithium Chloride 149
35.1.3.1.12 Method 12: Reaction with Phosphorus Pentachloride 150
35.1.3.1.13 Method 13: Reaction with Phosphoryl Chloride 151
35.1.3.1.14 Method 14: Reaction with Trichloroacetyl Chloride, Chloroacetyl Chloride,
Benzoyl Chloride, or Ethyl Chloroformate 151
35.1.3.1.15 Method 15: Reaction with Trichloromethyl Chloroformate or
Bis(trichloromethyl) Carbonate 152
35.1.3.2 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer
35.1.3.2 Synthesis by Substitution of Carbonyl Oxygen 155
35.1.3.2.1 Method 1: Chloroalkylation with Aldehydes 155
35.1.3.2.1.1 Variation 1: Chloromethylation with Paraformaldehyde and
Hydrogen Chloride 155
35.1.3.2.1.2 Variation 2: Chloromethylation with Formaldehyde and
Hydrogen Chloride 158
35.1.3.2.1.3 Variation 3: Chloromethylation with 1,3,5 Trioxane 159
35.1.3.2.1.4 Variation 4: Chloroalkylation with Acetaldehyde 159
35.1.3.2.2 Method 2: Chloromethylation with Chloromethyl Methyl Ether or
Bis(chloromethyl) Ether 160
35.1.3.2.3 Method 3: Chloromethylation with Methoxyacetyl Chloride and
Aluminum Trichloride 161
35.1.3.2.4 Method 4: Chloromethylation with 1 Chloro 4 (chloromethoxy)butane or
1,4 Bis(chloromethoxy)butane 162
35.1.3.2.5 Method 5: Chloroalkylation of Arenecarbaldehydes Using
Alkylboron Dichlorides in the Presence of Oxygen 162
Table of Contents XXI
35.1.3.3 Synthesis by Substitution of o Bonded Heteroatoms
P. Margaretha
35.1.3.3 Synthesis by Substitution of o Bonded Heteroatoms 167
35.1.3.3.1 Benzylic Chlorides from Other Benzylic Halides 167
35.1.3.3.1.1 Method 1: Benzylic Chlorides from Benzylic Bromides Using
Tin(IV) Chloride 167
35.1.3.3.2 Benzylic Chlorides from Benzylic Alcohols 167
35.1.3.3.2.1 Method 1: Synthesis Using Thionyl Chloride 168
35.1.3.3.2.2 Method 2: Synthesis Using 4 Toluenesulfonyl Chloride 168
35.1.3.3.2.3 Method 3: Synthesis Using Carbon Tetrachloride 169
35.1.3.3.2.4 Method 4: Synthesis Using Silica Chloride 169
35.1.3.3.2.5 Method 5: Synthesis Using Chlorotrimethylsilane 170
35.1.3.3.2.5.1 Variation 1: With Tellurium Dioxide 170
35.1.3.3.2.5.2 Variation 2: With Dimethyl Sulfoxide 171
35.1.3.3.3 Benzylic Chlorides from Benzylic Ethers 171
35.1.3.3.3.1 Method 1: Cleavage with Zinc and Acetyl Chloride 171
35.1.4 Product Subclass 4: Allylic Chlorides
35.1.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond
W. D. Pfeiffer
35.1.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond 173
35.1.4.1.1 Method 1: Reaction with Chlorine 173
35.1.4.1.2 Method 2: Reaction with Hypochlorous Acid 174
35.1.4.1.3 Method 3: Reaction with Chlorine Monoxide 175
35.1.4.1.4 Method 4: Reaction with tert Butyl Hypochlorite 176
35.1.4.1.5 Method 5: Reaction with N Chloro A/ cyclohexylbenzenesulfonamide ••• 177
35.1.4.1.6 Method 6: Reaction with N Chlorosuccinimide 177
35.1.4.1.7 Method 7: Reaction with a Vilsmeier Reagent and Hydrogen Peroxide •¦ 178
35.1.4.1.8 Method 8: Synthesis by Electrochemical Chlorination 179
35.1.4.2 Synthesis by Substitution of o Bonded Heteroatoms
P. Margaretha
35.1.4.2 Synthesis by Substitution of o Bonded Heteroatoms 181
35.1.4.2.1 Methodi: Allylic Chlorides from Other Allylic Halides 181
35.1.4.2.2 Method 2: Allylic Chlorides from Allylic Alcohols 181
35.1.4.2.2.1 Variation 1: With Thionyl Chloride 182
35.1.4.2.2.2 Variation 2: With Methanesulfonyl Chloride 182
35.1.4.2.2.3 Variation 3: With N Chlorosuccinimide and Dimethyl Sulfide 183
XXII Table of Contents
35.1.4.2.2.4 Variation 4: With Carbon Tetrachloride or Hexachloroacetone and
Triphenylphosphine 183
35.1.4.2.2.5 Variation 5: With 1 Chloro N,N,2 trimethylprop 1 enylamine 185
35.1.4.2.2.6 Variation 6: With Chlorotrimethylsilane in the Presence of
Bismuth(lll) Chloride 186
35.1.4.2.2.7 Variation 7: Allylic Chlorides from Allylic Phosphates 186
35.1.4.2.3 Method 3: Allylic Chlorides from Allyloxybenzenes 187
35.1.S Product Subclass 5:1 Chloro n Heteroatom Functionalized Alkanes
(n 2) with Both Functions Formed Simultaneously
35.1.S.1 Synthesis by Addition across C=C Bonds
R. Cottlich
35.1.5.1 Synthesis by Addition across C=C Bonds 189
35.1.5.1.1 Method 1: Chlorination of Arenes 189
35.1.5.1.2 Method 2: Chlorination of Alkenes 192
35.1.5.1.2.1 Variation 1: Using Chlorine 192
35.1.5.1.2.2 Variation 2: Using Sulfuryl Chloride 198
35.1.5.1.2.3 Variation 3: Using Other Reagents 200
35.1.5.1.3 Method 3: Bromochlorination of Alkenes •••' 203
35.1.5.1.4 Method 4: lodochlorination of Alkenes 206
35.1.5.1.5 Method 5: Fluorochlorination of Alkenes 208
35.1.5.1.6 Method 6: Oxychlorination of Alkenes 210
35.1.5.1.6.1 Variation 1: Intermolecular Addition 210
35.1.5.1.6.2 Variation 2: Intramolecular Cyclization 215
35.1.5.1.7 Method 7: Sulfochlorination of Alkenes 219
35.1.5.1.8 Method 8: Selenochlorination of Alkenes 223
35.1.5.1.9 Method 9: Tellurochlorination of Alkenes 227
35.1.5.1.10 Method 10: Aminochlorination of Alkenes 228
35.1.5.1.10.1 Variation 1: Intermolecular Additions 228
35.1.5.1.10.2 Variation 2: Intramolecular Cyclization 238
35.1.5.1.11 Methodii: Phosphochlorination of Alkenes 242
35.1.5.2 Synthesis by Addition across C O Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.2 Synthesis by Addition across C 0 Bonds 251
35.1.5.2.1 Method 1: Hydrochlorination of Epoxides Using Hydrogen Chloride — 251
35.1.5.2.2 Method 2: Hydrochlorination of Epoxides Using Elemental Chlorine • • • • 252
35.1.5.2.3 Method 3: Hydrochlorination of Epoxides Using Alkali Metal Chlorides 253
