Advanced hypersonic test facilities:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Reston, Va.
AIAA
2002
|
Schriftenreihe: | Progress in astronautics and aeronautics
198 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XX, 639 S. Ill., graph. Darst. |
ISBN: | 1563475413 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022170596 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 021018s2002 ad|| |||| 00||| eng d | ||
020 | |a 1563475413 |9 1-56347-541-3 | ||
035 | |a (OCoLC)51253716 | ||
035 | |a (DE-599)BVBBV022170596 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-634 |a DE-83 |a DE-91G | ||
050 | 0 | |a TL571.5 | |
082 | 0 | |a 629.132306 |2 21 | |
245 | 1 | 0 | |a Advanced hypersonic test facilities |c ed. by Frank Lu ... |
264 | 1 | |a Reston, Va. |b AIAA |c 2002 | |
300 | |a XX, 639 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in astronautics and aeronautics |v 198 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Aérodynamique hypersonique | |
650 | 4 | |a Champs de tir balistiques | |
650 | 4 | |a Chariots à fusée | |
650 | 4 | |a Souffleries aérodynamiques - Simulateurs de sol - Essais | |
650 | 4 | |a Aerodynamics, Hypersonic | |
650 | 4 | |a Ballistic ranges | |
650 | 4 | |a Hypersonic wind tunnels | |
650 | 4 | |a Rocket sleds | |
650 | 0 | 7 | |a Überschallströmung |0 (DE-588)4186626-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperschallbereich |0 (DE-588)4161092-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Überschallflugzeug |0 (DE-588)4186622-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Windkanal |0 (DE-588)4189940-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stoßwellenrohr |0 (DE-588)4183445-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Plasmawindkanal |0 (DE-588)4529416-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Windkanal |0 (DE-588)4189940-4 |D s |
689 | 0 | 1 | |a Plasmawindkanal |0 (DE-588)4529416-1 |D s |
689 | 0 | 2 | |a Stoßwellenrohr |0 (DE-588)4183445-8 |D s |
689 | 0 | 3 | |a Hyperschallbereich |0 (DE-588)4161092-1 |D s |
689 | 0 | 4 | |a Überschallflugzeug |0 (DE-588)4186622-8 |D s |
689 | 0 | 5 | |a Überschallströmung |0 (DE-588)4186626-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Überschallströmung |0 (DE-588)4186626-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Lu, Frank K. |e Sonstige |4 oth | |
830 | 0 | |a Progress in astronautics and aeronautics |v 198 |w (DE-604)BV001890233 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385300&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015385300 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136145246748672 |
---|---|
adam_text | ADVANCED HYPERSONIC TEST FACILITIES EDITED BY FRANK LU UNIVERSITY OF
TEXAS AT ARLINGTON ARLINGTON, TEXAS DAN MARREN ARNOLD ENGINEERING
DEVELOPMENT CENTER WHITE OAK, MARYLAND VOLUME 198 PROGRESS IN
ASTRONAUTICS AND AERONAUTICS PAUL ZARCHAN, EDITOR-IN-CHIEF MIT LINCOLN
LABORATORY LEXINGTON, MASSACHUSETTS PUBLISHED BY THE AMERICAN INSTITUTE
OF AERONAUTICS AND ASTRONAUTICS, INC. 1801 ALEXANDER BELL DRIVE, RESTON,
VIRGINIA 20191-4344 TABLE OF CONTENTS PREFACE XIX CHAPTER 1 HYPERSONIC
GROUND TEST REQUIREMENTS 1 DENNIS M. BUSHNELL, NASA LANGLEY RESEARCH
CENTER, HAMPTON, VIRGINIA I. INTRODUCTION . . : 1 II. HISTORY, STATUS,
AND OUTLOOK FOR HYPERSONIC TEST REQUIREMENTS ... 2 III. POTENTIAL
CIVILIAN HYPERSONIC TEST REQUIREMENTS FUTURES 4 A. PLANETARY EXPLORATION
4 B. ACCESS TO SPACE 4 IV. MILITARY HYPERSONIC TEST REQUIREMENTS FUTURES
11 A. ACCESS TO SPACE 11 B. MISSILES 12 V. CONCLUSION 13 REFERENCES 13
CHAPTER 2 PRINCIPLES OF HYPERSONIC TEST FACILITY DEVELOPMENT 17 FRANK K.
LU, UNIVERSITY OF TEXAS AT ARLINGTON, ARLINGTON TEXAS; AN D DAN E.
MARREN, ARNOLD ENGINEERING DEVELOPMENT CENTER, WHITE OAK, MARYLAND I.
INTRODUCTION 17 II. CRITICAL HYPERSONIC TECHNOLOGIES -.-.- 18 III.
HYPERSONIC SCALING 20 IV. HIGH ENTHALPY AND HIGH SPEED 21 V. TYPES OF
HYPERSONIC FACILITIES 24 VI. CONCLUSIONS .: 26 ACKNOWLEDGMENTS 27
REFERENCES 27 CHAPTER 3 NASA S HYPULSE FACILITY AT GASL - A DUAL MODE,
DUAL DRIVER REFLECTED-SHOCK/EXPANSION TUNNEL 29 R. S. M. CHUE, C.-Y.
TSAI, R. J. BAKOS, AND J. I. ERDOS, GASL DIVISION, ALLIED AEROSPACE
INDUSTRIES, RONKONKOMA, NEW YORK; AND R. C. ROGERS, NASA LANGLEY
RESEARCH CENTER, HAMPTON, VIRGINIA I. INTRODUCTION 29 A. BACKGROUND 30
B. SCOPE OF THE CHAPTER ; 31 II. SHOCK TUNNELS AND EXPANSION TUBES 32 A.
SHOCK-HEATED FACILITIES 32 B. REFLECTED-SHOCK TUNNELS 33 C.
SHOCK-EXPANSION TUBES 35 VII III. DRIVER METHODS 36 A. LIGHTER GASES 37
B. ELECTRICALLY HEATED LIGHT GASES 38 C. COMBUSTION HEATED LIGHT GASES
38 D. COMPRESSIVELY HEATED LIGHT GASES (FREE-PISTON DRIVER) 39 E.
SUMMARY OF COMPARISON OF DRIVER TECHNIQUES 40 F. THE SHOCK-INDUCED
DETONATION DRIVER FOR HYPULSE 40 IV. OPERATION AND PERFORMANCE OF
HYPULSE 42 A. FACILITY CONFIGURATION AND SIZING 42 B. HYPULSE OPERATION
43 C. TEST CONDITIONS VERIFICATION 49 D. TEST TIME DETERMINATION 49 V.
DRIVER GAS CONTAMINATION IN DETONATION-DRIVEN RST MODE .... 51 A. NOZZLE
FLOW 56 B. TRANSIENT DEVELOPMENT OF DRIVER-GAS LEAKAGE 59 VI. NOZZLE
DESIGN FOR EXPANSION TUNNEL MODE OPERATION 61 A. SKIMMER NOZZLES 63 B.
FULL CAPTURE CONTOURED INLET ASYMPTOTING TO A CONICAL PROFILE 64 C.
VERIFICATION WITH EXPERIMENTS 65 VII. CONCLUDING REMARKS 68
ACKNOWLEDGMENTS 69 REFERENCES 69 CHAPTER 4 LENS HYPERVELOCITY TUNNELS
AND APPLICATION TO VEHICLE TESTING AT DUPLICATED FLIGHT CONDITIONS 73 M.
S. HOLDEN AND R. A. PARKER, CALSPAN-UB RESEARCH CENTER BUFFALO, * NEW
YORK I. INTRODUCTION 73 II. GROUND TEST SIMULATION OF HYPERSONIC FLIGHT
PERFORMANCE 74 III. DESIGN, OPERATION, AND PERFORMANCE OF THE LENS I AND
LENS II HYPERVELOCITY GROUND TEST FACILITIES 80 A. INTRODUCTION 80 B.
DESIGN AND OPERATION OF THE LENS I AND II SHOCK TUNNELS. . 80 C.
AEROTHERMAL, AERO-OPTIC, AND RADIATION INSTRUMENTATION , SUITES 82 IV.
