Mathematical methods for physics and engineering:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2006
|
Ausgabe: | 3. ed., reprint. |
Schlagworte: | |
Online-Zugang: | Table of contents Inhaltsverzeichnis |
Beschreibung: | Erg. bildet: Riley, Kenneth Franklin: Student solutions manual for Mathematical methods for physics and engineering |
Beschreibung: | XXVII, 1333 S. graph. Darst. |
ISBN: | 9780521861533 0521861535 9780521679718 0521679710 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022200217 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 061220s2006 d||| |||| 00||| eng d | ||
020 | |a 9780521861533 |9 978-0-521-86153-3 | ||
020 | |a 0521861535 |9 0-521-86153-5 | ||
020 | |a 9780521679718 |9 978-0-521-67971-8 | ||
020 | |a 0521679710 |9 0-521-67971-0 | ||
035 | |a (OCoLC)62532900 | ||
035 | |a (DE-599)BVBBV022200217 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
050 | 0 | |a QA300 | |
082 | 0 | |a 515.1 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a MAT 005f |2 stub | ||
100 | 1 | |a Riley, Kenneth F. |d 1936- |e Verfasser |0 (DE-588)123286387 |4 aut | |
245 | 1 | 0 | |a Mathematical methods for physics and engineering |c K. F. Riley ; M. P. Hobson and S. J. Bence |
250 | |a 3. ed., reprint. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2006 | |
300 | |a XXVII, 1333 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Erg. bildet: Riley, Kenneth Franklin: Student solutions manual for Mathematical methods for physics and engineering | ||
650 | 4 | |a Analyse mathématique | |
650 | 4 | |a Mathématiques de l'ingénieur | |
650 | 4 | |a Physique mathématique | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 0 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 1 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 2 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 2 | 2 | |a Ingenieurwissenschaften |0 (DE-588)4137304-2 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 3 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hobson, Michael P. |d 1967- |e Verfasser |0 (DE-588)141007885 |4 aut | |
700 | 1 | |a Bence, Stephen J. |d 1972- |e Verfasser |0 (DE-588)141008784 |4 aut | |
856 | 4 | |u http://www.loc.gov/catdir/toc/cam021/2002018922.html |3 Table of contents | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015411663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015411663 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136176482779136 |
---|---|
adam_text | Contents
Preface to the third edition page
Preface to the second edition
Preface to the first edition
1
1.1
Polynomial equations; factorisation; properties of roots
1.2
Single angle; compound angles; double- and half-angle identities
1.3
1.4
Complications and special cases
1.5
1.6
1.7
Proof by induction; proof by contradiction
1.8
1.9
2
2.1
Differentiation from first principles; products; the chain rule; quotients;
implicit differentiation; logarithmic differentiation; Leibnitz theorem; special
points of a function
CONTENTS
2.2 Integration 59
Integration
tion: sinusoidal functions: logarithmic integration: using partial fractions:
substitution method: integration by parts: reduction formulae; infinite and
improper integrals; plane polar coordinates; integral inequalities; applications
of integration
2.3
2.4
3
3.1
3.2
Addition and subtraction; modulus and argument; multiplication; complex
conjugate
3.3
Multiplication and division in polar form
3.4 de
trigonometric identities; finding the nth roots of unity; solving polynomial
equations
3.5
3.6
3.7
Definitions; hyperbolic-trigonometric analogies; identities of hyperbolic
Junctions; solving hyperbolic equations; inverses of hyperbolic functions;
calculus of hyperbolic functions
3.8
3.9
4
4.1
4.2
Arithmetic series; geometric series: arithmetico-geometric series: the difference
method: series involving natural numbers; transformation of series
4.3
Absolute and conditional convergence; series containing only real positive
terms: alternating series test
4.4
4.5
Convergence of power series; operations with power series
4.6
Taylor s theorem; approximation errors; standard Maclaurin series
4.7
4.8
4.9
vi
CONTENTS
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
6
6.1
6.2
6.3