35.1.5.2.4 Method 4: Hydrochlorination of Epoxides Using Chloro(imido)metal
Complexes 254
35.1.5.2.5 Method 5: Hydrochlorination of Epoxides Using Silicon Tetrachloride • • • 254
35.1.5.2.5.1 Variation 1: Enantioselective Transformations and Desymmetrization ¦ ¦ • • 255
Table of Contents XXIII
35.1.5.2.6 Method 6: Hydrochlorination of Epoxides UsingTrialkylchlorosilanes ¦•¦ 256
35.1.5.2.7 Method 7: Hydrochlorination of Epoxides Using Chloroorganostannanes 258
35.1.5.2.8 Method 8: Hydrochlorination of Epoxides Using Organoaluminum
Chlorides 259
35.1.5.2.9 Method 9: Hydrochlorination of Epoxides Using Lithium
Tetrachlorocuprate(ll) 260
35.1.5.2.10 Method 10: Hydrochlorination of Epoxides Using Niobium(V) Chloride ¦•¦ 260
35.1.5.2.11 Method 11: Hydrochlorination of Epoxides Using Titanium(IV) Chloride 261
35.1.5.2.12 Method 12: Hydrochlorination of Epoxides Using Cerium(lll) Chloride — 262
35.1.5.2.13 Method 13: Hydrochlorination of Epoxides Using Tetraalkylammonium
Chlorides 262
35.1.5.2.14 Method 14: Hydrochlorination of Epoxides Using Phosphorus Chlorides,
Phosphonium Chlorides, Thionyl Chloride, and Related
Compounds 263
35.1.5.2.15 Method 15: Hydrochlorination of Epoxides Using Chlorocarbonylated
Compounds 265
35.1.5.2.16 Method 16: Hydrochlorination of Tetrahydrofurans and
Other Cyclic Ethers 266
35.1.5 3 Synthesis by Addition across C S Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.3 Synthesis by Addition across C S Bonds 271
35.1.5.3.1 Method 1: Hydrochlorination of Thiiranes Using Hydrogen Chloride — 271
35.1.5.3.2 Method 2: Hydrochlorination of Thiiranes by Reaction of Thiirane
1 Oxides with Chloro(organo)stannanes 271
35.1.5.3.3 Method 3: Hydrochlorination of Thiiranes Using Chlorocarbonylated
Compounds 272
35.1.5.3.4 Method 4: Synthesis by Chlorination of Thiiranes 273
35.1.5.4 Synthesis by Addition across C—N Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.4 Synthesis by Addition across C N Bonds 275
35.1.5.4.1 Method 1: Hydrochlorination of Aziridines Using Hydrogen Chloride •¦• 275
35.1.5.4.2 Method 2: Hydrochlorination of Aziridines Using Alkali Metal Chlorides 276
35.1.5.4.3 Method 3: Hydrochlorination of Aziridines Using Other Metal Chlorides 277
35.1.5.4.4 Method 4: Hydrochlorination of Aziridines Using Chlorotrimethylsilane 278
35.1.5.4.5 Method 5: Hydrochlorination of Aziridines Using Activated
Dimethylformamide Complexes 278
35.1.5.5 Synthesis by Addition across C C Bonds
K. Ruck Braun and T. Freysoldt
35.1.5.5 Synthesis by Addition across C C Bonds 281
35.1.5.5.1 Methodi: Chlorination of 1,1 Diacetylcyclopropane 281
XXIV Table of Contents
3S.2 Product Class 2: One Saturated Carbon—Bromine Bond
35.2.1 Product Subclass 1: Bromoalkanes
E. Schaumann
35.2.1 Product Subclass 1: Bromoalkanes 283
35.2.1.1 Synthesis by Substitution of Hydrogen
J. Hartung
35.2.1.1 Synthesis by Substitution of Hydrogen 287
35.2.1.1.1 Alkanes and Cycloalkanes 288
35.2.1.1.1.1 Method 1: Bromination with Bromine 288
35.2.1.1.1.2 Method 2: Reaction with tert Butyl Hypobromite 290
35.2.1.1.1.3 Method 3: Brominating Reagents Containing a C—Br Bond 291
35.2.1.1.1.3.1 Variation 1: Carbon Tetrabromide as Bromine Atom Donor 291
35.2.1.1.1.3.2 Variation 2: Bromotrichloromethane as Bromine Atom Donor 291
35.2.1.1.2 Haloalkanes and Halocycloalkanes 292
35.2.1.1.2.1 Method 1: Bromination with Bromine 292
35.2.1.1.3 Aldehydes and Ketones 293
35.2.1.1.3.1 Method 1: Bromination with Bromine 293
35.2.1.1.3.2 Method 2: Reaction with Bromomalonates 294
35.2.1.1.4 Carboxylic Acids and Carboxylic Acid Derivatives 294
35.2.1.1.4.1 Method 1: Bromination with Bromine 294
35.2.1.1.4.2 Method 2: Bromination with N Bromosuccinimide 295
35.2.1.1.5 Isocyanates and Isothiocyanates 296
35.2.1.1.5.1 Method 1: Bromination with N Bromosuccinimide 296
35.2.1.1.6 Alkylboranes and Alkylsilanes 297
35.2.1.1.6.1 Method 1: Bromination with Bromine 297
35.2.1.1.6.2 Method 2: Bromination with N Bromosuccinimide 298
35.2.1.1.7 Carbohydrates 298
35.2.1.1.7.1 Method 1: Bromination with Bromine 298
35.2.1.1.7.2 Method 2: Bromination with N Bromosuccinimide 299
35.2.1 2 Synthesis by Substitution of Metals
P. Margaretha
35.2.1.2 Synthesis by Substitution of Metals 301
35.2.1.2.1 Method 1: Bromoalkanes from Organo Group 15 Derivatives 301
35.2.1.2.2 Method 2: Bromoalkanes from Trialkylboranes 301
Table of Contents XXV
35.2.1.3 Substitution of Carbon Functionalities
P. Margaretha
35.2.1.3 Substitution of Carbon Functionalities 303
35.2.1.3.1 Method 1: Decarbonylation of Acyl Bromides 303
35.2.1.3.2 Method 2: Bromodecarboxylation of Heavy Metal Salts of
Carboxylic Acids 303
35.2.1.3.2.1 Variation 1: Bromodecarboxylation of Silver(l) Carboxylates 303
35.2.1.3.2.2 Variation 2: Bromodecarboxylation of Thallium(l) Carboxylates 304
35.2.1.3.3 Method 3: Bromodecarboxylation of Carboxylic Acids 305
35.2.1.3.3.1 Variation 1: Bromodecarboxylation of Carboxylic Acids in the Presence of
Mercury(ll) Oxide 306
35.2.1.3.3.2 Variation 2: Bromodecarboxylation of Carboxylic Acids with
(Diacetoxyiodo)benzene and Bromine 306
35.2.1.3.4 Method 4: Bromodecarboxylation of A/ (Acyloxy)pyridine 2(1H) thiones 307
35.2.1.4 Synthesis by Substitution of Other Halogens
M. Braun
35.2.1.4 Synthesis by Substitution of Other Halogens 313
35.2.1.4.1 Method 1: Substitution of Fluorine 313
35.2.1.4.1.1 Variation 1: Reaction with Aqueous Hydrogen Bromide 313
35.2.1.4.1.2 Variation 2: Reactions with Lewis Acids 314
35.2.1.4.2 Method 2: Substitution of Chlorine 314
