Variational and potential methods in the theory of bending of plates with transverse shear deformation:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
Chapman & Hall
2000
|
Schriftenreihe: | Chapman & Hall CRC monographs and surveys in pure and applied mathematics
115 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 236 S. |
ISBN: | 1584881550 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022172690 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 010220s2000 |||| 00||| eng d | ||
020 | |a 1584881550 |9 1-58488-155-0 | ||
035 | |a (OCoLC)44039838 | ||
035 | |a (DE-599)BVBBV022172690 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a TA660.P6 | |
082 | 0 | |a 515 |2 21 | |
100 | 1 | |a Chudinovich, Igor |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational and potential methods in the theory of bending of plates with transverse shear deformation |c Igor Chudinovich ; Christian Constanda |
264 | 1 | |a Boca Raton [u.a.] |b Chapman & Hall |c 2000 | |
300 | |a XI, 236 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Chapman & Hall CRC monographs and surveys in pure and applied mathematics |v 115 | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Flexure | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Plates (Engineering) |x Mathematical models | |
650 | 4 | |a Shear (Mechanics) | |
650 | 0 | 7 | |a Elastische Platte |0 (DE-588)4151682-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biegung |0 (DE-588)4130184-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Biegung |0 (DE-588)4130184-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Elastische Platte |0 (DE-588)4151682-5 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Constanda, Christian |d 1944- |e Verfasser |0 (DE-588)112608027 |4 aut | |
830 | 0 | |a Chapman & Hall CRC monographs and surveys in pure and applied mathematics |v 115 |w (DE-604)BV013350872 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015387399&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015387399 |
Datensatz im Suchindex
_version_ | 1804136147863994368 |
---|---|
adam_text | K CHAPMAN & HALL/CRC MONOGRAPHS AND SURVEYS IN PURE AND APPLIED
MATHEMATICS I 15 VARIATIONAL AND POTENTIAL METHODS IN THE THEORY OF
BENDING OF PLATES WITH TRANSVERSE SHEAR DEFORMATION IGOR CHUDINOVICH
CHRISTIAN CONSTANDA CHAPMAN & HALL/CRC BOCA RATON LONDON NEW YORK
WASHINGTON, D.C. CONTENTS PREFACE IX CHAPTER 1. FORMULATION OF THE
PROBLEMS 1 1.1. THE EQUILIBRIUM EQUATIONS FOR PLATES 1 1.2. THE BOUNDARY
VALUE PROBLEMS 5 1.3. THE PLATE POTENTIALS AND THEIR PROPERTIES 8 1.4.
BOUNDARY INTEGRAL EQUATIONS 11 CHAPTER 2. VARIATIONAL FORMULATION OF THE
DIRICHLET AND NEUMANN PROBLEMS 17 2.1. FUNCTION SPACES 17 2.2.
SOLVABILITY OF THE INTERIOR PROBLEMS 19 2.3. WEIGHTED SOBOLEV SPACES 29
2.4. SOLVABILITY OF THE EXTERIOR PROBLEMS 40 CHAPTER 3. BOUNDARY
INTEGRAL EQUATIONS FOR THE DIRICHLET AND NEUMANN PROBLEMS 51 3.1. THE
AREA POTENTIAL AND ITS PROPERTIES 51 3.2. THE POINCARE-STEKLOV OPERATORS
55 3.3. FURTHER PROPERTIES OF THE PLATE POTENTIALS 59 3.4. SOLVABILITY
OF THE BOUNDARY EQUATIONS 65 CHAPTER 4. TRANSMISSION BOUNDARY VALUE
PROBLEMS 7 1 4.1. FORMULATION AND SOLVABILITY OF THE PROBLEMS 71 4.2.