FACILITY VALIDATION : 86 V. APPLICATION OF TEST FACILITY AND
INSTRUMENTATION TO HYPERSONIC VEHICLE TESTING 90 A. EVALUATION OF THE
AEROTHERMAL AND AERO-OPTICAL CHARACTERISTICS OF HIGH-SPEED INTERCEPTORS
90 B. EXAMPLES OF AEROTHERMAL MEASUREMENTS TO EVALUATE SEEKERHEAD
PERFORMANCE 91 C. EXAMPLE OF AERO-OPTIC MEASUREMENTS ON INTERCEPTOR
SEEKERHEAD CONFIGURATIONS 96 VI. MEASUREMENTS OF JET INTERACTION
RESULTING FROM DIVERT THRUSTER OPERATION 100 VIII A. INTRODUCTION 100 B.
FLOWFIELD AND AEROTHERMAL CHARACTERISTICS 101 C. SPECTROMETER AND
RADIOMETER MEASUREMENTS OF FLOWFIELD OBSCURATION PHENOMENA 102 VII.
STUDIES OF SCRAMJET PERFORMANCE * 104 A. INTRODUCTION 104 B. SHOCK
INTERACTION PHENOMENA OCCURRING IN THE ENGINE 107 VIII. CONCLUSION 107
REFERENCES 109 CHAPTER 5 THE U-12 LARGE SHOCK TUBE ILL V. I. LAPYGIN, I.
V. ERSHOV, S. S. SEMENOV, AND E. I. RUZAVIN, CENTRAL SCIENTIFIC RESEARCH
INSTITUTE OF MECHANICAL ENGINEERING (TSNIIMASH), MOSCOW REGION, RUSSIA
I. INTRODUCTION ILL II. DESCRIPTION OF THE U-12 SHOCK TUBE 112 III.
OPERATION REGIMES 114 IV. AERODYNAMIC INVESTIGATIONS 118 V. MEASUREMENTS
OF FORCES AND MOMENTS ON FLIGHT VEHICLE MODELS. . 123 VI. INVESTIGATION
OF NONEQUILIBRIUM PROCESSES BEHIND SHOCKWAVE FRONT IN EARTH AND
PLANETARY ATMOSPHERES 124 VII. RADIO-PHYSICAL INVESTIGATIONS AT U-12
FACILITY 128 VIII. BALLISTIC REGIME OF U-12 SHOCK TUBE OPERATION . . . .
. . 130 A. ELECTROMAGNETIC DEVICE FOR A DISK GYRO-STABILIZATION 131 B.
DIAPHRAGM UNIT 132 C. BRAKE ASSEMBLY 132 IX. CONCLUSIONS 133 REFERENCES
133 CHAPTER 6 DETONATION-DRIVEN SHOCK TUBES AND TUNNELS 135 HERBERT
OLIVIER, SHOCK WAVE LABORATORY, RWTH AACHEN UNIVERSITY, AACHEN, GERMANY;
JIANG ZONGLIN AND HONGRU R. YU, INSTITUTE OF, MECHANICS, CHINESE ACADEMY
OF SCIENCES, BEIJING, CHINA; AND FRANK K. LU, UNIVERSITY OF TEXAS AT
ARLINGTON, ARLINGTON TEXAS I. INTRODUCTION 135 II. GASDYNAMIC
FUNDAMENTALS OF THE DETONATION PROCESS 137 III. OPERATING PRINCIPLE
DETONATION DRIVERS 141 A. UPSTREAM MODE . 141 B. DOWNSTREAM MODE 142 IV.
THE DETONATION-DRIVEN SHOCK TUNNEL TH2-D 144 A. SETUP OF THE FACILITY
144 B. INITIATION OF THE DETONATION WAVE 147 C. WAVE PROCESSES IN THE
DETONATION AND DAMPING SECTION .... 150 D. WAVE PROCESSES IN THE DRIVEN
SECTION 153 E. CALIBRATION OF TEST SECTION FLOW ; 156 V. THE JF-10
DETONATION-DRIVEN, HIGH-ENTHALPY SHOCK TUNNEL 162 A. GAS FILLING AND
MIXING SYSTEM 163 IX B. DETONATION IGNITION 164 C. ATTENUATION OF THE
INCIDENT SHOCKWAVES 165 D. CALIBRATION RESULTS 167 E. FORWARD-DETONATION
DRIVER WITH A CAVITY RING 168 F. DOUBLE-DETONATION DRIVER : : 174 G.
DETONATION DRIVER WITH A CONVERGING THROAT 178 VI. THE UTA
HIGH-PERFORMANCE SHOCK TUBE 182 VII. PERFORMANCE OF DETONATION-DRIVEN
FACILITIES 195 VIII. CONCLUSIONS 200 REFERENCES 200 CHAPTER 7
AEROTHERMODYNAMICS RESEARCH IN THE 1 DLR HIGH ENTHALPY SHOCK TUNNEL HEG
205 KLAUS HANNEMANN AND WALTER H. BECK, INSTITUTE OF AERODYNAMICS AND
FLOW TECHNOLOGY, GERMAN AEROSPACE CENTER DLR, GOTTINGEN, GERMANY I.
INTRODUCTION 205 II. THE HEG FACILITY 207 A. OPERATION 207 B. GEOMETRY
OF THE CONICAL HEG NOZZLE 208 III. MEASUREMENT TECHNIQUES 209 A.
CLASSICAL 209 B. SPECTROSCOPIC 210 C. TIME-RESOLVED SCHLIEREN 210 D.
FORCES 211 IV. THE NUMERICAL SOLVER CEVCATS-N 211 V. NOZZLE FLOW AND
FREESTREAM 213 A. CHEMICAL/THERMAL EQUILIBRIUM/NONEQUILIBRIUM 213 B.
TEMPORAL DEVELOPMENT OF FLOW. . . 215 C. DRIVER GAS CONTAMINATION 217
VI.- FLOW PAST A CIRCULAR CYLINDER 219 VII. DELAY OF DRIVER GAS
CONTAMINATION 224 VIII. CURRENT WORK 229 A. X-38/CRV RESCUE VEHICLE
229 B. ATMOSPHERIC REENTRY DEMONSTRATOR 232 IX. SUMMARY AND CONCLUSIONS
. 233 ACKNOWLEDGMENTS 234 REFERENCES 234 CHAPTER 8 CHARACTERISTICS OF
THE HIEST AND ITS APPLICABILITY FOR HYPERSONIC AEROTHERMODYNAMIC AND
SCRAMJET RESEARCH 239 KATSUHIRO ITOH, NATIONAL AEROSPACE LABORATORY,
KAKUDA SPACE PROPULSION LABORATORY, KAKUDA, JAPAN I. INTRODUCTION 239
II. DESCRIPTION, GENERAL PERFORMANCE, AND LIMITATIONS OF THE HIEST . 240
A. DESCRIPTION 240 B. GENERAL PERFORMANCE 241 C. LIMITATIONS WITH THE
NOZZLE FLOW 243 X III. HOPE AERODYNAMIC TEST 246 IV. SURFACE CATALYTIC
EFFECT ON HEAT FLUX 247 V. SCRAMJET 249 VI. CONCLUSIONS 252 REFERENCES
-253 CHAPTER 9 PISTON GASDYNAMIC UNITS WITH MULTICASCADE COMPRESSION 255
VITALY V. KISLYKH, TSNIIMASH, MOSCOW, RUSSIA I. INTRODUCTION 255 II. THE
MULTICASCADE COMPRESSION PGU COMPLEX 261 III. THE MULTICASCADE
COMPRESSION METHOD 263 IV. METHODS FOR SIMULATING THE MAIN EXTERNAL
HYPERSONIC FLOW 266 V. SIMULATION OF ENGINE JETS EFFECT ON AFT ELEMENTS
OF LAUNCHERS FOR SPACE TRANSPORTATION SYSTEM 269 VI. SUPERSONIC
COMBUSTION TESTS IN THE PGU 271 VII. CONCLUSION 274 ACKNOWLEDGMENTS 275
REFERENCES 275 CHAPTER 10 ARC-HEATED FACILITIES 279 D. M. SMITH, E. J.