35.2.1.4.2.1 Variation 1: Reaction of Chloroalkanes with Aqueous Hydrogen Bromide 315
35.2.1.4.2.2 Variation 2: Reactions of Chloroalkanes with Gaseous Hydrogen Bromide
in the Presence of Iron(lll) Bromide 315
35.2.1.4.2.3 Variation 3: Reactions of Chloroalkanes with Metal Bromides and
a Phase Transfer Catalyst 317
35.2.1.4.2.4 Variation 4: Reactions of Chloroalkanes with Bromoalkanes in
the Presence of Alkali Metal Bromides 318
35.2.1.4.3 Method 3: Substitution of Iodine 320
35.2.1.4.3.1 Variation 1: Reactions of lodoalkanes with Bromine 320
35.2.1.4.3.2 Variation 2: Reactions of lodoalkanes with Hypervalent lodo Compounds 320
35.2.1.4.3.3 Variation 3: Reactions of lodoalkanes with Bismuth(lll) Bromide 321
35.2.1.5 Synthesis by Substitution of Oxygen Functionalities
M. Braun
35.2.1.5 Synthesis by Substitution of Oxygen Functionalities 323
35.2.1.5.1 Method 1: Substitution of Acyloxy Groups in Carboxylic Esters 323
3U.1.5.1.1 Variation 1: Reaction of Carboxylic Esters with Hydrogen Bromide 323
35.2.1.5.1.2 Variation 2: Reaction of Carboxylic Esters with Bromotrimethylsilane — 324
35.2.1.5.1.3 Variation 3: Reaction of Carboxylic Esters with Bromine and Phosphorus 325
3U.1.5.1.4 Variation 4: Reaction of Carboxylic Esters with
Triphenylphosphine Bromine 326
XXVI Table of Contents _
35.2.1.5.2 Method 2: Substitution of Alcoholic Hydroxy Groups 326
35.2.1.5.2.1 Variation 1: Reaction of Alcohols with Aqueous Hydrobromic Acid 326
35.2.1.5.2.2 Variation 2: Reaction of Alcohols with Hydrobromic Acid/Sulfuric Acid ••¦ 328
35.2.1.5.2.3 Variation 3: Reaction of Alcohols with Gaseous Hydrogen Bromide 328
35.2.1.5.2.4 Variation 4: Reaction of Alcohols with Phosphorus Tribromide 329
35.2.1.5.2.5 Variation 5: Reaction of Alcohols with Polymer Bound Phosphorus
Tribromide 330
35.2.1.5.2.6 Variation 6: Reaction of Alcohols with Phosphorus Tribromide and Pyridine 331
35.2.1.5.2.7 Variation 7: Reaction of Alcohols with Triphenylphosphine Bromine 331
35.2.1.5.2.8 Variation 8: Reaction of Alcohols with Triphenylphosphine Carbon
Tetrabromide and Related Reagents 333
35.2.1.5.2.9 Variation 9: Reaction of Alcohols with Triphenylphosphine
N Bromosuccinimide 334
35.2.1.5.2.10 Variation 10: Reaction of Alcohols with Triphenyl Phosphite Bromine 335
35.2.1.5.2.11 Variation 11: Reaction of Alcohols with Bromotrimethylsilane 335
35.2.1.5.2.12 Variation 12: Preparation of Bromoalkanes from Alcohols by
a Modified Mitsunobu Procedure 336
35.2.1.5.2.13 Variations 13: Miscellaneous Reactions 337
35.2.1.5.3 Method 3: Substitution of Alcohols with Isomerization 337
35.2.1.5.3.1 Variation 1: Reaction of 1 Cyclopropylalkan 1 ols with Hydrogen Bromide 338
35.2.1.5.3.2 Variation 2: Reaction of 1 Cyclopropylalkan 1 ols with
Magnesium Bromide 339
35.2.1.5.3.3 Variation 3: Reaction of 1 Cyclopropylalkan 1 ols with
Bromotrimethylsilane Zinc(ll) Bromide 340
35.2.1.5.3.4 Variations 4: Miscellaneous Reactions 341
35.2.1.5.4 Method 4: Cleavage of Alkyl Ethers 341
35.2.1.5.4.1 Variation 1: Reaction of Ethers with Hydrobromic Acid 341
35.2.1.5.4.2 Variation 2: Reaction of Ethers with 9 Bromo 9 borabicyclo[3.3.1]nonane 342
35.2.1.5.5 Method 5: Cleavage of Silyl Ethers 343
35.2.1.5.5.1 Variation 1: Reaction of Silyl Ethers with Triphenylphosphine Bromine 343
35.2.1.5.5.2 Variation 2: Reaction of Silyl Ethers with Triphenylphosphine/
2,4,4,6 Tetrabromocyclohexa 2,5 dienone 344
35.2.1.5.5.3 Variation 3: Reaction of Silyl Ethers with Triphenylphosphine Carbon
Tetrabromide 345
35.2.1.5.5.4 Variation 4: Reaction of Silyl Ethers with Boron Tribromide 346
35.2.1.5.6 Method 6: Substitution of Sulfonyloxy Groups 347
35.2.1.5.6.1 Variation 1: Reaction of Arenesulfonates with Metal Bromides 347
35.2.1.5.6.2 Variation 2: Reaction of Methanesulfonates with Metal Bromides 349
35.2.1.5.6.3 Variations 3: Miscellaneous Reactions 350
Table of Contents XXVII
35.2.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities
M. Braun
35.2.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities 355
35.2.1.6.1 Method 1: Preparation from Sulfides and Cyanogen Bromide or
from Selenides and Bromine 355
35.2.1.7 Synthesis by Substitution of Nitrogen Functionalities
M. Braun
35.2.1.7 Synthesis by Substitution of Nitrogen Functionalities 357
35.2.1.7.1 Method 1: Synthesis from Amines by the von Braun Reaction 357
35.2.1.7.2 Method 2: Synthesis from Amines via Diazonium Salts 358
35.2.1.8 Synthesis by Addition to re Type C C Bonds
K. M. Roy
35.2.1.8 Synthesis by Addition to n Type C C Bonds 361
35.2.1.8.1 Method 1: Hydrobromination of Alkynes or Allenes 362
35.2.1.8.2 Method 2: Hydrobromination of 1,3 Dienes 362
35.2.1.8.2.1 Variation 1: Using Hydrogen Bromide 362
35.2.1.8.2.2 Variation 2: Using Phosphorus Tribromide on Silica Gel 363
35.2.1.8.2.3 Variation 3: Via Hydrozirconation 363
35.2.1.8.3 Method 3: Hydrobromination of Symmetrical Alkenes and Cycloalkenes 364
35.2.1.8.4 Method 4: Hydrobromination of Unsymmetrical Alkenes
(MarkovnikovAddition) 364
35.2.1.8.4.1 Variation 1: Using Hydrogen Bromide 364
35.2.1.8.4.2 Variation 2: Using Phase Transfer Conditions 365
35.2.1.8.4.3 Variation 3: Using an Inorganic Support 366
35.2.1.8.5 Method5: Hydrobromination of Unsymmetrical Alkenes
(anti Markovnikov Addition) 367
35.2.1.8.5.1 Variation 1: Using Hydrogen Bromide and a Radical Source 367
35.2.1.8.5.2 Variation 2: Using Benzeneselenenyl Bromide and Hydrogen Peroxide • • • 368
35.2.1.8.5.3 Variation 3: Via Hydroboration 369
