Elementary stochastic calculus with finance in view:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey [u.a.]
World Scientific
2006
|
Ausgabe: | Reprinted |
Schriftenreihe: | Advanced series on statistical science & applied probability
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | IX, 212 S. graph. Darst. |
ISBN: | 9810235437 9789810235437 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022207120 | ||
003 | DE-604 | ||
005 | 20080220 | ||
007 | t | ||
008 | 070103s2006 d||| |||| 00||| eng d | ||
020 | |a 9810235437 |9 981-02-3543-7 | ||
020 | |a 9789810235437 |9 978-981-02-3543-7 | ||
035 | |a (OCoLC)254544489 | ||
035 | |a (DE-599)BVBBV022207120 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-29T |a DE-739 |a DE-91G | ||
084 | |a QH 170 |0 (DE-625)141536: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 606f |2 stub | ||
084 | |a WIR 160f |2 stub | ||
084 | |a WIR 522f |2 stub | ||
100 | 1 | |a Mikosch, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elementary stochastic calculus with finance in view |c Thomas Mikosch |
250 | |a Reprinted | ||
264 | 1 | |a New Jersey [u.a.] |b World Scientific |c 2006 | |
300 | |a IX, 212 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced series on statistical science & applied probability |v 6 | |
650 | 4 | |a Finanzmathematik - Stochastische Analysis | |
650 | 0 | 7 | |a Finanzmathematik |0 (DE-588)4017195-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finanzwirtschaft |0 (DE-588)4017214-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 0 | 1 | |a Finanzwirtschaft |0 (DE-588)4017214-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 1 | 1 | |a Finanzmathematik |0 (DE-588)4017195-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a Advanced series on statistical science & applied probability |v 6 |w (DE-604)BV011932321 |9 6 | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-015418493 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136185080053760 |
---|---|
adam_text | Contents
Reader Guidelines 1
1
Preliminaries
5
1.1 Basic
Concepts from Probability Theory
............. 6
1.1.1
Random Variables
..................... 6
1.1.2
Random Vectors
...................... 14
1.1.3
Independence and Dependence
.............. 19
1.2
Stochastic Processes
........................ 23
1.3
Brownian Motion
.......................... 33
1.3.1
Defining Properties
..................... 33
1.3.2
Processes Derived from Brownian Motion
........ 40
1.3.3
Simulation of Brownian Sample Paths
.......... 44
1.4
Conditional Expectation
...................... 56
1.4.1
Conditional Expectation under Discrete Condition
... 56
1.4.2
About
σ
-Fields
.......................
62
1.4.3
The General Conditional Expectation
.......... 67
1.4.4
Rules for the Calculation of Conditional Expectations
. 70
1.4.5
The Projection Property of Conditional Expectations
. 74
1.5
Martingales
............................. 77
1.5.1
Defining Properties
..................... 77
1.5.2
Examples
.......................... 81
1.5.3
The Interpretation of a Martingale as a Fair Game
... 84
2
The Stochastic Integral
87
2.1
The Riemann and Riemann-Stieltjes Integrals
.......... 88
2.1.1
The Ordinary Riemann Integral
.............. 88
2.1.2
The Riemann-Stieltjes Integral
.............. 92
2.2
The
Ito
Integral
........................... 96
2.2.1
A Motivating Example
................... 96
2.2.2
The Ito
Stochastic Integral for Simple Processes
.... 101
2.2.3
The General
Ito
Stochastic Integral
............ 107
2.3
The
Ito
Lemma
........................... 112
2.3.1
The Classical Chain Rule of Differentiation
....... 113
2.3.2
A Simple Version of the
Ito
Lemma
........... 114
2.3.3
Extended Versions of the
Ito
Lemma
........... 117
2.4
The Stratonovich and Other Integrals
.............. 123
3
Stochastic Differential Equations
131
3.1
Deterministic Differential Equations
............... 132
3.2
Ito
Stochastic Differential Equations
............... 134
3.2.1
What is a Stochastic Differential Equation?
....... 134
3.2.2
Solving
Ito
Stochastic Differential Equations by the
Ito
Lemma
........................... 138
3.2.3
Solving
Ito
Differential Equations via Stratonovich Cal¬
culus
............................. 145
3.3
The General Linear Differential Equation
............ 150
3.3.1
Linear Equations with Additive Noise
.......... 150
3.3.2
Homogeneous Equations with Multiplicative Noise
. . . 153
3.3.3
The General Case
..................... 155
3.3.4
The Expectation and Variance Functions of the Solution
156
3.4
Numerical Solution
......................... 157
3.4.1
The
Euler
Approximation
................. 158
3.4.2
The Milstein Approximation
............... 162
4
Applications of Stochastic Calculus in Finance
167
4.1
The Black-Scholes Option Pricing Formula
........... 168
4.1.1
A Short Excursion into Finance
.............. 168
4.1.2
What is an Option?