FELDERMAN, AND F. L. SHOPE, SVERDRUP TECHNOLOGY, INC., ARNOLD AIR FORCE
BASE, TENNESSEE; AND J. A. BALBONI, NASA AMES RESEARCH CENTER, MOJFETT
FIELD, CALIFORNIA I. INTRODUCTION 279 II. ARC HEATERS AND HYPERSONIC
TESTING 280 A. PURPOSE AND HISTORY OF ARC HEATERS 280 B. TYPES OF ARC
FACILITIES 282 C. ARC HEATER TEST CELL CONFIGURATIONS 285 D. ARC HEATER
TEST APPLICATIONS 286 III. DOD AND NASA ARC FACILITY OVERVIEW 290 A. DOD
ARCS , 290 B. NASA ARCS . . 293 IV. ARC HEATER TECHNOLOGY TOPICS UPDATE
298 A. FACILITY TECHNOLOGY 298 B. TESTING TECHNIQUES 301 C. FACILITY
INSTRUMENTATION 303 D. ARC MODELING/SIMULATION 304 V. SUMMARY /... 310
ACKNOWLEDGMENTS 311 REFERENCES , 311 CHAPTER 11 THE SCIROCCO 70-MW
PLASMA WIND TUNNEL: A NEW HYPERSONIC CAPABILITY 315 G. RUSSO, F. DE
FILIPPIS, S. BORRELLI, M. MARINI, AND S. CARISTIA, CIRA, CENTRA ITALIANO
RICERCHE AEROSPAZIALI, VIA MAIORISE, CAPUA, ITALY I. INTRODUCTION 315 XI
II. THE FACILITY 317 A. PROCESS DESCRIPTION 317 B. FACILITY PERFORMANCES
318 C. TECHNICAL DATA OF MAIN COMPONENTS 319 D. FACILITY COMMISSIONING
STATUS AND QUALIFICATION 323 III. THE HYPERSONIC CHALLENGE: FUTURE AND
POTENTIAL APPLICATIONS .... 325 A. GENERALITIES 325 B. TEST CHAMBER FLOW
ENVIRONMENT 331 C. AERODYNAMIC SIMULATION CAPABILITIES 338 D.
AIR-BREATHING PROPULSION SIMULATION CAPABILITIES 339 IV. SCIROCCO
EVOLUTION 344 A. POTENTIAL AERODYNAMIC UPGRADE 344 B. POTENTIAL
AIR-BREATHING PROPULSION UPGRADE 346 V. CONCLUSIONS 349 REFERENCES 349
CHAPTER 12 AERODYNAMIC AND PROPULSION TEST UNIT 353 S. J. RIGNEY AND G.
D. GARRARD, SVERDRUP TECHNOLOGY, INC., ARNOLD AIR FORCE BASE, TENNESSEE
I. INTRODUCTION 353 II. GENERAL HYPERSONIC AEROPROPULSION SYSTEM TESTING
FUTURE REQUIREMENTS 355 III. APTU DESCRIPTION 357 A. PLANNED NEAR-TERM
INCREMENTAL APTU TEST CAPABILITY UPGRADES 359 B. MACH 6.5 FREE-JET TEST
CAPABILITY 359 C. LONGER TEST DURATION 360 D. ENHANCED ALTITUDE
SIMULATION .*-.* 361 1 -E. ENHANCED THRUST DETERMINATION 361 IV. PLANNED
MID- AND FAR-TERM INCREMENTAL APTU TEST CAPABILITY UPGRADES 362 A. MACH
8.0 FREE-JET TEST CAPABILITY I 362 B. INCREASED SCALE CAPABILITY 362 V.
APTU TECHNOLOGY TOPICS UPDATE . 363 A. TEST METHODOLOGIES 364 B.
ANALYSIS TECHNIQUES 365 VI. SUMMARY 372 ACKNOWLEDGMENT 373 REFERENCES
373 CHAPTER 13 ARC-HEATED FACILITIES AS A TOOL TO STUDY
AEROTHERMODYNAMIC PROBLEMS OF REENTRY VEHICLES 375 ALI GULHAN AND
BURKARD ESSER, GERMAN AEROSPACE CENTER (DLR), COLOGNE, GERMANY
NOMENCLATURE 375 I. INTRODUCTION 375 XII II. EXPERIMENTAL FACILITY AND
MEASUREMENT TECHNIQUES 377 III. FLOW CHARACTERIZATION 381 IV.
EXPERIMENTS ON LOCAL AEROTHERMODYNAMICS 384 V. CHARACTERIZATION AND
QUALIFICATION OF TPS COMPONENTS 390 VI. QUALIFICATION OF FLIGHT SENSORS
AT REENTRY CONDITIONS -394 VII. CONCLUDING REMARKS 400 ACKNOWLEDGMENTS
402 REFERENCES 402 CHAPTER 14 THE NASA LANGLEY RESEARCH CENTER 8-FT HIGH
TEMPERATURE TUNNEL 405 JEFFREY S. HODGE AND STEPHEN F. HARVIN, NASA
LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA I. INTRODUCTION 405 II.
FACILITY DESCRIPTION 407 A. MAJOR FACILITY COMPONENTS 407 B. MAJOR
FACILITY SYSTEMS 412 C. DATA ACQUISITION AND INSTRUMENTATION. . . 416
III. TEST CAPABILITIES 418 A. STRUCTURES AND MATERIALS 418 B.
AIRBREATHING PROPULSION 421 C. SYSTEM CONCEPT PERFORMANCE VALIDATION 422
IV. OPERATIONS 422 V. SUMMARY 424 REFERENCES 425 CHAPTER 15 NASA GLENN
RESEARCH CENTER S HYPERSONIC TUNNEL FACILITY 427 MARK R. WOIKE AND BRIAN
P. WILLIS, NASA GLENN RESEARCH CENTER, PLUM BROOK STATION, SANDUSKY,
OHIO I. INTRODUCTION *. 427 II. FACILITY HISTORY 428 III. FACILITY
DESCRIPTION 429 A. GRAPHITE STORAGE HEATER 430 B. FACILITY HOT TRAIN 432
C. FACILITY NOZZLES 433 D. TEST CHAMBER AND THRUST STAND ASSEMBLY 433 E.
DIFFUSER/STEAM EJECTOR SYSTEM 433 F. GASEOUS NITROGEN SYSTEM 434 G.
GASEOUS OXYGEN SYSTEM 434 H. COOLING WATER SYSTEMS 434 I. FACILITY
CONTROL SYSTEM 435 J. DATA SYSTEMS 436 K. TEST ARTICLE SUPPORT SYSTEMS
436 L. GASEOUS HYDROGEN FUEL SYSTEM 436 M. LIQUID JP FUEL SYSTEMS 437
XIII N. HIGH PRESSURE COOLING WATER 437 IV. TYPICAL FACILITY OPERATION
437 V. UNIQUE VALUE AND TESTING CAPABILITY 438 VI. SUMMARY AND
CONCLUSIONS 439 REFERENCES .439 CHAPTER 16 THE ONERA F4 HIGH-ENTHALPY
WIND TUNNEL 441 A. MASSON, PH. SAGNIER, AND A. K. MOHAMED, ONERA, LE
FAUGA-MAUZAC, FRANCE I. INTRODUCTION 441 II. PRINCIPLE AND DESCRIPTION
OF F4 FACILITY 443 A. PRINCIPLE OF THE F4 WIND TUNNEL 443 B. GENERAL
ARRANGEMENT AND NOZZLES 445 C. ARC CHAMBER 446 D. IMPULSE GENERATOR 448
E. VACUUM SYSTEM 448 F. DATA ACQUISITION UNIT 449 G. SCHLIEREN DEVICE
449 III. ADJUSTMENT AND CALIBRATION 449 A. CHRONOLOGICAL ACCOUNTS 449 B.
PRACTICES AND TECHNOLOGICAL ADJUSTMENTS 450 C. TEST SECTION CALIBRATIONS
452 D. RESERVOIR CONDITION EXAMINATIONS 453 E. NOZZLE FLOW AND
FREE-STREAM CHARACTERIZATION 455 IV. TYPICAL MODEL TESTS 459 A. FORCE
MEASUREMENT DEVICES 459 B. HEAT-TRANSFER RATE MEASUREMENTS 463 C.