35J.1.8.5.4 Variation 4: Via Hydroalumination 369
35.2.1.8.5.5 Variation 5: Via Hydrozirconation 370
35.2.1.8.6 Method 6: Asymmetric Hydrobromination of Functionalized Alkenes •¦• 370
35.2.1.8.7 Method 7: Hydrobromination of Methylenecyclopropanes 371
35.2.1.8.7.1 Variation 1: Using Hydrogen Bromide 371
35J.1.8.7.2 Variation 2: Using Titanium(IV) Bromide 371
35.2.1.8.8 Method 8: Hydrobromination of Cyclopropanes 372
35.2.1.8.9 Method 9: Carbobromination 373
35.2.1.8.9.1 Variation 1: Bromocyclization 374
XXVIII Table of Contents
35.2.1.9 Synthesis from Other Bromo Compounds
H. Ulrich
35.2.1.9 Synthesis from Other Bromo Compounds 379
35.2.1.9.1 Method 1: Synthesis from Bromoalkynes by Hydrogenation 379
35.2.1.9.2 Method 2: Synthesis from Bromoalkenes 379
35.2.1.9.2.1 Variation 1: By Hydrogenation 379
35.2.1.9.2.2 Variation 2: By Polymerization 380
35.2.1.9.2.3 Variation 3: By Cycloaddition Reactions 380
35.2.1.9.3 Method 3: Synthesis from Bromocarbenes 383
35.2.1.9.4 Method 4: Synthesis from Bromoalkanes 384
35.2.1.9.4.1 Variation 1: By Insertion of Methylene into Carbon—Halogen Bonds 384
35.2.1.9.4.2 Variation 2: By Bromoalkylation 384
35.2.1.9.4.3 Variation 3: By Isomerization Reactions 384
35.2.2 Product Subclass 2: Propargylic Bromides
M. Braun
35.2.2 Product Subclass 2: Propargylic Bromides 387
35.2.2.1 Synthesis by Heteroatom Substitution 387
35.2.2.1.1 Method 1: Substitution of Hydroxy Croups 387
35.2.2.1.2 Method 2: Substitution of Sulfonyloxy Croups 389
35.2.3 Product Subclass 3: Benzylic Bromides
35.2.3.1 Synthesis by Substitution of Hydrogen
W. D. Pfeiffer
35.2.3.1 Synthesis by Substitution of Hydrogen 391
35.2.3.1.1 Method 1: Reaction with Bromine 391
35.2.3.1.1.1 Variation 1: Reaction with Bromine in the Absence of a Catalyst 391
35.2.3.1.1.2 Variation 2: Reaction with Bromine in the Presence of a Catalyst 393
35.2.3.1.2 Method 2: Reaction with Copper(ll) Bromide 395
35.2.3.1.3 Method 3: Reaction with Sodium Bromide and Hydrogen Peroxide 396
35.2.3.1.4 Method 4: Reaction with Ammonium Cerium(IV) Nitrate/Bromide or
Cobalt(lll) Acetate/Bromide 397
35.2.3.1.5 Method 5: Reaction with N Bromosuccinimide 398
35.2.3.1.6 Method 6: Reaction with Ammonium Type Bromides 402
35.2.3.1.6.1 Variation 1: Reaction with a Bromine Complex of
Poly(styrene co 4 vinylpyridine) 402
35.2.3.1.6.2 Variation 2: Reaction with Pyridinium Tribromide 403
35.2.3.1.6.3 Variation 3: Reaction with 3 Methylimidazolium Tribromide 404
35.2.3.1.7 Method 7: Reaction with Trichloromethanesulfonyl Bromide 405
35.2.3.1.8 Method 8: Reaction with Bromotrichloromethane 406
Table of Contents XXIX
35.2.3.1.9 Method 9: Reaction with Carbon Tetrabromide 406
35.2.3.1.10 Method 10: Reaction with 4 Bromo 2,4,6 tri tert butylhexa 2,5 dienone 407
35.2.3.2 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer
35.2.3.2 Synthesis by Substitution of Carbonyl Oxygen 409
35.2.3.2.1 Method 1: Bromomethylation of Arenes 409
35.2.3.2.1.1 Variation 1: Using Paraformaldehyde and Hydrogen Bromide 409
35.2.3.2.1.2 Variation 2: Using Paraformaldehyde, Hydrogen Bromide, and Ultrasound 411
35.2.3.2.1.3 Variation 3: Using 1,3,5 Trioxane and Hydrogen Bromide 412
35.2.3.2.2 Method 2: Alkylation of Arenes with 1,2 Dibromo 1 ethoxyethane 413
35.2.3.2.3 Method 3: Alkylation of Arenes with 1 (Bromomethoxy) 4 chlorobutane
or 1,4 Bis(bromomethoxy)butane 413
35.2.3.2.4 Method 4: Bromoalkylation of Arenealdehydes Using
Alkylboron Dibromides 414
35.2.3 3 Synthesis by Substitution of o Bonded Heteroatoms
M. Braun
35.2.3.3 Synthesis by Substitution of o Bonded Heteroatoms 417
35.2.3.3.1 Method 1: Substitution of Other Halogens 417
35.2.3.3.2 Method 2: Substitution of Oxygen Functionalities 418
35.2.4 Product Subclass 4: Allylic Bromides
35.2.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond
W. D. Pfeiffer
35.2.4.1 Synthesis by Substitution of Hydrogen a to a C=C Bond 423
35.2.4.1.1 Method 1: Allylic Bromination Using Bromine 423
35.2.4.1.2 Method 2: Allylic Bromination Using N Bromosuccinimide 424
35.2.4.1.2.1 Variation 1: Reactions with Aliphatic and Alicyclic Alkenes 424
35.2.4.1.2.2 Variation 2: Reactions with Unsaturated Esters, Nitriles, and Heterocycles 427
35.2.4.1.2.3 Variation 3: Reaction with Allyl(trimethyl)silane 429
35.2.4.1.2.4 Variation 4: Reactions with Isoprenoids 430
35.2.4.1.2.5 Variation 5: Reactions with Steroids 431
35.2.4.1.3 Method 3: Reactions with Halogenated N Bromoacetamides 432
XXX Table of Contents _^_™^_^^™^
35.2.4.2 Synthesis by Substitution of o Bonded Heteroatoms
M. Braun
35.2.4.2 Synthesis by Substitution of o Bonded Heteroatoms 435
35.2.4.2.1 Method 1: Substitution of Other Halogens 435
35.2.4.2.2 Method 2: Substitution of Oxygen Functionalities 435
35.2.5 Product Subclass 5:1 Bromo n Heteroatom Functionalized Alkanes
(n 2) with Both Functions Formed Simultaneously
35.2.5.1 Synthesis by Addition across C=C Bonds
T. Troll
35.2.5.1 Synthesis by Addition across C=C Bonds 439
35.2.5.1.1 Method 1: Bromination of Aromatic Compounds 440
35.2.5.1.2 Method 2: Bromination of 1,3 Dienes 441
35J.5.1.3 Method 3: Bromination of Alkenes 445
35.2.5.1.3.1 Variation 1: Bromination with Bromine Amine Complexes 464
35.2.5.1.3.2 Variation 2: Generation of Electrophilic Bromine by In Situ Oxidation
of Bromide 465
35.2.5.1.4 Method 4: Hydroxy and Alkoxybromination of Alkenes 471
35.2.5.1.5 Method 5: Sulfobromination of Alkenes 484
35.2.5.1.6 Method 6: Aminobromination of Alkenes 485