Areas and volumes: masses, centres of mass and centroids; Pappus theorems;
moments of inertia; mean values of functions
6.4
Change of variables in double integrals: evaluation of the integral I
f^ve~x~dx; change of variables in triple integrals: general properties of
Jacobians
6.5
6.6
7
7.1
7.2
7.3
7.4
7.5
7.6
Scalar product; vector product: scalar triple product; vector triple product
CONTENTS
7.7
7.8
Point to line; point to plane; line to line; line to plane
7.9
7.10
7.11
8
8.1
Basis vectors; inner product; some useful inequalities
8.2
8.3
8.4
Matrix addition; multiplication by a scalar; matrix multiplication
8.5
8.6
8.7
8.8
8.9
Properties of determinants
8.10
8.11
8.12
Diagonal; triangular
and anti-Hermitian; unitary; normal
8.13
Of a normal matrix; of Hermitian and anti-Hermitian matrices; of a unitary
matrix; of a general square matrix
8.14
Degenerate eigenvalues
8.15
8.16
8.17
Stationary properties of the eigenvectors; quadratic surfaces
8.18
Range: null space:
value decomposition
8.19
8.20
9
9.1
9.2
viii
CONTENTS
9.3 Rayleigh-Ritz
9.4
9.5
10
10.1
Composite rector expressions: differential of a vector
10.2
10.3
10.4
10.5
10.6
10.7
Gradient of a scalar field: divergence of a rector field: curl of a vector field
10.8
Vector operators acting on sums and products: combinations of
curl
10.9
10.10
10.11
10.12
11
11.1
Evaluating line integrals; physical examples: line integrals with respect to a
scalar
11.2
11.3
11.4
11.5
Evaluating surface integrals; vector areas of surfaces: physical examples
11.6
Volumes of three-dimensional regions
11.7
11.8
Green s theorems; other related integral theorems; physical applications
11.9
Related integral theorems; physical applications
11.10
11.11
12
12.1
ix
CONTENTS
12.2 The
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
13
13.1
The uncertainty principle:
relation of the
transforms; odd and
functions and energy spectra; Parseval s theorem; Fourier transforms in higher
dimensions
13.2
Laplace transforms of derivatives and integrals; other properties of Laplace
transforms
13.3
13.4
13.5
14
14.1
470
14.2
Separable-variable equations; exact equations; inexact equations, integrat¬
ing factors; linear equations; homogeneous equations; isoharic equations;
Bernoulli s equation; miscellaneous equations
14.3
Equations soluble for p: for x; for y; Clairaut s eq
Bernoulli s equation; miscellaneous equations
480
equation
14.4
14.5
15
15.1
Finding the complementary function yc(x): finding the particular integral
Vp(. ); constructing the general solution yc(x)
relations: Laplace transform method
15.2
The Legendre and Euler linear equations: exact equations; partially known
complementary function
form for second-order equations
CONTENTS
15.3 General
Dependent variable absent; independent variable absent; non-linear exaet
equations; isobaric or homogeneous equations; equations homogeneous in x
or
15.4
15.5
16
16.1
Ordinary and singular points
16.2
16.3
Distinct roots not differing by an integer; repeated root of the indicial
equation; distinct roots differing by an integer
16.4
The Wronskian method; the derivative method; series form of the second
solution
16.5
16.6
16.7
17
17.1
Some useful inequalities
17.2
17.3
Reality of the eigenvalues; orthogonality of the eigenfunctions; construction
of real eigenfunctions
17.4
Valid boundary conditions; putting an equation into Sturm-Liouville form
17.5
17.6
17.7
17.8
18
18.1
General solution for integer
18.2
18.3
18.4
18.5
General solution for non-integer
of Bessel functions
xi
CONTENTS
18.6
18.7 Laguerre
18.8 Associated Laguerre
18.9 Hermite
18.10 Hypergeometric
18.11
18.12
18.13
18.14
19
19.1
Commutators
19.2
Uncertainty principle; angular momentum; creation and annihilation operators
19.3
19.4
20
20.1
The wave equation; the diffusion equation; Laplace s equation;
equation;
20.2
20.3
First-order equations; ¡»homogeneous equations and problems; second-order
equations
20.4
20.5
20.6
First-order equations; second-order equations
20.7
20.8
20.9
21
and other methods
21.1
21.2
21.3
Laplace s equation in polar coordinates; spherical harmonics
in polar
¡»homogeneous equations
21.4
xii
CONTENTS
21.5 Inhomogeneous
Similarities to Green s functions for ordinary differential equations; general
boundary-value problems; Dirichlet problems; Neumann problems