PRESSURE MEASUREMENTS . * 464 D. VISUALIZATION, SCHLIEREN, AND OPTICAL
DEVICES 464 V. CONCLUSION AND FUTURE PROSPECTS 465 REFERENCES ; . . . .
465 CHAPTER 17 THE AEDC HYPERVELOCITY WIND TUNNEL 9 467 DAN MARREN AND
JOHN LAFFERTY, ARNOLD ENGINEERING DEVELOPMENT CENTER, WHITE OAK,
MARYLAND I. INTRODUCTION 467 II. TUNNEL 9 FACILITY DESCRIPTION ; 468 A.
RECENT DEVELOPMENTS AND UPGRADES 470 B. MACH 10 HIGH REYNOLDS NUMBER 470
C. MACH 14 HIGH ALTITUDE 471 D. MACH 8 HIGH DYNAMIC PRESSURE (SHROUD
SEPARATION CAPABILITY) 472 E. MACH 8 ENVELOPE EXTENSION 473 F. MACH 16.5
NOZZLE 474 G. MACH 7 THERMAL STRUCTURAL FACILITY 475 H. TUNNEL 9
AERO-OPTICAL SUITE 475 XIV I. SUBSYSTEM ENHANCEMENT 476 III. CONCLUSION
477 REFERENCES 477 CHAPTER 18 A HYPERSONIC GROUND-TEST FACILITY USING
MAGNETIC LEVITATION AND ELECTROMAGNETIC PROPULSION 479 NEIL BOSMAJIAN,
THE BOEING COMPANY, HUNTINGTON BEACH, CALIFORNIA I. INTRODUCTION 479 II.
BACKGROUND 480 III. OVERVIEW 481 IV. FACILITY CONCEPT 484 V. SYSTEM
REQUIREMENTS 486 VI. TEST TECHNIQUES 488 VII. ISSUES 492 VIII.
LEVERAGING TECHNOLOGY PROGRAMS 493 IX. FUTURE EFFORTS 494 X. SUMMARY : :
495 REFERENCES , 496 CHAPTER 19 HYPERSONIC TEST CAPABILITIES AT THE
HOLLOMAN HIGH-SPEED TEST TRACK 499 DAVID W. MINTO, HOLLOMAN HIGH SPEED
TEST TRACK, HOLLOMAN AIR FORCE BASE, NEW MEXICO; AND NEIL BOSMAJIAN, THE
BOEING COMPANY, HUNTINGTON BEACH, CALIFORNIA I. INTRODUCTION 499 II.
HHSTT HYPERSONIC UPGRADE PROGRAM 502 A. BACKGROUND V ;- 502 B. MODELING
AND SIMULATION TOOL IMPROVEMENT 502 C. SLED DESIGN IMPROVEMENT 503 D.
FACILITY IMPROVEMENT 503 E. ADVANCED ROCKET MOTOR DEVELOPMENT 505 III.
HHSTT HYPERSONIC CAPABILITIES 505 A. TEST ITEMS NOT RECOVERED 505 B.
RECOVERED TEST ITEMS 506 IV. MAGLEV TEST TRACK DEVELOPMENT 510 A.
BACKGROUND 510 B. DESIGN EVOLUTION 511 C. SYSTEM DESCRIPTION 516 D.
SYSTEM CHARACTERISTICS 518 E. DEVELOPMENT TOOLS TO ASSESS SYSTEM
CHARACTERISTICS 520 F. MAGLEV TEST OPERATIONS . . . . : 525 G. PREDICTED
SYSTEM PERFORMANCE ENVELOPES 527 H. PROJECTED TEST APPLICATIONS 527 V.
CONCLUSION 529 ACKNOWLEDGMENT 529 REFERENCES 529 XV CHAPTER 20 INCREASED
LAUNCHING CAPABILITIES AT AEDC S RANGE/TRACK G 531 LARRY CAMPBELL, SR,
JACOBS SVERDRUP, ARNOLD ENGINEERING DEVELOPMENT CENTER, ARNOLD AIR FORCE
BASE, TENNESSEE I. INTRODUCTION 531 II. DEVELOPMENT OF THE 8-IN.
LAUNCHER . 532 A. INTRODUCTION 532 B. HIGH-FIDELITY MODEL 533 C.
CONVERSION PROCESS 534 D. LICENSING 535 E. MODEL DESIGN 536 F. ANGLE OF
ATTACK 537 G. DEVELOPMENT TO DATE ON THE 8-IN. LAUNCHER 538 III.
DEVELOPMENT OF THE 4-IN. LAUNCHER 538 A. INTRODUCTION 538 B. DESIGN /
INSTALLATION PROCESS 539 IV. TECHNOLOGY OVERVIEW FOR 10 KM/S . 542 A.
ULTRA HIGH PRESSURE-HIGH PRESSURE SECTION CONCEPT 544 B. INJECTION
CONCEPT 548 C. TWO-STAGE PISTON CONCEPT 549 D. LABORATORY DEVICE DESIGN
551 V. CONCLUSION 553 REFERENCES 554 CHAPTER 21 A NEW MACH 8-15 TRUE
TEMPERATURE TEST FACILITY CONCEPT 555 J. T. BEST, ARNOLD ENGINEERING
DEVELOPMENT CENTER, ARNOLD AIR FORCE BASE, TENNESSEE I. INTRODUCTION AND
BACKGROUND 555 II. RDHWT/MARIAH II PROGRAM 558 III. ASSESSMENT OF TEST
NEEDS 558 A. HYPERSONIC FLIGHT SYSTEMS TEST REQUIREMENTS 560 B.
AIR-BREATHING PROPULSION TEST REQUIREMENTS 561 C. JET INTERACTION TEST
REQUIREMENTS 562 D. AERO-OPTICAL TEST REQUIREMENTS 562 IV. RDHWT/MARIAH
II FACILITY CONCEPT DEVELOPMENT PROGRAM OVERVIEW 563 A.
ULTRA-HIGH-PRESSURE AIR SUPPLY 565 B. NOZZLE AND THROAT SECTIONS 567 C.
SUPERSONIC THERMAL ENERGY ADDITION SYSTEMS 569 D. MAGNETOHYDRODYNAMIC
(MHD) AUGMENTATION 575 E. INTEGRATED SYSTEM 578 V. CONCLUSIONS 581
ACKNOWLEDGMENTS 581 REFERENCES 582 XVI CHAPTER 22 NEW-GENERATION
HYPERSONIC ADIABATIC COMPRESSION FACILITIES WITH PRESSURE MULTIPLIERS
585 A. M. KHARITONOV, V. I. ZVEGINTSEV, V. M. FOMIN, M. E. TOPCHIAN, A.
A. MESHCHERIAKOV, AND V. I. PINAKOV, SIBERIAN BRANCH OF THE RUSSIAN
ACADEMY OF SCIENCES, NOVOSIBIRSK RUSSIA I. INTRODUCTION 585 II.
SIMULATION OF HYPERSONIC FLOWS IN EXISTING WIND TUNNELS 587 III.