.................... 170
4.1.3
A Mathematical Formulation of the Option Pricing Pro¬
blem
............................. 172
4.1.4
The Black and Scholes Formula
.............. 174
4.2
A Useful Technique: Change of Measure
............. 176
4.2.1
What is a Change of the Underlying Measure?
..... 176
4.2.2
An Interpretation of the Black-Scholes Formula by Chan¬
ge of Measure
........................ 180
Appendix
185
Al
Modes of Convergence
....................... 185
A2 Inequalities
............................. 187
CONTENTS ix
A3
Non-Differentiability and Unbounded Variation of Brownian Sam¬
ple Paths
.............................. 188
A4
Proof of the Existence of the General
Ito
Stochastic Integral
. . 190
A5 The Radon-Nikodym Theorem
.................. 193
A6 Proof of the Existence and Uniqueness of the Conditional Ex¬
pectation
.............................. 194
Bibliography
195
Index
199
List of Abbreviations and Symbols
209
Щу^-ілУ1^·.
bory.
|!
óf
measure theory.
Iri particular, the
book can serve
mathematicians
:
tur
as
еЈатШа^
to learn about
Ito
calculus and/or
Suitable for the reader without]
rtatical background. It gives an]
ι
that area of probability
| the reader with a great deal
ken from stochastic finance,
fìcing
formula is derived. The
stochastic calculus for non-
rial for anyone who wants
|ç
finance.
л
|
adam_txt |
Contents
Reader Guidelines 1
1
Preliminaries
5
1.1 Basic
Concepts from Probability Theory
. 6
1.1.1
Random Variables
. 6
1.1.2
Random Vectors
. 14
1.1.3
Independence and Dependence
. 19
1.2
Stochastic Processes
. 23
1.3
Brownian Motion
. 33
1.3.1
Defining Properties
. 33
1.3.2
Processes Derived from Brownian Motion
. 40
1.3.3
Simulation of Brownian Sample Paths
. 44
1.4
Conditional Expectation
. 56
1.4.1
Conditional Expectation under Discrete Condition
. 56
1.4.2
About
σ
-Fields
.
62
1.4.3
The General Conditional Expectation
. 67
1.4.4
Rules for the Calculation of Conditional Expectations
. 70
1.4.5
The Projection Property of Conditional Expectations
. 74
1.5
Martingales
. 77
1.5.1
Defining Properties
. 77
1.5.2
Examples
. 81
1.5.3
The Interpretation of a Martingale as a Fair Game
. 84
2
The Stochastic Integral
87
2.1
The Riemann and Riemann-Stieltjes Integrals
. 88
2.1.1
The Ordinary Riemann Integral
. 88
2.1.2
The Riemann-Stieltjes Integral
. 92
2.2
The
Ito
Integral
. 96
2.2.1
A Motivating Example
. 96
2.2.2
The Ito
Stochastic Integral for Simple Processes
. 101
2.2.3
The General
Ito
Stochastic Integral
. 107
2.3
The
Ito
Lemma
. 112
2.3.1
The Classical Chain Rule of Differentiation
. 113
2.3.2
A Simple Version of the
Ito
Lemma
. 114
2.3.3
Extended Versions of the
Ito
Lemma
. 117
2.4
The Stratonovich and Other Integrals
. 123
3
Stochastic Differential Equations
131
3.1
Deterministic Differential Equations
. 132
3.2
Ito
Stochastic Differential Equations
. 134
3.2.1
What is a Stochastic Differential Equation?
. 134
3.2.2
Solving
Ito
Stochastic Differential Equations by the
Ito
Lemma
. 138
3.2.3
Solving
Ito
Differential Equations via Stratonovich Cal¬
culus
. 145
3.3
The General Linear Differential Equation
. 150
3.3.1
Linear Equations with Additive Noise
. 150
3.3.2
Homogeneous Equations with Multiplicative Noise
. . . 153
3.3.3
The General Case
. 155
3.3.4
The Expectation and Variance Functions of the Solution
156
3.4
Numerical Solution
. 157
3.4.1
The
Euler
Approximation
. 158
3.4.2
The Milstein Approximation
. 162
4
Applications of Stochastic Calculus in Finance
167
4.1
The Black-Scholes Option Pricing Formula
. 168
4.1.1
A Short Excursion into Finance
. 168
4.1.2
What is an Option?
. 170
4.1.3
A Mathematical Formulation of the Option Pricing Pro¬
blem
. 172
4.1.4
The Black and Scholes Formula
. 174
4.2
A Useful Technique: Change of Measure
. 176
4.2.1
What is a Change of the Underlying Measure?