21.6
21.7
22
22.1
22.2
F
22.3
Several dependent variables; several independent variables; higher-order
derivatives; variable end-points
22.4
22.5
Fermat s principle in optics; Hamilton s principle in mechanics
22.6
22.7
22.8
22.9
22.10
23
23.1
23.2
23.3
23.4
Separable kernels; integral transform methods; differentiation
23.5
23.6 Fredholm
23.7
23.8
23.9
24
24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
CONTENTS
24.9
24.10
24.11
24.12
24.13
24.14
24.15
25
25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
Level lines and saddle points: steepest descents; stationary phase
25.9
25.10
26
26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9 Isotropie
26.10
26.11
26.12
26.13
26.14
26.15
26.16
26.17
26.18
26.19
26.20
xiv
CONTENTS
26.21 Absolute derivatives
26.22
26.23
26.24
27
27.1
Rearrangement of the equation; linear interpolation; binary chopping:
Newton-Raphson method
27.2
27.3
Gaussian elimination; Gauss-Seidel iteration; tridiagonal matrices
21
Trapezium rule; Simpson s rule; Gaussian integration; Monte Carlo methods
27.5
27.6
Difference equations; Taylor series solutions; prediction and correction:
Runge-Kutta methods; isoclines
27.7
27.8
27.9
27.10
28
28.1
Definition of a group; examples of groups
28.2
28.3
28.4
28.5
28.6
28.7
Equivalence relations and classes: congruence and cosets: conjugates and
classes
28.8
28.9
29
29.1 Dipole
29.2
29.3
29.4
29.5
CONTENTS
29.6
Orthogonality property of characters
29.7
Summation rules for
29.8
29.9
29.10
29.11
Bonding in molecules; matrix elements in quantum mechanics; degeneracy of
normal modes; breaking of degeneracies
29.12
29.13
30
30.1
30.2
Axioms and theorems; conditional probability;
30.3
30.4
Discrete random variables; continuous random variables
30.5
Mean; mode and median; variance and standard deviation; moments; central
moments
30.6
30.7
Probability generating functions; moment generating functions; characteristic
Junctions;
30.8
Binomial; geometric; negative binomial; hypergeomctric;
30.9
Gaussian; log-normal; exponential; gamma; chi-squared; Cauchy;
Wigner; uniform
30.10
30.11
Discrete hivariate; continuous hivariate; marginal and conditional distributions
30.12
Means; variances: covariance and correlation
30.13
30.14
30.15
Multinominal ;
30.16
30.17
XVI
CONTENTS
31
31.1 Experiments,
31.2
Averages; variance and standard deviation; moments; covariance and correla¬
tion
31.3
Consistency, bias and efficiency; Fisher s inequality; standard errors; confi¬
dence limits
31.4
Mean; variance; standard deviation; moments; covariance and correlation
31.5
ML estimator; transformation
confidence limits; Bayesian interpretation; large-N behaviour; extended
ML method
31.6
Linear least squares; non-linear least squares
31.7
Simple and composite hypotheses: statistical tests; Neyman-Pearson; gener¬
alised likelihood-ratio; Student s t; Fisher s F; goodness of fit
31.8
31.9
Index
CONTENTS
I am the very Model for a Student Mathematical
1
I ve information rational, and logical and practical.
I know the laws of algebra, and find them quite symmetrical.
And even know the meaning of
I m extremely well acquainted, with all things mathematical.
I understand equations, both the simple and quadratical.
About binomial theorems I m teeming with a lot o news.
With many cheerful facts about the square of the hypotenuse.
I m very good at integral and differential calculus.
And solving paradoxes that so often seem to rankle us.
In short in matters rational, and logical and practical.
I am the very model for a student mathematical.
I know the singularities of equations differential.
And some of these are regular, but the rest are quite essential.
I quote the results of giants; with Euler, Newton, Gauss, Laplace,
And can calculate an orbit, given a centre, force and mass.
I can reconstruct equations, both canonical and formal.
And write all kinds of matrices, orthogonal, real and normal.
I show how to tackle problems that one has never met before.
By analogy or example, or with some clever metaphor.
I seldom use equivalence to help decide upon a class.
But often find an integral, using a contour o er a pass.
In short in matters rational, and logical and practical,
I am the very model for a student mathematical.