ADVANTAGES OF USING HIGH PRESSURES 594 IV. OUR CONCEPT 595 V. HYPERSONIC
GASDYNAMIC FACILITY OF ADIABATIC COMPRESSION A-L. . . 597 VI. CHOICE OF
THE LAYOUT, CONSTRUCTION, AND OPERATION OF THE STAGE OF PRELIMINARY
COMPRESSION 597 VII. OPERATION PRINCIPLE OF A-L 600 VIII. HIGH-PRESSURE
UNIT 601 IX. TEST RESULTS AND USE 605 X. ADIABATIC COMPRESSION
HYPERSONIC WIND TUNNEL AT-303 607 XI. CONTROL OF THE SYSTEM AND
MEASUREMENT EQUIPMENT OF AT-303 . . . 609 XII. RANGE OF PARAMETERS 609
XIII. NON-UNIFORMITY OF THE VELOCITY FIELD IN THE REGION OF MODEL
LOCATION 613 XIV. CONCLUSIONS 615 REFERENCES 616 XVII
|
adam_txt |
ADVANCED HYPERSONIC TEST FACILITIES EDITED BY FRANK LU UNIVERSITY OF
TEXAS AT ARLINGTON ARLINGTON, TEXAS DAN MARREN ARNOLD ENGINEERING
DEVELOPMENT CENTER WHITE OAK, MARYLAND VOLUME 198 PROGRESS IN
ASTRONAUTICS AND AERONAUTICS PAUL ZARCHAN, EDITOR-IN-CHIEF MIT LINCOLN
LABORATORY LEXINGTON, MASSACHUSETTS PUBLISHED BY THE AMERICAN INSTITUTE
OF AERONAUTICS AND ASTRONAUTICS, INC. 1801 ALEXANDER BELL DRIVE, RESTON,
VIRGINIA 20191-4344 TABLE OF CONTENTS PREFACE XIX CHAPTER 1 HYPERSONIC
GROUND TEST REQUIREMENTS 1 DENNIS M. BUSHNELL, NASA LANGLEY RESEARCH
CENTER, HAMPTON, VIRGINIA I. INTRODUCTION . . : 1 II. HISTORY, STATUS,
AND OUTLOOK FOR HYPERSONIC TEST REQUIREMENTS . 2 III. POTENTIAL
CIVILIAN HYPERSONIC TEST REQUIREMENTS FUTURES 4 A. PLANETARY EXPLORATION
4 B. ACCESS TO SPACE 4 IV. MILITARY HYPERSONIC TEST REQUIREMENTS FUTURES
11 A. ACCESS TO SPACE 11 B. MISSILES 12 V. CONCLUSION 13 REFERENCES 13
CHAPTER 2 PRINCIPLES OF HYPERSONIC TEST FACILITY DEVELOPMENT 17 FRANK K.
LU, UNIVERSITY OF TEXAS AT ARLINGTON, ARLINGTON TEXAS; AN D DAN E.
MARREN, ARNOLD ENGINEERING DEVELOPMENT CENTER, WHITE OAK, MARYLAND I.
INTRODUCTION 17 II. CRITICAL HYPERSONIC TECHNOLOGIES -.-.- 18 III.
HYPERSONIC SCALING 20 IV. HIGH ENTHALPY AND HIGH SPEED 21 V. TYPES OF
HYPERSONIC FACILITIES 24 VI. CONCLUSIONS '.: 26 ACKNOWLEDGMENTS 27
REFERENCES 27 CHAPTER 3 NASA'S HYPULSE FACILITY AT GASL - A DUAL MODE,
DUAL DRIVER REFLECTED-SHOCK/EXPANSION TUNNEL 29 R. S. M. CHUE, C.-Y.
TSAI, R. J. BAKOS, AND J. I. ERDOS, GASL DIVISION, ALLIED AEROSPACE
INDUSTRIES, RONKONKOMA, NEW YORK; AND R. C. ROGERS, NASA LANGLEY
RESEARCH CENTER, HAMPTON, VIRGINIA I. INTRODUCTION 29 A. BACKGROUND 30
B. SCOPE OF THE CHAPTER ; 31 II. SHOCK TUNNELS AND EXPANSION TUBES 32 A.
SHOCK-HEATED FACILITIES 32 B. REFLECTED-SHOCK TUNNELS 33 C.
SHOCK-EXPANSION TUBES 35 VII III. DRIVER METHODS 36 A. LIGHTER GASES 37
B. ELECTRICALLY HEATED LIGHT GASES 38 C. COMBUSTION HEATED LIGHT GASES
38 D. COMPRESSIVELY HEATED LIGHT GASES (FREE-PISTON DRIVER) 39 E.
SUMMARY OF COMPARISON OF DRIVER TECHNIQUES 40 F. THE SHOCK-INDUCED
DETONATION DRIVER FOR HYPULSE 40 IV. OPERATION AND PERFORMANCE OF
HYPULSE 42 A. FACILITY CONFIGURATION AND SIZING 42 B. HYPULSE OPERATION
43 C. TEST CONDITIONS VERIFICATION 49 D. TEST TIME DETERMINATION 49 V.
DRIVER GAS CONTAMINATION IN DETONATION-DRIVEN RST MODE . 51 A. NOZZLE
FLOW 56 B. TRANSIENT DEVELOPMENT OF DRIVER-GAS LEAKAGE 59 VI. NOZZLE
DESIGN FOR EXPANSION TUNNEL MODE OPERATION 61 A. SKIMMER NOZZLES 63 B.
FULL CAPTURE CONTOURED INLET ASYMPTOTING TO A CONICAL PROFILE 64 C.
VERIFICATION WITH EXPERIMENTS 65 VII. CONCLUDING REMARKS 68
ACKNOWLEDGMENTS 69 REFERENCES 69 CHAPTER 4 LENS HYPERVELOCITY TUNNELS
AND APPLICATION TO VEHICLE TESTING AT DUPLICATED FLIGHT CONDITIONS 73 M.
S. HOLDEN AND R. A. PARKER, CALSPAN-UB RESEARCH CENTER BUFFALO, * NEW
YORK I. INTRODUCTION 73 II. GROUND TEST SIMULATION OF HYPERSONIC FLIGHT
PERFORMANCE 74 III. DESIGN, OPERATION, AND PERFORMANCE OF THE LENS I AND
LENS II HYPERVELOCITY GROUND TEST FACILITIES 80 A. INTRODUCTION 80 B.
DESIGN AND OPERATION OF THE LENS I AND II SHOCK TUNNELS. . 80 C.
AEROTHERMAL, AERO-OPTIC, AND RADIATION INSTRUMENTATION , SUITES 82 IV.
FACILITY VALIDATION : 86 V. APPLICATION OF TEST FACILITY AND
INSTRUMENTATION TO HYPERSONIC VEHICLE TESTING 90 A. EVALUATION OF THE
AEROTHERMAL AND AERO-OPTICAL CHARACTERISTICS OF HIGH-SPEED INTERCEPTORS
90 B. EXAMPLES OF AEROTHERMAL MEASUREMENTS TO EVALUATE SEEKERHEAD
PERFORMANCE 91 C. EXAMPLE OF AERO-OPTIC MEASUREMENTS ON INTERCEPTOR
SEEKERHEAD CONFIGURATIONS 96 VI. MEASUREMENTS OF JET INTERACTION
RESULTING FROM DIVERT THRUSTER OPERATION 100 VIII A. INTRODUCTION 100 B.
FLOWFIELD AND AEROTHERMAL CHARACTERISTICS 101 C. SPECTROMETER AND
RADIOMETER MEASUREMENTS OF FLOWFIELD OBSCURATION PHENOMENA 102 VII.
STUDIES OF SCRAMJET PERFORMANCE * 104 A. INTRODUCTION 104 B. SHOCK
INTERACTION PHENOMENA OCCURRING IN THE ENGINE 107 VIII. CONCLUSION 107
REFERENCES 109 CHAPTER 5 THE U-12 LARGE SHOCK TUBE ILL V. I. LAPYGIN, I.
V. ERSHOV, S. S. SEMENOV, AND E. I. RUZAVIN, CENTRAL SCIENTIFIC RESEARCH
INSTITUTE OF MECHANICAL ENGINEERING (TSNIIMASH), MOSCOW REGION, RUSSIA
I. INTRODUCTION ILL II. DESCRIPTION OF THE U-12 SHOCK TUBE 112 III.
OPERATION REGIMES 114 IV. AERODYNAMIC INVESTIGATIONS 118 V. MEASUREMENTS
OF FORCES AND MOMENTS ON FLIGHT VEHICLE MODELS. . 123 VI. INVESTIGATION
OF NONEQUILIBRIUM PROCESSES BEHIND SHOCKWAVE FRONT IN EARTH AND
PLANETARY ATMOSPHERES 124 VII. RADIO-PHYSICAL INVESTIGATIONS AT U-12
FACILITY 128 VIII. BALLISTIC REGIME OF U-12 SHOCK TUBE OPERATION . . . .
. . 130 A. ELECTROMAGNETIC DEVICE FOR A DISK GYRO-STABILIZATION 131 B.