3S.2.5.U Method 7: Azidobromination of Alkenes 492
35.2.5.1.8 Method 8: Phosphobromination of Alkenes 493
35.2.5.2 Synthesis by Addition across C 0 Bonds
K. Riick Braun and T. Freysoldt
35.2.5.2 Synthesis by Addition across C O Bonds 503
35.2.5.2.1 Method 1: Hydrobromination of Epoxides Using Hydrogen Bromide — 504
35.2.5.2.2 Method 2: Hydrobromination of Epoxides Using Elemental Bromine — 505
35.2.5.2.3 Method 3: Hydrobromination of Epoxides Using Alkali Metal Bromides 506
35.2.5.2.3.1 Variation 1: Catalyzed by Lewis Acids 508
35.2.5.2.4 Method 4: Hydrobromination of Epoxides Using Magnesium Bromide 508
35.2.5.2.5 Method 5: Hydrobromination of Epoxides Using Tin(ll) Bromide 510
35.2.5.2.6 Method 6: Hydrobromination of Epoxides Using Bromo(imido)metal
Complexes 510
35.2.5.2.7 Method 7: Enantioselective Hydrobromination of Epoxides Using
Azidotrialkylsilanes and Ally! Bromide 511
35J.5.2.8 Method 8: Hydrobromination of Epoxides Using Boron Bromides 512
35.2.5.2.8.1 Variation 1: Enantioselective Transformations 513
35J.5.2.9 Method 9: Hydrobromination of Epoxides Using
Lithium Tetrabromocuprate(ll) 513
Table of Contents XXXI
35.2.5.2.10 Method 10: Hydrobromination of Epoxides Using
Lithium Tetrabromonickelate(ll) 514
35.2.5.2.11 Method 11: Hydrobromination of Epoxides Using Ammonium Bromides 514
35.2.5.2.12 Method 12: Hydrobromination of Epoxides Using Phosphorus Tribromide
or Phosphonium Bromides 515
35.2.5.2.13 Method 13: Hydrobromination of Tetrahydrofurans and Oxetanes 518
35.2.5.3 Synthesis by Addition across C S Bonds
K. Riick Braun and T. Freysoldt
35.2.5.3 Synthesis by Addition across C—S Bonds 523
35.2.5.3.1 Method 1: Hydrobromination of Thiiranes Using
Methanesulfenyl Bromide 523
35.2.5.3.2 Method 2: Hydrobromination of Thiiranes Using
Bromo(organo)stannanes 523
35.2.5.3.3 Method 3: Synthesis by Bromination of Thiiranes 524
35.2.5.4 Synthesis by Addition across C N Bonds
K. Ruck Braun and T. Freysoldt
35.2.5.4 Synthesis by Addition across C N Bonds 527
35.2.5.4.1 Method 1: Hydrobromination of Aziridines Using Hydrogen Bromide ¦¦• 527
35.2.5.4.2 Method 2: Hydrobromination of Aziridines Using Alkali Metal Bromides 528
35.2.5.4.3 Method 3: Hydrobromination of Aziridines Using Other Metal Bromides 529
35.2.5.4.4 Method 4: Hydrobromination of Aziridines Using
Tetraalkylammonium Bromides 531
35.2.5.4.5 Method 5: Hydrobromination of Aziridines with Bromotrimethylsilane 532
35.2.5.4.6 Method 6: Hydrobromination of Aziridines Using Activated
Dimethylformamide Complexes 532
35.2.5.4.7 Method 7: Hydrobromination of Aziridines Using Benzyl Bromides 533
35.2.5 5 Synthesis by Addition across C C Bonds
K. Riick Braun and T. Freysoldt
35.2.5.5 Synthesis by Addition across C C Bonds 535
35.2.5.5.1 Method 1: Bromination of Pentafluoro(vinyl)cyclopropanes 535
353 Product Class 3: One Saturated Carbon—Iodine Bond
35 J.i Product Subclass 1: lodoalkanes
E. Schaumann
35J.1 Product Subclass 1: lodoalkanes 537
XXXII Table of Contents
353.1.1 Synthesis by Substitution of Hydrogen
J. Hartung
353.1.1 Synthesis by Substitution of Hydrogen 541
353.1.1.1 Method 1: Alkane Functionalization in the Presence of
Polyiodomethanes and Sodium Hydroxide 542
353.1.1.2 Method 2: Alkane Functionalization in the Presence of
Nonafluoro 1 iodobutane 543
353.1.1.3 Method 3: Alkane Functionalization in the Presence of
tert Butyl Hypoiodite 544
353.1.1.4 Method 4: Alkane Functionalization in the Presence of
Iodine and (Diacetoxyiodo)benzene in Alcohols 545
353.1.1.5 Method 5: Alkane Functionalization with Iodine in the Presence of
Aluminum Triiodide and Tetrahalomethanes 546
353.1.2 Synthesis by Substitution of Metals
S. Hartinger and M. Hartinger
353.1.2 Synthesis by Substitution of Metals 549
353.1.2.1 Method 1: Synthesis from Compounds of the Alkali or
Alkaline Earth Metals 549
353.1.2.2 Method 2: Synthesis from Organomercury Compounds 553
353.1.2.3 Method 3: Synthesis from Organozinc Reagents 555
353.1.2.4 Method 4: Synthesis from Organostannane Compounds 557
353.1.2.5 Method 5: Synthesis from Organosilicon Compounds 558
353.1.2.6 Method 6: Synthesis from Organoboranes or
Organoaluminum Compounds 560
353.1.3 Synthesis by Substitution of Carbon Functionalities
S. Hartinger and M. Hartinger
353.1.3 Synthesis by Substitution of Carbon Functionalities 565
353.1.3.1 Method 1: Synthesis from Aliphatic Acids by Decarboxylation with
Hypervalent Iodine Compounds 565
353.1.3.2 Method 2: Synthesis from Aliphatic Acids by Decarboxylation with
tert Butyl Hypoiodite 567
353.1.3.3 Method 3: Synthesis from Aliphatic Acids by Decarboxylation with
Organic Peroxides 568
353.1.3.4 Method 4: Synthesis from N (Acyloxy)pyridine 2(1H) thiones by
Degradation 569
353.1.3.5 Method 5: Synthesis from Salts of Aliphatic Acids by Degradation
(Hunsdiecker Reaction) 571
353.1.3.5.1 Variation 1: Synthesis from Mercury(ll) Carboxylates of Aliphatic Acids •¦ 572
353.1.3.5.2 Variation 2: Synthesis from Lead(IV) Salts of Aliphatic Acids 573
353.1.3.6 Method 6: Synthesis from Aliphatic Esters or Acid Chlorides by
O Silylation 574
^ Table of Contents .„„_„., „.„„„„., XXXIII
35.3.1.3.7 Method 7: Synthesis from Aliphatic Peroxyacids and Hydroperoxides by
Degradation 575
35.3.1.4 Synthesis by Substitution of Other Halogens
S. Hartinger and M. Hartinger
353.1.4 Synthesis by Substitution of Other Halogens 579
353.1.4.1 Method 1: Synthesis from Chloro or Bromoalkanes with
Alkali Metal Iodides 579
353.1.4.2 Method 2: Synthesis from Chloro and Bromoalkanes under