When you have learnt just what is meant by Macobian and Abelian :
When you at sight can estimate, for the modal, mean and median;
When describing normal subgroups is much more than recitation;
When you understand precisely what is quantum excitation ;
When you know enough statistics that you can recognise RV:
When you have learnt all advances that have been made in SVD;
And when you can spot the transform that solves some tricky PDE.
You will feel no better student has ever sat for a degree.
Your accumulated knowledge, whilst extensive and exemplary.
Will have only been brought down to the beginning of last century.
But still in matters rational, and logical and practical.
You ll be the
KFR. with apologies to W.S. Gilbert
xix
|
adam_txt |
Contents
Preface to the third edition page
Preface to the second edition
Preface to the first edition
1
1.1
Polynomial equations; factorisation; properties of roots
1.2
Single angle; compound angles; double- and half-angle identities
1.3
1.4
Complications and special cases
1.5
1.6
1.7
Proof by induction; proof by contradiction
1.8
1.9
2
2.1
Differentiation from first principles; products; the chain rule; quotients;
implicit differentiation; logarithmic differentiation; Leibnitz' theorem; special
points of a function
CONTENTS
2.2 Integration 59
Integration
tion: sinusoidal functions: logarithmic integration: using partial fractions:
substitution method: integration by parts: reduction formulae; infinite and
improper integrals; plane polar coordinates; integral inequalities; applications
of integration
2.3
2.4
3
3.1
3.2
Addition and subtraction; modulus and argument; multiplication; complex
conjugate
3.3
Multiplication and division in polar form
3.4 de
trigonometric identities; finding the nth roots of unity; solving polynomial
equations
3.5
3.6
3.7
Definitions; hyperbolic-trigonometric analogies; identities of hyperbolic
Junctions; solving hyperbolic equations; inverses of hyperbolic functions;
calculus of hyperbolic functions
3.8
3.9
4
4.1
4.2
Arithmetic series; geometric series: arithmetico-geometric series: the difference
method: series involving natural numbers; transformation of series
4.3
Absolute and conditional convergence; series containing only real positive
terms: alternating series test
4.4
4.5
Convergence of power series; operations with power series
4.6
Taylor's theorem; approximation errors; standard Maclaurin series
4.7
4.8
4.9
vi
CONTENTS
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
6
6.1
6.2
6.3
Areas and volumes: masses, centres of mass and centroids; Pappus' theorems;
moments of inertia; mean values of functions
6.4
Change of variables in double integrals: evaluation of the integral I
f^ve~x~dx; change of variables in triple integrals: general properties of
Jacobians
6.5
6.6
7
7.1
7.2
7.3
7.4
7.5
7.6
Scalar product; vector product: scalar triple product; vector triple product
CONTENTS
7.7
7.8
Point to line; point to plane; line to line; line to plane
7.9
7.10
7.11
8
8.1
Basis vectors; inner product; some useful inequalities
8.2
8.3
8.4
Matrix addition; multiplication by a scalar; matrix multiplication
8.5
8.6
8.7
8.8
8.9
Properties of determinants
8.10
8.11
8.12
Diagonal; triangular
and anti-Hermitian; unitary; normal
8.13
Of a normal matrix; of Hermitian and anti-Hermitian matrices; of a unitary
matrix; of a general square matrix
8.14
Degenerate eigenvalues
8.15
8.16
8.17
Stationary properties of the eigenvectors; quadratic surfaces
8.18
Range: null space:
value decomposition
8.19
8.20
9
9.1
9.2
viii
CONTENTS
9.3 Rayleigh-Ritz
9.4
9.5
10
10.1
Composite rector expressions: differential of'a vector
10.2
10.3
10.4
10.5
10.6
10.7
Gradient of a scalar field: divergence of a rector field: curl of a vector field
10.8
Vector operators acting on sums and products: combinations of
curl
10.9
10.10
10.11
10.12
11
11.1
Evaluating line integrals; physical examples: line integrals with respect to a
scalar
11.2
11.3
11.4
11.5
Evaluating surface integrals; vector areas of surfaces: physical examples
11.6
Volumes of three-dimensional regions
11.7
11.8
Green's theorems; other related integral theorems; physical applications
11.9
Related integral theorems; physical applications
11.10
11.11
12
12.1
ix
CONTENTS
12.2 The
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
13
13.1
The uncertainty principle:
relation of the
transforms; odd and
functions and energy spectra; Parseval's theorem; Fourier transforms in higher
dimensions
13.2
Laplace transforms of derivatives and integrals; other properties of Laplace
transforms
13.3
13.4
13.5
14
14.1
470
14.2
Separable-variable equations; exact equations; inexact equations, integrat¬