DIAPHRAGM UNIT 132 C. BRAKE ASSEMBLY 132 IX. CONCLUSIONS 133 REFERENCES
133 CHAPTER 6 DETONATION-DRIVEN SHOCK TUBES AND TUNNELS 135 HERBERT
OLIVIER, SHOCK WAVE LABORATORY, RWTH AACHEN UNIVERSITY, AACHEN, GERMANY;
JIANG ZONGLIN AND HONGRU R. YU, INSTITUTE OF, MECHANICS, CHINESE ACADEMY
OF SCIENCES, BEIJING, CHINA; AND FRANK K. LU, UNIVERSITY OF TEXAS AT
ARLINGTON, ARLINGTON TEXAS I. INTRODUCTION 135 II. GASDYNAMIC
FUNDAMENTALS OF THE DETONATION PROCESS 137 III. OPERATING PRINCIPLE
DETONATION DRIVERS 141 A. UPSTREAM MODE . 141 B. DOWNSTREAM MODE 142 IV.
THE DETONATION-DRIVEN SHOCK TUNNEL TH2-D 144 A. SETUP OF THE FACILITY
144 B. INITIATION OF THE DETONATION WAVE 147 C. WAVE PROCESSES IN THE
DETONATION AND DAMPING SECTION . 150 D. WAVE PROCESSES IN THE DRIVEN
SECTION 153 E. CALIBRATION OF TEST SECTION FLOW ; 156 V. THE JF-10
DETONATION-DRIVEN, HIGH-ENTHALPY SHOCK TUNNEL 162 A. GAS FILLING AND
MIXING SYSTEM 163 IX B. DETONATION IGNITION 164 C. ATTENUATION OF THE
INCIDENT SHOCKWAVES 165 D. CALIBRATION RESULTS 167 E. FORWARD-DETONATION
DRIVER WITH A CAVITY RING 168 F. DOUBLE-DETONATION DRIVER : : 174 G.
DETONATION DRIVER WITH A CONVERGING THROAT 178 VI. THE UTA
HIGH-PERFORMANCE SHOCK TUBE 182 VII. PERFORMANCE OF DETONATION-DRIVEN
FACILITIES 195 VIII. CONCLUSIONS 200 REFERENCES 200 CHAPTER 7
AEROTHERMODYNAMICS RESEARCH IN THE 1 DLR HIGH ENTHALPY SHOCK TUNNEL HEG
205 KLAUS HANNEMANN AND WALTER H. BECK, INSTITUTE OF AERODYNAMICS AND
FLOW TECHNOLOGY, GERMAN AEROSPACE CENTER DLR, GOTTINGEN, GERMANY I.
INTRODUCTION 205 II. THE HEG FACILITY 207 A. OPERATION 207 B. GEOMETRY
OF THE CONICAL HEG NOZZLE 208 III. MEASUREMENT TECHNIQUES 209 A.
CLASSICAL 209 B. SPECTROSCOPIC 210 C. TIME-RESOLVED SCHLIEREN 210 D.
FORCES 211 IV. THE NUMERICAL SOLVER CEVCATS-N 211 V. NOZZLE FLOW AND
FREESTREAM 213 A. CHEMICAL/THERMAL EQUILIBRIUM/NONEQUILIBRIUM 213 B.
TEMPORAL DEVELOPMENT OF FLOW. . . 215 C. DRIVER GAS CONTAMINATION 217
VI.- FLOW PAST A CIRCULAR CYLINDER 219 VII. DELAY OF DRIVER GAS
CONTAMINATION 224 VIII. CURRENT WORK 229 A. X-38/CRV RESCUE VEHICLE \
229 B. ATMOSPHERIC REENTRY DEMONSTRATOR 232 IX. SUMMARY AND CONCLUSIONS
. 233 ACKNOWLEDGMENTS 234 REFERENCES 234 CHAPTER 8 CHARACTERISTICS OF
THE HIEST AND ITS APPLICABILITY FOR HYPERSONIC AEROTHERMODYNAMIC AND
SCRAMJET RESEARCH 239 KATSUHIRO ITOH, NATIONAL AEROSPACE LABORATORY,
KAKUDA SPACE PROPULSION LABORATORY, KAKUDA, JAPAN I. INTRODUCTION 239
II. DESCRIPTION, GENERAL PERFORMANCE, AND LIMITATIONS OF THE HIEST . 240
A. DESCRIPTION 240 B. GENERAL PERFORMANCE 241 C. LIMITATIONS WITH THE
NOZZLE FLOW 243 X III. HOPE AERODYNAMIC TEST 246 IV. SURFACE CATALYTIC
EFFECT ON HEAT FLUX 247 V. SCRAMJET 249 VI. CONCLUSIONS 252 REFERENCES
-253 CHAPTER 9 PISTON GASDYNAMIC UNITS WITH MULTICASCADE COMPRESSION 255
VITALY V. KISLYKH, TSNIIMASH, MOSCOW, RUSSIA I. INTRODUCTION 255 II. THE
MULTICASCADE COMPRESSION PGU COMPLEX 261 III. THE MULTICASCADE
COMPRESSION METHOD 263 IV. METHODS FOR SIMULATING THE MAIN EXTERNAL
HYPERSONIC FLOW 266 V. SIMULATION OF ENGINE JETS EFFECT ON AFT ELEMENTS
OF LAUNCHERS FOR SPACE TRANSPORTATION SYSTEM 269 VI. SUPERSONIC
COMBUSTION TESTS IN THE PGU 271 VII. CONCLUSION 274 ACKNOWLEDGMENTS 275
REFERENCES 275 CHAPTER 10 ARC-HEATED FACILITIES 279 D. M. SMITH, E. J.
FELDERMAN, AND F. L. SHOPE, SVERDRUP TECHNOLOGY, INC., ARNOLD AIR FORCE
BASE, TENNESSEE; AND J. A. BALBONI, NASA AMES RESEARCH CENTER, MOJFETT
FIELD, CALIFORNIA I. INTRODUCTION 279 II. ARC HEATERS AND HYPERSONIC
TESTING 280 A. PURPOSE AND HISTORY OF ARC HEATERS 280 B. TYPES OF ARC
FACILITIES 282 C. ARC HEATER TEST CELL CONFIGURATIONS 285 D. ARC HEATER
TEST APPLICATIONS 286 III. DOD AND NASA ARC FACILITY OVERVIEW 290 A. DOD
ARCS , 290 B. NASA ARCS . . 293 IV. ARC HEATER TECHNOLOGY TOPICS UPDATE
298 A. FACILITY TECHNOLOGY 298 B. TESTING TECHNIQUES 301 C. FACILITY
INSTRUMENTATION 303 D. ARC MODELING/SIMULATION 304 V. SUMMARY /. 310
ACKNOWLEDGMENTS 311 REFERENCES , 311 CHAPTER 11 THE SCIROCCO 70-MW
PLASMA WIND TUNNEL: A NEW HYPERSONIC CAPABILITY 315 G. RUSSO, F. DE
FILIPPIS, S. BORRELLI, M. MARINI, AND S. CARISTIA, CIRA, CENTRA ITALIANO
RICERCHE AEROSPAZIALI, VIA MAIORISE, CAPUA, ITALY I. INTRODUCTION 315 XI
II. THE FACILITY 317 A. PROCESS DESCRIPTION 317 B. FACILITY PERFORMANCES
318 C. TECHNICAL DATA OF MAIN COMPONENTS 319 D. FACILITY COMMISSIONING
STATUS AND QUALIFICATION 323 III. THE HYPERSONIC CHALLENGE: FUTURE AND
POTENTIAL APPLICATIONS . 325 A. GENERALITIES 325 B. TEST CHAMBER FLOW
ENVIRONMENT 331 C. AERODYNAMIC SIMULATION CAPABILITIES 338 D.
AIR-BREATHING PROPULSION SIMULATION CAPABILITIES 339 IV. SCIROCCO
EVOLUTION 344 A. POTENTIAL AERODYNAMIC UPGRADE 344 B. POTENTIAL
AIR-BREATHING PROPULSION UPGRADE 346 V. CONCLUSIONS 349 REFERENCES 349
CHAPTER 12 AERODYNAMIC AND PROPULSION TEST UNIT 353 S. J. RIGNEY AND G.