Phase Transfer Catalysis 581
353.1.4.3 Method 3: Synthesis from Haloalkanes by Iodide Catalyzed
Exchange Reactions 582
353.1.4.4 Method 4: Synthesis from Haloalkanes with Hydriodic Acid 583
353.1.4.5 Method 5: Synthesis from Haloalkanes with lodosilanes 584
353.1.5 Synthesis by Substitution of Oxygen Functionalities
S. Hartinger
353.1.5 Synthesis by Substitution of Oxygen Functionalities 589
353.1.5.1 Method 1: Synthesis from Aliphatic Carbonyl Compounds or Acetals ¦•¦ 589
353.1.5.1.1 Variation 1: Reductive lodination with an Amine Borane Complex 590
353.1.5.1.2 Variation 2: Reductive lodination with Diiodosilane 591
353.1.5.1.3 Variation 3: Direct lodination of the Tetrahydropyran 2 yloxy Group 592
353.1.5.2 Method 2: Synthesis from Aliphatic Carboxylic Acid Esters 593
353.1.5.2.1 Variation 1: Cleavage with Hydriodic Acid 594
353.1.5.2.2 Variation 2: Metal Catalyzed lodinolysis 595
353.1.5.2.3 Variation 3: Cleavage of an Acyloxy or a Chloroalkyl Carbonate Group
with Metal Iodides 596
353.1.5.2.4 Variation 4: Cleavage of an Acyloxy, Formyloxy, or Carbamate Group
with lodotrimethylsilane 598
353.1.5.2.5 Variation 5: Reaction with lodomethane 599
353.1.5.2.6 Variation 6: Decarboxylation of a Chloroformate Group 600
353.1.5.3 Method 3: Synthesis from Cyclic Alcohols or Ketones, Lactols,
or Hydroxymethyl Substituted Cycloalkanes by
Isomerization and Fragmentation 601
353.1.5.3.1 Variation 1: Alkoxyl Radical Mediated Reactions 601
353.1.5.3.2 Variation 2: Ring Expanded Iodides by Wagner Meerwein Rearrangement 609
353.1.5.3.3 Variation 3: Ring Opening and Fragmentation Reactions of
Cyclopropyl Alcohols 610
353.1.5.3.4 Variation 4: Ring Opening Reactions of Cyclobutanones 612
353.1.5.4 Method 4: Synthesis from Ethers 613
353.1.5.4.1 Variation 1: Cleavage with Hydriodic Acid 613
353.1.5.4.2 Variation 2: Cleavage with Alkali Metal Iodides and Acids 615
353.1.5.4.3 Variation 3: lodinolysis with Borohydride Reagents 616
353.1.5.4.4 Variation 4: Cleavage with lodosilane Reagents 617
XXXIV Table of Contents _™_™_
353.1.5.4.5 Variation 5: Cleavage of a Trimethylsiloxy Group 619
353.1.5.4.6 Variation 6: Cleavage with Carboxylic Acid Iodides 620
35.3.1.5.4.7 Variation?: Activation with Metal Containing Lewis Acids 622
353.1.5.5 Method 5: Synthesis from Esters of Sulfur, Nitrogen,
or Phosphorus Oxyacids 623
353.1.5.5.1 Variation 1: Cleavage of a Sulfonyloxy Group with Metal Iodides 623
353.1.5.5.2 Variation 2: Phase Transfer Catalyzed Cleavage of a Sulfonyloxy Group ¦• 628
353.1.5.5.3 Variation 3: Nucleophilic Substitution in Ionic Liquids 631
35.3.1.5.5.4 Variation 4: Cleavage of Ammonioalkanesulfonate Esters 632
353.1.5.5.5 Variation 5: Cleavage of Dialkyl Sulfates 633
353.1.5.5.6 Variation 6: Cleavage of Esters or Amides of Mononuclear Oxyacids of
Phosphorus 633
353.1.5.6 Method 6: Synthesis from Alcohols 635
353.1.5.6.1 Variation 1: Direct lodinolysis 635
353.1.5.6.2 Variation 2: lodination with Hydriodic Acid 636
353.1.5.6.3 Variation 3: lodination with Metal Iodides and Acid as a Source of
Hydriodic Acid 638
353.1.5.6.4 Variation 4: lodination with Metal Iodides and
70% Hydrogen Fluoride/Pyridine 639
353.1.5.6.5 Variation 5: lodination with Metal Iodides 640
353.1.5.6.6 Variation 6: Iodine Transfer from Organic or Organometallic Iodides 642
353.1.5.6.7 Variation?: Activation with Diazolides 643
353.1.5.6.8 Variation 8: Activation with O Alkylisoureas 644
353.1.5.6.9 Variation 9: Activation with Alkoxyformamidinium Salts 646
353.1.5.6.10 Variation 10: Activation with Onium Salts of 2 Fluoroazaarenes 647
353.1.5.6.H Variation 11: lodination with Phosphorus and Iodine or
with Phosphorus Triiodide 648
353.1.5.6.12 Variation 12: Activation with Phosphite Esters or Phosphorus Amides 649
353.1.5.6.13 Variation 13: Activation with Phosphine Reagents 652
353.1.5.6.14 Variation 14: lodination with lodosilane Reagents 656
353.1.5.6.15 Variation 15: lodinolysis with Borane or Boronate Reagents 657
353.1.5.6.16 Variation 16: lodination in Ionic Liquids 659
353.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities
S. Hartinger and M. Hartinger
353.1.6 Synthesis by Substitution of Sulfur, Selenium,
or Tellurium Functionalities 673
353.1.6.1 Method 1: Reaction of Aliphatic Sulfur or Selenium Compounds with
Phosphine Reagents and Iodine 673
353.1.6.2 Method 2: Synthesis from Alkyl Sulfides via Formation of Sulfonium Salts 675
Table of Contents XXXV
353.1.7 Synthesis by Substitution of Nitrogen Functionalities
S. Hartinger and M. Hartinger
35.3.1.7 Synthesis by Substitution of Nitrogen Functionalities 679
353.1.7.1 Method 1: Synthesis from Alkylamines via Formation of
Trialkylammonium Salts 679
353.1.7.2 Method 2: Synthesis from Alkylamines via Pyrolysis of
1 Alkylpyridinium Salts 680
353.1.7.3 Method 3: Synthesis from Alkylamines via Formation of
N Alkyl N.N disulfonylamines 681
353.1.7.4 Method 4: Synthesis from Hydrazines by lodinolysis 682
353.1.7.5 Method 5: Synthesis from Nitroalkanes by Substitution 683
353.1.8 Synthesis by Addition to Ji Type C—C Bonds
K. M. Roy
353.1.8 Synthesis by Addition to Jt Type C C Bonds 685
353.1.8.1 Method!: Hydroiodination of 1,3 Dienes 685
353.1.8.1.1 Variation 1: Synthesis of 1 lodo 3 methylbut 2 ene with
Phosphorus Triiodide/Silica Gel 685
353.1.8.2 Method 2: Hydroiodination of Alkenes and Cycloalkenes
(Markovnikov Addition) 686
353.1.8.2.1 Variation 1: Synthesis Using Hydrogen Iodide 686