ing factors; linear equations; homogeneous equations; isoharic equations;
Bernoulli's equation; miscellaneous equations
14.3
Equations soluble for p: for x; for y; Clairaut's eq
Bernoulli's equation; miscellaneous equations
480
equation
14.4
14.5
15
15.1
Finding the complementary function yc(x): finding the particular integral
Vp(.\'); constructing the general solution yc(x)
relations: Laplace transform method
15.2
The Legendre and Euler linear equations: exact equations; partially known
complementary function
form for second-order equations
CONTENTS
15.3 General
Dependent variable absent; independent variable absent; non-linear exaet
equations; isobaric or homogeneous equations; equations homogeneous in x
or
15.4
15.5
16
16.1
Ordinary and singular points
16.2
16.3
Distinct roots not differing by an integer; repeated root of the indicial
equation; distinct roots differing by an integer
16.4
The Wronskian method; the derivative method; series form of the second
solution
16.5
16.6
16.7
17
17.1
Some useful inequalities
17.2
17.3
Reality of the eigenvalues; orthogonality of the eigenfunctions; construction
of real eigenfunctions
17.4
Valid boundary conditions; putting an equation into Sturm-Liouville form
17.5
17.6
17.7
17.8
18
18.1
General solution for integer
18.2
18.3
18.4
18.5
General solution for non-integer
of Bessel functions
xi
CONTENTS
18.6
18.7 Laguerre
18.8 Associated Laguerre
18.9 Hermite
18.10 Hypergeometric
18.11
18.12
18.13
18.14
19
19.1
Commutators
19.2
Uncertainty principle; angular momentum; creation and annihilation operators
19.3
19.4
20
20.1
The wave equation; the diffusion equation; Laplace's equation;
equation;
20.2
20.3
First-order equations; ¡»homogeneous equations and problems; second-order
equations
20.4
20.5
20.6
First-order equations; second-order equations
20.7
20.8
20.9
21
and other methods
21.1
21.2
21.3
Laplace's equation in polar coordinates; spherical harmonics
in polar
¡»homogeneous equations
21.4
xii
CONTENTS
21.5 Inhomogeneous
Similarities to Green's functions for ordinary differential equations; general
boundary-value problems; Dirichlet problems; Neumann problems
21.6
21.7
22
22.1
22.2
F
22.3
Several dependent variables; several independent variables; higher-order
derivatives; variable end-points
22.4
22.5
Fermat's principle in optics; Hamilton's principle in mechanics
22.6
22.7
22.8
22.9
22.10
23
23.1
23.2
23.3
23.4
Separable kernels; integral transform methods; differentiation
23.5
23.6 Fredholm
23.7
23.8
23.9
24
24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
CONTENTS
24.9
24.10
24.11
24.12
24.13
24.14
24.15
25
25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
Level lines and saddle points: steepest descents; stationary phase
25.9
25.10
26
26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9 Isotropie
26.10
26.11
26.12
26.13
26.14
26.15
26.16
26.17
26.18
26.19
26.20
xiv
CONTENTS
26.21 Absolute derivatives
26.22
26.23
26.24
27
27.1
Rearrangement of the equation; linear interpolation; binary chopping:
Newton-Raphson method
27.2
27.3
Gaussian elimination; Gauss-Seidel iteration; tridiagonal matrices
21
Trapezium rule; Simpson's rule; Gaussian integration; Monte Carlo methods
27.5
27.6
Difference equations; Taylor series solutions; prediction and correction:
Runge-Kutta methods; isoclines
27.7
27.8
27.9
27.10
28
28.1
Definition of a group; examples of groups
28.2
28.3
28.4
28.5
28.6
28.7
Equivalence relations and classes: congruence and cosets: conjugates and
classes
28.8
28.9
29
29.1 Dipole
29.2
29.3
29.4
29.5
CONTENTS
29.6
Orthogonality property of characters
29.7
Summation rules for
29.8
29.9
29.10
29.11
Bonding in molecules; matrix elements in quantum mechanics; degeneracy of
normal modes; breaking of degeneracies
29.12
29.13
30
30.1
30.2
Axioms and theorems; conditional probability;
30.3
30.4
Discrete random variables; continuous random variables
30.5
Mean; mode and median; variance and standard deviation; moments; central
moments
30.6
30.7
Probability generating functions; moment generating functions; characteristic
Junctions;
30.8
Binomial; geometric; negative binomial; hypergeomctric;
30.9
Gaussian; log-normal; exponential; gamma; chi-squared; Cauchy;
Wigner; uniform
30.10
30.11
Discrete hivariate; continuous hivariate; marginal and conditional distributions
30.12
Means; variances: covariance and correlation
30.13
30.14
30.15
Multinominal ;
30.16
30.17
XVI
CONTENTS
31
31.1 Experiments,
31.2
Averages; variance and standard deviation; moments; covariance and correla¬
tion
31.3
Consistency, bias and efficiency; Fisher's inequality; standard errors; confi¬
dence limits
31.4
Mean; variance; standard deviation; moments; covariance and correlation