D. GARRARD, SVERDRUP TECHNOLOGY, INC., ARNOLD AIR FORCE BASE, TENNESSEE
I. INTRODUCTION 353 II. GENERAL HYPERSONIC AEROPROPULSION SYSTEM TESTING
FUTURE REQUIREMENTS 355 III. APTU DESCRIPTION 357 A. PLANNED NEAR-TERM
INCREMENTAL APTU TEST CAPABILITY UPGRADES 359 B. MACH 6.5 FREE-JET TEST
CAPABILITY 359 C. LONGER TEST DURATION 360 D. ENHANCED ALTITUDE
SIMULATION .*-.* 361 1 -E. ENHANCED THRUST DETERMINATION 361 IV. PLANNED
MID- AND FAR-TERM INCREMENTAL APTU TEST CAPABILITY UPGRADES 362 A. MACH
8.0 FREE-JET TEST CAPABILITY I 362 B. INCREASED SCALE CAPABILITY 362 V.
APTU TECHNOLOGY TOPICS UPDATE . 363 A. TEST METHODOLOGIES 364 B.
ANALYSIS TECHNIQUES 365 VI. SUMMARY 372 ACKNOWLEDGMENT 373 REFERENCES
373 CHAPTER 13 ARC-HEATED FACILITIES AS A TOOL TO STUDY
AEROTHERMODYNAMIC PROBLEMS OF REENTRY VEHICLES 375 ALI GULHAN AND
BURKARD ESSER, GERMAN AEROSPACE CENTER (DLR), COLOGNE, GERMANY
NOMENCLATURE 375 I. INTRODUCTION 375 XII II. EXPERIMENTAL FACILITY AND
MEASUREMENT TECHNIQUES 377 III. FLOW CHARACTERIZATION 381 IV.
EXPERIMENTS ON LOCAL AEROTHERMODYNAMICS 384 V. CHARACTERIZATION AND
QUALIFICATION OF TPS COMPONENTS 390 VI. QUALIFICATION OF FLIGHT SENSORS
AT REENTRY CONDITIONS -394 VII. CONCLUDING REMARKS 400 ACKNOWLEDGMENTS
402 REFERENCES 402 CHAPTER 14 THE NASA LANGLEY RESEARCH CENTER 8-FT HIGH
TEMPERATURE TUNNEL 405 JEFFREY S. HODGE AND STEPHEN F. HARVIN, NASA
LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA I. INTRODUCTION 405 II.
FACILITY DESCRIPTION 407 A. MAJOR FACILITY COMPONENTS 407 B. MAJOR
FACILITY SYSTEMS 412 C. DATA ACQUISITION AND INSTRUMENTATION. . . 416
III. TEST CAPABILITIES 418 A. STRUCTURES AND MATERIALS ' 418 B.
AIRBREATHING PROPULSION 421 C. SYSTEM CONCEPT PERFORMANCE VALIDATION 422
IV. OPERATIONS 422 V. SUMMARY 424 REFERENCES 425 CHAPTER 15 NASA GLENN
RESEARCH CENTER'S HYPERSONIC TUNNEL FACILITY 427 MARK R. WOIKE AND BRIAN
P. WILLIS, NASA GLENN RESEARCH CENTER, PLUM BROOK STATION, SANDUSKY,
OHIO I. INTRODUCTION '*. 427 II. FACILITY HISTORY 428 III. FACILITY
DESCRIPTION 429 A. GRAPHITE STORAGE HEATER 430 B. FACILITY HOT TRAIN 432
C. FACILITY NOZZLES 433 D. TEST CHAMBER AND THRUST STAND ASSEMBLY 433 E.
DIFFUSER/STEAM EJECTOR SYSTEM 433 F. GASEOUS NITROGEN SYSTEM 434 G.
GASEOUS OXYGEN SYSTEM 434 H. COOLING WATER SYSTEMS 434 I. FACILITY
CONTROL SYSTEM 435 J. DATA SYSTEMS 436 K. TEST ARTICLE SUPPORT SYSTEMS
436 L. GASEOUS HYDROGEN FUEL SYSTEM 436 M. LIQUID JP FUEL SYSTEMS 437
XIII N. HIGH PRESSURE COOLING WATER 437 IV. TYPICAL FACILITY OPERATION
437 V. UNIQUE VALUE AND TESTING CAPABILITY 438 VI. SUMMARY AND
CONCLUSIONS 439 REFERENCES .439 CHAPTER 16 THE ONERA F4 HIGH-ENTHALPY
WIND TUNNEL 441 A. MASSON, PH. SAGNIER, AND A. K. MOHAMED, ONERA, LE
FAUGA-MAUZAC, FRANCE I. INTRODUCTION 441 II. PRINCIPLE AND DESCRIPTION
OF F4 FACILITY 443 A. PRINCIPLE OF THE F4 WIND TUNNEL 443 B. GENERAL
ARRANGEMENT AND NOZZLES 445 C. ARC CHAMBER 446 D. IMPULSE GENERATOR 448
E. VACUUM SYSTEM 448 F. DATA ACQUISITION UNIT 449 G. SCHLIEREN DEVICE
449 III. ADJUSTMENT AND CALIBRATION 449 A. CHRONOLOGICAL ACCOUNTS 449 B.
PRACTICES AND TECHNOLOGICAL ADJUSTMENTS 450 C. TEST SECTION CALIBRATIONS
452 D. RESERVOIR CONDITION EXAMINATIONS 453 E. NOZZLE FLOW AND
FREE-STREAM CHARACTERIZATION 455 IV. TYPICAL MODEL TESTS 459 A. FORCE
MEASUREMENT DEVICES 459 B. HEAT-TRANSFER RATE MEASUREMENTS 463 C.
PRESSURE MEASUREMENTS ". * 464 D. VISUALIZATION, SCHLIEREN, AND OPTICAL
DEVICES 464 V. CONCLUSION AND FUTURE PROSPECTS 465 REFERENCES ; . . . .
465 CHAPTER 17 THE AEDC HYPERVELOCITY WIND TUNNEL 9 467 DAN MARREN AND
JOHN LAFFERTY, ARNOLD ENGINEERING DEVELOPMENT CENTER, WHITE OAK,
MARYLAND I. INTRODUCTION 467 II. TUNNEL 9 FACILITY DESCRIPTION ; 468 A.
RECENT DEVELOPMENTS AND UPGRADES 470 B. MACH 10 HIGH REYNOLDS NUMBER 470
C. MACH 14 HIGH ALTITUDE 471 D. MACH 8 HIGH DYNAMIC PRESSURE (SHROUD
SEPARATION CAPABILITY) 472 E. MACH 8 ENVELOPE EXTENSION 473 F. MACH 16.5
NOZZLE 474 G. MACH 7 THERMAL STRUCTURAL FACILITY 475 H. TUNNEL 9
AERO-OPTICAL SUITE 475 XIV I. SUBSYSTEM ENHANCEMENT 476 III. CONCLUSION
477 REFERENCES 477 CHAPTER 18 A HYPERSONIC GROUND-TEST FACILITY USING
MAGNETIC LEVITATION AND ELECTROMAGNETIC PROPULSION 479 NEIL BOSMAJIAN,
THE BOEING COMPANY, HUNTINGTON BEACH, CALIFORNIA I. INTRODUCTION 479 II.
BACKGROUND 480 III. OVERVIEW 481 IV. FACILITY CONCEPT 484 V. SYSTEM
REQUIREMENTS 486 VI. TEST TECHNIQUES 488 VII. ISSUES 492 VIII.
LEVERAGING TECHNOLOGY PROGRAMS 493 IX. FUTURE EFFORTS 494 X. SUMMARY : :
495 REFERENCES , 496 CHAPTER 19 HYPERSONIC TEST CAPABILITIES AT THE
HOLLOMAN HIGH-SPEED TEST TRACK 499 DAVID W. MINTO, HOLLOMAN HIGH SPEED
TEST TRACK, HOLLOMAN AIR FORCE BASE, NEW MEXICO; AND NEIL BOSMAJIAN, THE
BOEING COMPANY, HUNTINGTON BEACH, CALIFORNIA I. INTRODUCTION 499 II.
HHSTT HYPERSONIC UPGRADE PROGRAM 502 A. BACKGROUND V ;- 502 B. MODELING
AND SIMULATION TOOL IMPROVEMENT 502 C. SLED DESIGN IMPROVEMENT 503 D.