INFINITE PLATE WITH A FINITE INCLUSION 75 4.3. MULTIPLY CONNECTED FINITE
PLATE 80 4.4. FINITE PLATE WITH AN INCLUSION 91 VLLL CHAPTER 5. PLATE
WEAKENED BY A CRACK 95 5.1. FORMULATION AND SOLVABILITY OF THE PROBLEMS
95 5.2. THE POINCARE-STEKLOV OPERATOR 107 5.3. THE SINGLE LAYER AND
DOUBLE LAYER POTENTIALS 110 5.4. INFINITE PLATE WITH A CRACK 112 5.5.
FINITE PLATE WITH A CRACK 114 CHAPTER 6. BOUNDARY VALUE PROBLEMS WITH
OTHER TYPES OF BOUNDARY CONDITIONS 119 6.1. MIXED BOUNDARY CONDITIONS
119 6.2. BOUNDARY EQUATIONS FOR MIXED CONDITIONS 123 6.3. COMBINED
BOUNDARY CONDITIONS 136 6.4. ELASTIC BOUNDARY CONDITIONS 147 CHAPTER 7.
PLATE ON A GENERALIZED ELASTIC FOUNDATION 153 7.1. FORMULATION AND
SOLVABILITY OF THE PROBLEMS 153 7.2. A FUNDAMENTAL MATRIX OF SOLUTIONS
156 7.3. PROPERTIES OF THE BOUNDARY OPERATORS 161 7.4. SOLVABILITY OF
THE BOUNDARY EQUATIONS 164 APPENDIX. AN ELEMENTARY INTRODUCTION TO
SOBOLEV SPACES 167 AL. DISTRIBUTIONS AND DISTRIBUTIONAL OPERATORS 167
A2. SOBOLEV SPACES 172 A3. EMBEDDING AND TRACE. EXTENSION OPERATORS 180
A4. SOBOLEV SPACES ON A HALF-SPACE 189 A5. DUALITY IN SOBOLEV SPACES 201
A6. SOBOLEV SPACES ON DOMAINS AND SURFACES 207 A7. OTHER FUNDAMENTAL
RESULTS 223 BIBLIOGRAPHY 233 INDEX 235
|
adam_txt |
K CHAPMAN & HALL/CRC MONOGRAPHS AND SURVEYS IN PURE AND APPLIED
MATHEMATICS I 15 VARIATIONAL AND POTENTIAL METHODS IN THE THEORY OF
BENDING OF PLATES WITH TRANSVERSE SHEAR DEFORMATION IGOR CHUDINOVICH
CHRISTIAN CONSTANDA CHAPMAN & HALL/CRC BOCA RATON LONDON NEW YORK
WASHINGTON, D.C. CONTENTS PREFACE IX CHAPTER 1. FORMULATION OF THE
PROBLEMS 1 1.1. THE EQUILIBRIUM EQUATIONS FOR PLATES 1 1.2. THE BOUNDARY
VALUE PROBLEMS 5 1.3. THE PLATE POTENTIALS AND THEIR PROPERTIES 8 1.4.
BOUNDARY INTEGRAL EQUATIONS 11 CHAPTER 2. VARIATIONAL FORMULATION OF THE
DIRICHLET AND NEUMANN PROBLEMS 17 2.1. FUNCTION SPACES 17 2.2.
SOLVABILITY OF THE INTERIOR PROBLEMS 19 2.3. WEIGHTED SOBOLEV SPACES 29
2.4. SOLVABILITY OF THE EXTERIOR PROBLEMS 40 CHAPTER 3. BOUNDARY
INTEGRAL EQUATIONS FOR THE DIRICHLET AND NEUMANN PROBLEMS 51 3.1. THE
AREA POTENTIAL AND ITS PROPERTIES 51 3.2. THE POINCARE-STEKLOV OPERATORS
55 3.3. FURTHER PROPERTIES OF THE PLATE POTENTIALS 59 3.4. SOLVABILITY
OF THE BOUNDARY EQUATIONS 65 CHAPTER 4. TRANSMISSION BOUNDARY VALUE
PROBLEMS 7 1 4.1. FORMULATION AND SOLVABILITY OF THE PROBLEMS 71 4.2.