31.5
ML estimator; transformation
confidence limits; Bayesian interpretation; large-N behaviour; extended
ML method
31.6
Linear least squares; non-linear least squares
31.7
Simple and composite hypotheses: statistical tests; Neyman-Pearson; gener¬
alised likelihood-ratio; Student's t; Fisher's F; goodness of fit
31.8
31.9
Index
CONTENTS
I am the very Model for a Student Mathematical
1
I've information rational, and logical and practical.
I know the laws of algebra, and find them quite symmetrical.
And even know the meaning of
I'm extremely well acquainted, with all things mathematical.
I understand equations, both the simple and quadratical.
About binomial theorems I'm teeming with a lot o'news.
With many cheerful facts about the square of the hypotenuse.
I'm very good at integral and differential calculus.
And solving paradoxes that so often seem to rankle us.
In short in matters rational, and logical and practical.
I am the very model for a student mathematical.
I know the singularities of equations differential.
And some of these are regular, but the rest are quite essential.
I quote the results of giants; with Euler, Newton, Gauss, Laplace,
And can calculate an orbit, given a centre, force and mass.
I can reconstruct equations, both canonical and formal.
And write all kinds of matrices, orthogonal, real and normal.
I show how to tackle problems that one has never met before.
By analogy or example, or with some clever metaphor.
I seldom use equivalence to help decide upon a class.
But often find an integral, using a contour o"er a pass.
In short in matters rational, and logical and practical,
I am the very model for a student mathematical.
When you have learnt just what is meant by Macobian' and 'Abelian':
When you at sight can estimate, for the modal, mean and median;
When describing normal subgroups is much more than recitation;
When you understand precisely what is "quantum excitation';
When you know enough statistics that you can recognise RV:
When you have learnt all advances that have been made in SVD;
And when you can spot the transform that solves some tricky PDE.
You will feel no better student has ever sat for a degree.
Your accumulated knowledge, whilst extensive and exemplary.
Will have only been brought down to the beginning of last century.
But still in matters rational, and logical and practical.
You'll be the
KFR. with apologies to W.S. Gilbert
xix |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Riley, Kenneth F. 1936- Hobson, Michael P. 1967- Bence, Stephen J. 1972- |
author_GND | (DE-588)123286387 (DE-588)141007885 (DE-588)141008784 |
author_facet | Riley, Kenneth F. 1936- Hobson, Michael P. 1967- Bence, Stephen J. 1972- |
author_role | aut aut aut |
author_sort | Riley, Kenneth F. 1936- |
author_variant | k f r kf kfr m p h mp mph s j b sj sjb |
building | Verbundindex |
bvnumber | BV022200217 |
callnumber-first | Q - Science |
callnumber-label | QA300 |
callnumber-raw | QA300 |
callnumber-search | QA300 |
callnumber-sort | QA 3300 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 950 |
classification_tum | MAT 005f |
ctrlnum | (OCoLC)62532900 (DE-599)BVBBV022200217 |
dewey-full | 515.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.1 |
dewey-search | 515.1 |
dewey-sort | 3515.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 3. ed., reprint. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02976nam a2200709 c 4500</leader><controlfield tag="001">BV022200217</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061220s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521861533</subfield><subfield code="9">978-0-521-86153-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521861535</subfield><subfield code="9">0-521-86153-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521679718</subfield><subfield code="9">978-0-521-67971-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521679710</subfield><subfield code="9">0-521-67971-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62532900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022200217</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA300</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 005f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Riley, Kenneth F.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123286387</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods for physics and engineering</subfield><subfield code="c">K. F. Riley ; M. P. Hobson and S. J. Bence</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed., reprint.