. 176
4.2.2
An Interpretation of the Black-Scholes Formula by Chan¬
ge of Measure
. 180
Appendix
185
Al
Modes of Convergence
. 185
A2 Inequalities
. 187
CONTENTS ix
A3
Non-Differentiability and Unbounded Variation of Brownian Sam¬
ple Paths
. 188
A4
Proof of the Existence of the General
Ito
Stochastic Integral
. . 190
A5 The Radon-Nikodym Theorem
. 193
A6 Proof of the Existence and Uniqueness of the Conditional Ex¬
pectation
. 194
Bibliography
195
Index
199
List of Abbreviations and Symbols
209
Щу^-ілУ1^·.
bory.
|!
óf
measure theory.
Iri particular, the
book can serve
mathematicians
:
tur
as
еЈатШа^
to learn about
Ito
calculus and/or
Suitable for the reader without]
rtatical background. It gives an]
ι
that area of probability
| the reader with a great deal
ken from stochastic finance,
fìcing
formula is derived. The
stochastic calculus for non-
rial for anyone who wants
|ç
finance.
л |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Mikosch, Thomas |
author_facet | Mikosch, Thomas |
author_role | aut |
author_sort | Mikosch, Thomas |
author_variant | t m tm |
building | Verbundindex |
bvnumber | BV022207120 |
classification_rvk | QH 170 SK 820 |
classification_tum | MAT 606f WIR 160f WIR 522f |
ctrlnum | (OCoLC)254544489 (DE-599)BVBBV022207120 |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | Reprinted |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02337nam a2200517 cb4500</leader><controlfield tag="001">BV022207120</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070103s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810235437</subfield><subfield code="9">981-02-3543-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810235437</subfield><subfield code="9">978-981-02-3543-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254544489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022207120</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 170</subfield><subfield code="0">(DE-625)141536:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 160f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 522f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mikosch, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary stochastic calculus with finance in view</subfield><subfield code="c">Thomas Mikosch</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprinted</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 212 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series on statistical science & applied probability</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finanzmathematik - Stochastische Analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzwirtschaft</subfield><subfield code="0">(DE-588)4017214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finanzwirtschaft</subfield><subfield code="0">(DE-588)4017214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series on statistical science & applied probability</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV011932321</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015418493</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022207120 |
illustrated | Illustrated |
index_date | 2024-07-02T16:25:51Z |
indexdate | 2024-07-09T20:52:22Z |
institution | BVB |
isbn | 9810235437 9789810235437 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015418493 |
oclc_num | 254544489 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-29T DE-739 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-29T DE-739 DE-91G DE-BY-TUM |
physical | IX, 212 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
series | Advanced series on statistical science & applied probability |
series2 | Advanced series on statistical science & applied probability |
spelling | Mikosch, Thomas Verfasser aut Elementary stochastic calculus with finance in view Thomas Mikosch Reprinted New Jersey [u.a.] World Scientific 2006 IX, 212 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Advanced series on statistical science & applied probability 6 Finanzmathematik - Stochastische Analysis Finanzmathematik (DE-588)4017195-4 gnd rswk-swf Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Finanzwirtschaft (DE-588)4017214-4 gnd rswk-swf Stochastische Analysis (DE-588)4132272-1 s Finanzwirtschaft (DE-588)4017214-4 s DE-604 Finanzmathematik (DE-588)4017195-4 s 1\p DE-604 Advanced series on statistical science & applied probability 6 (DE-604)BV011932321 6 Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mikosch, Thomas Elementary stochastic calculus with finance in view Advanced series on statistical science & applied probability Finanzmathematik - Stochastische Analysis Finanzmathematik (DE-588)4017195-4 gnd Stochastische Analysis (DE-588)4132272-1 gnd Finanzwirtschaft (DE-588)4017214-4 gnd |
subject_GND | (DE-588)4017195-4 (DE-588)4132272-1 (DE-588)4017214-4 |
title | Elementary stochastic calculus with finance in view |
title_auth | Elementary stochastic calculus with finance in view |
title_exact_search | Elementary stochastic calculus with finance in view |
title_exact_search_txtP | Elementary stochastic calculus with finance in view |
title_full | Elementary stochastic calculus with finance in view Thomas Mikosch |
title_fullStr | Elementary stochastic calculus with finance in view Thomas Mikosch |
title_full_unstemmed | Elementary stochastic calculus with finance in view Thomas Mikosch |
title_short | Elementary stochastic calculus with finance in view |
title_sort | elementary stochastic calculus with finance in view |
topic | Finanzmathematik - Stochastische Analysis Finanzmathematik (DE-588)4017195-4 gnd Stochastische Analysis (DE-588)4132272-1 gnd Finanzwirtschaft (DE-588)4017214-4 gnd |
topic_facet | Finanzmathematik - Stochastische Analysis Finanzmathematik Stochastische Analysis Finanzwirtschaft |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015418493&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011932321 |
work_keys_str_mv | AT mikoschthomas elementarystochasticcalculuswithfinanceinview |