INFINITE PLATE WITH A FINITE INCLUSION 75 4.3. MULTIPLY CONNECTED FINITE
PLATE 80 4.4. FINITE PLATE WITH AN INCLUSION 91 VLLL CHAPTER 5. PLATE
WEAKENED BY A CRACK 95 5.1. FORMULATION AND SOLVABILITY OF THE PROBLEMS
95 5.2. THE POINCARE-STEKLOV OPERATOR 107 5.3. THE SINGLE LAYER AND
DOUBLE LAYER POTENTIALS 110 5.4. INFINITE PLATE WITH A CRACK 112 5.5.
FINITE PLATE WITH A CRACK 114 CHAPTER 6. BOUNDARY VALUE PROBLEMS WITH
OTHER TYPES OF BOUNDARY CONDITIONS 119 6.1. MIXED BOUNDARY CONDITIONS
119 6.2. BOUNDARY EQUATIONS FOR MIXED CONDITIONS 123 6.3. COMBINED
BOUNDARY CONDITIONS 136 6.4. ELASTIC BOUNDARY CONDITIONS 147 CHAPTER 7.
PLATE ON A GENERALIZED ELASTIC FOUNDATION 153 7.1. FORMULATION AND
SOLVABILITY OF THE PROBLEMS 153 7.2. A FUNDAMENTAL MATRIX OF SOLUTIONS
156 7.3. PROPERTIES OF THE BOUNDARY OPERATORS 161 7.4. SOLVABILITY OF
THE BOUNDARY EQUATIONS 164 APPENDIX. AN ELEMENTARY INTRODUCTION TO
SOBOLEV SPACES 167 AL. DISTRIBUTIONS AND DISTRIBUTIONAL OPERATORS 167
A2. SOBOLEV SPACES 172 A3. EMBEDDING AND TRACE. EXTENSION OPERATORS 180
A4. SOBOLEV SPACES ON A HALF-SPACE 189 A5. DUALITY IN SOBOLEV SPACES 201
A6. SOBOLEV SPACES ON DOMAINS AND SURFACES 207 A7. OTHER FUNDAMENTAL
RESULTS 223 BIBLIOGRAPHY 233 INDEX 235 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Chudinovich, Igor Constanda, Christian 1944- |
author_GND | (DE-588)112608027 |
author_facet | Chudinovich, Igor Constanda, Christian 1944- |
author_role | aut aut |
author_sort | Chudinovich, Igor |
author_variant | i c ic c c cc |
building | Verbundindex |
bvnumber | BV022172690 |
callnumber-first | T - Technology |
callnumber-label | TA660 |
callnumber-raw | TA660.P6 |
callnumber-search | TA660.P6 |
callnumber-sort | TA 3660 P6 |
callnumber-subject | TA - General and Civil Engineering |
ctrlnum | (OCoLC)44039838 (DE-599)BVBBV022172690 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01986nam a2200493zcb4500</leader><controlfield tag="001">BV022172690</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010220s2000 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584881550</subfield><subfield code="9">1-58488-155-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44039838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022172690</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA660.P6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chudinovich, Igor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational and potential methods in the theory of bending of plates with transverse shear deformation</subfield><subfield code="c">Igor Chudinovich ; Christian Constanda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Chapman & Hall</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 236 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Chapman & Hall CRC monographs and surveys in pure and applied mathematics</subfield><subfield code="v">115</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plates (Engineering)</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear (Mechanics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastische Platte</subfield><subfield code="0">(DE-588)4151682-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biegung</subfield><subfield code="0">(DE-588)4130184-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biegung</subfield><subfield code="0">(DE-588)4130184-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elastische Platte</subfield><subfield code="0">(DE-588)4151682-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Constanda, Christian</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112608027</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Chapman & Hall CRC monographs and surveys in pure and applied mathematics</subfield><subfield code="v">115</subfield><subfield code="w">(DE-604)BV013350872</subfield><subfield code="9"></subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015387399&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015387399</subfield></datafield></record></collection> |