353.1.8.2.2 Variation 2: Surface Mediated Synthesis 687
353.1.8.3 Method 3: Hydroiodination of Alkenes and Cycloalkenes
(anti Markovnikov Addition) 688
353.1.8.3.1 Variation 1: Synthesis via Hydroboration 688
353.1.8.3.2 Variation 2: Synthesis via Hydroalumination 689
353.1.8.3.3 Variation 3: Synthesis via Hydrozirconation 690
353.1.8.4 Method 4: Hydroiodination of Methylenecyclopropanes 691
353.1.8.5 Method 5: Hydroiodination of Cyclopropanes 691
353.1.8.6 Method 6: Carboiodination 692
353.1.8.6.1 Variation 1: lodocyclization 693
353.1.9 Synthesis from Other lodo Compounds
H. Ulrich
353.1.9 Synthesis from Other lodo Compounds 697
353.1.9.1 Method 1: Synthesis from lodoalkynes 697
353.1.9.1.1 Variation 1: By Cycloaddition Reactions 697
353.1.9.2 Method 2: Synthesis from lodoalkenes 697
353.1.9.2.1 Variation 1: By Hydrogenation 697
353.1.9.2.2 Variation 2: By Polymerization 697
353.1.9.2.3 Variation 3: By Cycloaddition Reactions 698
353.1.9.3 Method 3: Synthesis from lodocarbenes 698
353.1.9.4 Method 4: Synthesis from lodoalkanes 699
XXXVI Table of Contents ._.
353.1.9.4.1 Variation 1: By lodoalkylation Reactions 699
353.1.9.4.2 Variation 2: By Isomerization Reactions 699
35.3.2 Product Subclass 2: Propargylic Iodides
S. Hartinger
353.2 Product Subclass 2: Propargylic Iodides 701
353.2.1 Synthesis of Product Subclass 2 701
353.2.1.1 Method 1: Chemoselective Substitution of Heteroatoms 701
353.2.1.2 Method 2: Modification of the Carbon Skeleton 702
353.3 Product Subclass 3: Benzylic Iodides
353.3.1 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer
353.3.1 Synthesis by Substitution of Carbonyl Oxygen 705
353.3.1.1 Method 1: Photochemical lodination at the Benzylic Position 705
353.3.1.2 Method 2: lodomethylation of an Arene Using Chloromethyl Methyl Ether
and Hydrogen Iodide 705
353.3.2 Substitution of o Bonded Heteroatoms
S. Hartinger and M. Hartinger
353.3.2 Substitution of o Bonded Heteroatoms 707
353.3.2.1 Method 1: Synthesis by Substitution of o Bonded Heteroatoms 707
353.4 Product Subclass 4: Alh/lic Iodides
S. Hartinger
353.4 Product Subclass 4: Allylk Iodides 711
353.4.1 Synthesis of Product Subclass 4 711
353.4.1.1 Method 1: Synthesis by Regioselective Substitution of Heteroatoms — 711
353.4.1.2 Method 2: Synthesis by Regioselective Addition to the Carbon Skeleton 712
Table of Contents XXXVII
35.3.5 Product Subclass 5:1 lodo n Heteroatom Functionalized Alkanes
(n 2) with Both Functions Formed Simultaneously
353.5.1 Synthesis by Addition across C=C Bonds
T. Troll
353.5.1 Synthesis by Addition across C=C Bonds 717
353.5.1.1 Method 1: lodination of Alkenes 717
353.5.1.2 Method 2: Hydroxy or Alkoxyiodination of Alkenes 718
353.5.1.2.1 Variation 1: Oxidation of Iodide by Hydrogen Peroxide 718
353.5.1.2.2 Variation 2: lodocyclization of Enols 719
353.5.1.2.3 Variation 3: lodination To Form lodo Acetates 720
353.5.1.2.4 Variation 4: lodohydrins Using Hypoiodous Acid 720
353.5.1.2.5 Variation 5: lodohydrins Using Hypervalent Iodine Compounds 722
353.5.1.2.6 Variation 6: lodohydrins Using /V lodosuccinimide 725
353.5.1.3 Method 3: lodosulfonation of Alkenes 729
353.5.1.4 Method 4: Azido and Aminoiodination of Alkenes 731
353.5.2 Synthesis by Addition across C O Bonds
K. Riick Braun and T. Freysoldt
353.5.2 Synthesis by Addition across C O Bonds 741
353.5.2.1 Method 1: Hydroiodination of Epoxides Using Hydrogen Iodide 741
353.5.2.2 Method 2: Hydroiodination of Epoxides Using Elemental Iodine 742
353.5.2.3 Method 3: Hydroiodination of Epoxides Using Alkali Metal Iodides 743
353.5.2.3.1 Variation 1: Catalyzed by Lewis Acids 745
353.5.2.4 Method 4: Hydroiodination of Epoxides Using Magnesium Iodide 746
353.5.2.5 Method 5: Enantioselective Hydroiodination of Epoxides Using
Trialkylazidosilanes and Allyl Iodide 747
353.5.2.6 Method 6: Hydroiodination of Epoxides Using Samarium(ll) Iodide 748
353.5.2.7 Method 7: Hydroiodination of Epoxides Using Phosphorus Iodides and
Phosphonium Iodides 749
353.5.2.8 Method 8: lodination of Epoxides and Other Cyclic Ethers 750
353.5.3 Synthesis by Addition across C—S Bonds
K. RCick Braun and T. Freysoldt
353.5.3 Synthesis by Addition across C S Bonds 753
353.5.3.1 Method 1: Synthesis by lodination of Thiiranes 753
XXXVIII Table of Contents
353.5.4 Synthesis by Addition across C—N Bonds
K. Ruck Braun and T. Freysoldt
35.3.5.4 Synthesis by Addition across C—N Bonds 757
353.5.4.1 Method 1: Hydroiodination of Aziridines Using Hydrogen Iodide 757
353.5.4.2 Method 2: Hydroiodination of Aziridines Using Alkali Metal Iodides 757
353.5.4.3 Method 3: Hydroiodination of Aziridines Using Other Metal Iodides — 759
353.5.4.4 Method 4: Hydroiodination of Aziridines Using Indium(lll) or
Zinc(ll) Iodide 759
353.5.4.5 Method 5: Hydroiodination of Aziridines Using Samarium(ll) Iodide — 760
353.5.4.6 Method 6: Hydroiodination of Aziridines Using lodotrimethylsilane 761
353.5.5 Synthesis by Addition across C—C Bonds
K. Ruck Braun and T. Freysoldt
353.5.5 Synthesis by Addition across C—C Bonds 763
353.5.5.1 Method 1: Ring Opening of Cyclopropanes Using Mercury(ll) Salts and
Iodine 763
353.5.5.2 Method 2: Ring Opening of Vinylcyclopropanes 764
353.5.5.3 Method 3: lodination of 1,1 Diacetylcyclopropane 765
Keyword Index 767
Author Index 805
Abbreviations 845 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Braun, M. |
author2 | Schaumann, Ernst 1943- |
author2_role | edt |
author2_variant | e s es |
author_GND | (DE-588)1051541166 (DE-588)117013870 |