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 1333 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Erg. bildet: Riley, Kenneth Franklin: Student solutions manual for Mathematical methods for physics and engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathématiques de l'ingénieur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Ingenieurwissenschaften</subfield><subfield code="0">(DE-588)4137304-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hobson, Michael P.</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141007885</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bence, Stephen J.</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141008784</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/cam021/2002018922.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015411663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015411663</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022200217 |
illustrated | Illustrated |
index_date | 2024-07-02T16:24:11Z |
indexdate | 2024-07-09T20:52:14Z |
institution | BVB |
isbn | 9780521861533 0521861535 9780521679718 0521679710 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015411663 |
oclc_num | 62532900 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XXVII, 1333 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Riley, Kenneth F. 1936- Verfasser (DE-588)123286387 aut Mathematical methods for physics and engineering K. F. Riley ; M. P. Hobson and S. J. Bence 3. ed., reprint. Cambridge [u.a.] Cambridge Univ. Press 2006 XXVII, 1333 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Erg. bildet: Riley, Kenneth Franklin: Student solutions manual for Mathematical methods for physics and engineering Analyse mathématique Mathématiques de l'ingénieur Physique mathématique Mathematische Physik Engineering mathematics Mathematical analysis Mathematical physics Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Angewandte Mathematik (DE-588)4142443-8 gnd rswk-swf Ingenieurwissenschaften (DE-588)4137304-2 s Mathematische Methode (DE-588)4155620-3 s DE-604 Physik (DE-588)4045956-1 s Angewandte Mathematik (DE-588)4142443-8 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 Hobson, Michael P. 1967- Verfasser (DE-588)141007885 aut Bence, Stephen J. 1972- Verfasser (DE-588)141008784 aut http://www.loc.gov/catdir/toc/cam021/2002018922.html Table of contents Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015411663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Riley, Kenneth F. 1936- Hobson, Michael P. 1967- Bence, Stephen J. 1972- Mathematical methods for physics and engineering Analyse mathématique Mathématiques de l'ingénieur Physique mathématique Mathematische Physik Engineering mathematics Mathematical analysis Mathematical physics Mathematische Methode (DE-588)4155620-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Physik (DE-588)4045956-1 gnd Angewandte Mathematik (DE-588)4142443-8 gnd |
subject_GND | (DE-588)4155620-3 (DE-588)4037952-8 (DE-588)4137304-2 (DE-588)4045956-1 (DE-588)4142443-8 |
title | Mathematical methods for physics and engineering |
title_auth | Mathematical methods for physics and engineering |
title_exact_search | Mathematical methods for physics and engineering |
title_exact_search_txtP | Mathematical methods for physics and engineering |
title_full | Mathematical methods for physics and engineering K. F. Riley ; M. P. Hobson and S. J. Bence |
title_fullStr | Mathematical methods for physics and engineering K. F. Riley ; M. P. Hobson and S. J. Bence |
title_full_unstemmed | Mathematical methods for physics and engineering K. F. Riley ; M. P. Hobson and S. J. Bence |
title_short | Mathematical methods for physics and engineering |
title_sort | mathematical methods for physics and engineering |
topic | Analyse mathématique Mathématiques de l'ingénieur Physique mathématique Mathematische Physik Engineering mathematics Mathematical analysis Mathematical physics Mathematische Methode (DE-588)4155620-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Ingenieurwissenschaften (DE-588)4137304-2 gnd Physik (DE-588)4045956-1 gnd Angewandte Mathematik (DE-588)4142443-8 gnd |
topic_facet | Analyse mathématique Mathématiques de l'ingénieur Physique mathématique Mathematische Physik Engineering mathematics Mathematical analysis Mathematical physics Mathematische Methode Ingenieurwissenschaften Physik Angewandte Mathematik |
url | http://www.loc.gov/catdir/toc/cam021/2002018922.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015411663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT rileykennethf mathematicalmethodsforphysicsandengineering AT hobsonmichaelp mathematicalmethodsforphysicsandengineering AT bencestephenj mathematicalmethodsforphysicsandengineering |