id | DE-604.BV022172690 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:19:59Z |
indexdate | 2024-07-09T20:51:47Z |
institution | BVB |
isbn | 1584881550 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015387399 |
oclc_num | 44039838 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XI, 236 S. |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Chapman & Hall |
record_format | marc |
series | Chapman & Hall CRC monographs and surveys in pure and applied mathematics |
series2 | Chapman & Hall CRC monographs and surveys in pure and applied mathematics |
spelling | Chudinovich, Igor Verfasser aut Variational and potential methods in the theory of bending of plates with transverse shear deformation Igor Chudinovich ; Christian Constanda Boca Raton [u.a.] Chapman & Hall 2000 XI, 236 S. txt rdacontent n rdamedia nc rdacarrier Chapman & Hall CRC monographs and surveys in pure and applied mathematics 115 Mathematisches Modell Flexure Mathematical analysis Plates (Engineering) Mathematical models Shear (Mechanics) Elastische Platte (DE-588)4151682-5 gnd rswk-swf Biegung (DE-588)4130184-5 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 s DE-604 Biegung (DE-588)4130184-5 s Elastische Platte (DE-588)4151682-5 s Constanda, Christian 1944- Verfasser (DE-588)112608027 aut Chapman & Hall CRC monographs and surveys in pure and applied mathematics 115 (DE-604)BV013350872 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015387399&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chudinovich, Igor Constanda, Christian 1944- Variational and potential methods in the theory of bending of plates with transverse shear deformation Chapman & Hall CRC monographs and surveys in pure and applied mathematics Mathematisches Modell Flexure Mathematical analysis Plates (Engineering) Mathematical models Shear (Mechanics) Elastische Platte (DE-588)4151682-5 gnd Biegung (DE-588)4130184-5 gnd Variationsrechnung (DE-588)4062355-5 gnd |
subject_GND | (DE-588)4151682-5 (DE-588)4130184-5 (DE-588)4062355-5 |
title | Variational and potential methods in the theory of bending of plates with transverse shear deformation |
title_auth | Variational and potential methods in the theory of bending of plates with transverse shear deformation |
title_exact_search | Variational and potential methods in the theory of bending of plates with transverse shear deformation |
title_exact_search_txtP | Variational and potential methods in the theory of bending of plates with transverse shear deformation |
title_full | Variational and potential methods in the theory of bending of plates with transverse shear deformation Igor Chudinovich ; Christian Constanda |
title_fullStr | Variational and potential methods in the theory of bending of plates with transverse shear deformation Igor Chudinovich ; Christian Constanda |
title_full_unstemmed | Variational and potential methods in the theory of bending of plates with transverse shear deformation Igor Chudinovich ; Christian Constanda |
title_short | Variational and potential methods in the theory of bending of plates with transverse shear deformation |
title_sort | variational and potential methods in the theory of bending of plates with transverse shear deformation |
topic | Mathematisches Modell Flexure Mathematical analysis Plates (Engineering) Mathematical models Shear (Mechanics) Elastische Platte (DE-588)4151682-5 gnd Biegung (DE-588)4130184-5 gnd Variationsrechnung (DE-588)4062355-5 gnd |
topic_facet | Mathematisches Modell Flexure Mathematical analysis Plates (Engineering) Mathematical models Shear (Mechanics) Elastische Platte Biegung Variationsrechnung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015387399&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013350872 |
work_keys_str_mv | AT chudinovichigor variationalandpotentialmethodsinthetheoryofbendingofplateswithtransversesheardeformation AT constandachristian variationalandpotentialmethodsinthetheoryofbendingofplateswithtransversesheardeformation |