author_facet | Braun, M. Schaumann, Ernst 1943- |
author_role | aut |
author_sort | Braun, M. |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV022208989 |
classification_rvk | VK 7000 |
ctrlnum | (OCoLC)634671921 (DE-599)BVBBV022208989 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cc4500</leader><controlfield tag="001">BV022208989</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240614</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070104s2007 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783131188717</subfield><subfield code="9">978-3-13-118871-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781588904652</subfield><subfield code="9">978-1-58890-465-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634671921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022208989</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 7000</subfield><subfield code="0">(DE-625)147414:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Braun, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Science of synthesis</subfield><subfield code="b">Houben-Weyl methods of molecular transformations</subfield><subfield code="n">35 = Category 5, Compounds with one saturated carbon-heteroatom bond</subfield><subfield code="p">Chlorine, bromine, and iodine</subfield><subfield code="c">ed. board: D. Bellus ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stuttgart [u.a.]</subfield><subfield code="b">Thieme</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVIII, 850 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellus, Daniel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schaumann, Ernst</subfield><subfield code="d">1943-</subfield><subfield code="0">(DE-588)1051541166</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houben, Josef</subfield><subfield code="d">1875-1940</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)117013870</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013247070</subfield><subfield code="g">35</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-13-183891-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015420318&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015420318</subfield></datafield></record></collection> |
id | DE-604.BV022208989 |
illustrated | Illustrated |
index_date | 2024-07-02T16:26:28Z |
indexdate | 2024-08-20T00:15:10Z |
institution | BVB |
isbn | 9783131188717 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015420318 |
oclc_num | 634671921 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-210 DE-20 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-210 DE-20 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-188 DE-11 |
physical | XXXVIII, 850 Seiten Illustrationen 26 cm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Thieme |
record_format | marc |
spelling | Braun, M. Verfasser aut Science of synthesis Houben-Weyl methods of molecular transformations 35 = Category 5, Compounds with one saturated carbon-heteroatom bond Chlorine, bromine, and iodine ed. board: D. Bellus ... Stuttgart [u.a.] Thieme 2007 XXXVIII, 850 Seiten Illustrationen 26 cm txt rdacontent n rdamedia nc rdacarrier Bellus, Daniel Sonstige oth Schaumann, Ernst 1943- (DE-588)1051541166 edt Houben, Josef 1875-1940 Sonstige (DE-588)117013870 oth (DE-604)BV013247070 35 Erscheint auch als Online-Ausgabe 978-3-13-183891-9 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015420318&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Science of synthesis Houben-Weyl methods of molecular transformations Braun, M. |
title | Science of synthesis Houben-Weyl methods of molecular transformations |
title_auth | Science of synthesis Houben-Weyl methods of molecular transformations |
title_exact_search | Science of synthesis Houben-Weyl methods of molecular transformations |
title_exact_search_txtP | Science of synthesis Houben-Weyl methods of molecular transformations |
title_full | Science of synthesis Houben-Weyl methods of molecular transformations 35 = Category 5, Compounds with one saturated carbon-heteroatom bond Chlorine, bromine, and iodine ed. board: D. Bellus ... |
title_fullStr | Science of synthesis Houben-Weyl methods of molecular transformations 35 = Category 5, Compounds with one saturated carbon-heteroatom bond Chlorine, bromine, and iodine ed. board: D. Bellus ... |
title_full_unstemmed | Science of synthesis Houben-Weyl methods of molecular transformations 35 = Category 5, Compounds with one saturated carbon-heteroatom bond Chlorine, bromine, and iodine ed. board: D. Bellus ... |
title_short | Science of synthesis |
title_sort | science of synthesis houben weyl methods of molecular transformations chlorine bromine and iodine |
title_sub | Houben-Weyl methods of molecular transformations |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015420318&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013247070 |
work_keys_str_mv | AT braunm scienceofsynthesishoubenweylmethodsofmoleculartransformations35category5compoundswithonesaturatedcarbonheteroatombond AT bellusdaniel scienceofsynthesishoubenweylmethodsofmoleculartransformations35category5compoundswithonesaturatedcarbonheteroatombond AT schaumannernst scienceofsynthesishoubenweylmethodsofmoleculartransformations35category5compoundswithonesaturatedcarbonheteroatombond AT houbenjosef scienceofsynthesishoubenweylmethodsofmoleculartransformations35category5compoundswithonesaturatedcarbonheteroatombond |