FACILITY IMPROVEMENT 503 E. ADVANCED ROCKET MOTOR DEVELOPMENT 505 III.
HHSTT HYPERSONIC CAPABILITIES 505 A. TEST ITEMS NOT RECOVERED 505 B.
RECOVERED TEST ITEMS 506 IV. MAGLEV TEST TRACK DEVELOPMENT 510 A.
BACKGROUND 510 B. DESIGN EVOLUTION 511 C. SYSTEM DESCRIPTION 516 D.
SYSTEM CHARACTERISTICS 518 E. DEVELOPMENT TOOLS TO ASSESS SYSTEM
CHARACTERISTICS 520 F. MAGLEV TEST OPERATIONS . . . . : 525 G. PREDICTED
SYSTEM PERFORMANCE ENVELOPES 527 H. PROJECTED TEST APPLICATIONS 527 V.
CONCLUSION 529 ACKNOWLEDGMENT 529 REFERENCES 529 XV CHAPTER 20 INCREASED
LAUNCHING CAPABILITIES AT AEDC'S RANGE/TRACK G 531 LARRY CAMPBELL, SR,
JACOBS SVERDRUP, ARNOLD ENGINEERING DEVELOPMENT CENTER, ARNOLD AIR FORCE
BASE, TENNESSEE I. INTRODUCTION 531 II. DEVELOPMENT OF THE 8-IN.
LAUNCHER . 532 A. INTRODUCTION 532 B. HIGH-FIDELITY MODEL 533 C.
CONVERSION PROCESS 534 D. LICENSING 535 E. MODEL DESIGN 536 F. ANGLE OF
ATTACK 537 G. DEVELOPMENT TO DATE ON THE 8-IN. LAUNCHER 538 III.
DEVELOPMENT OF THE 4-IN. LAUNCHER 538 A. INTRODUCTION 538 B. DESIGN /
INSTALLATION PROCESS 539 IV. TECHNOLOGY OVERVIEW FOR 10 KM/S . 542 A.
ULTRA HIGH PRESSURE-HIGH PRESSURE SECTION CONCEPT 544 B. INJECTION
CONCEPT 548 C. TWO-STAGE PISTON CONCEPT 549 D. LABORATORY DEVICE DESIGN
551 V. CONCLUSION 553 REFERENCES 554 CHAPTER 21 A NEW MACH 8-15 TRUE
TEMPERATURE TEST FACILITY CONCEPT 555 J. T. BEST, ARNOLD ENGINEERING
DEVELOPMENT CENTER, ARNOLD AIR FORCE BASE, TENNESSEE I. INTRODUCTION AND
BACKGROUND 555 II. RDHWT/MARIAH II PROGRAM 558 III. ASSESSMENT OF TEST
NEEDS 558 A. HYPERSONIC FLIGHT SYSTEMS TEST REQUIREMENTS 560 B.
AIR-BREATHING PROPULSION TEST REQUIREMENTS 561 C. JET INTERACTION TEST
REQUIREMENTS 562 D. AERO-OPTICAL TEST REQUIREMENTS 562 IV. RDHWT/MARIAH
II FACILITY CONCEPT DEVELOPMENT PROGRAM OVERVIEW 563 A.
ULTRA-HIGH-PRESSURE AIR SUPPLY 565 B. NOZZLE AND THROAT SECTIONS 567 C.
SUPERSONIC THERMAL ENERGY ADDITION SYSTEMS 569 D. MAGNETOHYDRODYNAMIC
(MHD) AUGMENTATION 575 E. INTEGRATED SYSTEM 578 V. CONCLUSIONS 581
ACKNOWLEDGMENTS 581 REFERENCES 582 XVI CHAPTER 22 NEW-GENERATION
HYPERSONIC ADIABATIC COMPRESSION FACILITIES WITH PRESSURE MULTIPLIERS
585 A. M. KHARITONOV, V. I. ZVEGINTSEV, V. M. FOMIN, M. E. TOPCHIAN, A.
A. MESHCHERIAKOV, AND V. I. PINAKOV, SIBERIAN BRANCH OF THE RUSSIAN
ACADEMY OF SCIENCES, NOVOSIBIRSK RUSSIA I. INTRODUCTION 585 II.
SIMULATION OF HYPERSONIC FLOWS IN EXISTING WIND TUNNELS 587 III.
ADVANTAGES OF USING HIGH PRESSURES 594 IV. OUR CONCEPT 595 V. HYPERSONIC
GASDYNAMIC FACILITY OF ADIABATIC COMPRESSION A-L. . . 597 VI. CHOICE OF
THE LAYOUT, CONSTRUCTION, AND OPERATION OF THE STAGE OF PRELIMINARY
COMPRESSION 597 VII. OPERATION PRINCIPLE OF A-L 600 VIII. HIGH-PRESSURE
UNIT 601 IX. TEST RESULTS AND USE 605 X. ADIABATIC COMPRESSION
HYPERSONIC WIND TUNNEL AT-303 607 XI. CONTROL OF THE SYSTEM AND
MEASUREMENT EQUIPMENT OF AT-303 . . . 609 XII. RANGE OF PARAMETERS 609
XIII. NON-UNIFORMITY OF THE VELOCITY FIELD IN THE REGION OF MODEL
LOCATION 613 XIV. CONCLUSIONS 615 REFERENCES 616 XVII |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022170596 |
callnumber-first | T - Technology |
callnumber-label | TL571 |
callnumber-raw | TL571.5 |
callnumber-search | TL571.5 |
callnumber-sort | TL 3571.5 |
callnumber-subject | TL - Motor Vehicles and Aeronautics |
ctrlnum | (OCoLC)51253716 (DE-599)BVBBV022170596 |
dewey-full | 629.132306 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.132306 |
dewey-search | 629.132306 |
dewey-sort | 3629.132306 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Verkehr / Transport |
discipline_str_mv | Verkehr / Transport |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02531nam a2200625zcb4500</leader><controlfield tag="001">BV022170596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">021018s2002 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1563475413</subfield><subfield code="9">1-56347-541-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51253716</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022170596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL571.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.132306</subfield><subfield code="2">21</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced hypersonic test facilities</subfield><subfield code="c">ed. by Frank Lu ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reston, Va.</subfield><subfield code="b">AIAA</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 639 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in astronautics and aeronautics</subfield><subfield code="v">198</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aérodynamique hypersonique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Champs de tir balistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chariots à fusée</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Souffleries aérodynamiques - Simulateurs de sol - Essais</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamics, Hypersonic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ballistic ranges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypersonic wind tunnels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rocket sleds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überschallströmung</subfield><subfield code="0">(DE-588)4186626-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperschallbereich</subfield><subfield code="0">(DE-588)4161092-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überschallflugzeug</subfield><subfield code="0">(DE-588)4186622-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Windkanal</subfield><subfield code="0">(DE-588)4189940-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoßwellenrohr</subfield><subfield code="0">(DE-588)4183445-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmawindkanal</subfield><subfield code="0">(DE-588)4529416-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Windkanal</subfield><subfield code="0">(DE-588)4189940-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Plasmawindkanal</subfield><subfield code="0">(DE-588)4529416-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stoßwellenrohr</subfield><subfield code="0">(DE-588)4183445-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Hyperschallbereich</subfield><subfield code="0">(DE-588)4161092-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Überschallflugzeug</subfield><subfield code="0">(DE-588)4186622-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Überschallströmung</subfield><subfield code="0">(DE-588)4186626-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Überschallströmung</subfield><subfield code="0">(DE-588)4186626-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Frank K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in astronautics and aeronautics</subfield><subfield code="v">198</subfield><subfield code="w">(DE-604)BV001890233</subfield><subfield code="9"></subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385300&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015385300</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV022170596 |
illustrated | Illustrated |
index_date | 2024-07-02T16:19:52Z |
indexdate | 2024-07-09T20:51:44Z |
institution | BVB |
isbn | 1563475413 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015385300 |
oclc_num | 51253716 |
open_access_boolean | |
owner | DE-706 DE-634 DE-83 DE-91G DE-BY-TUM |
owner_facet | DE-706 DE-634 DE-83 DE-91G DE-BY-TUM |
physical | XX, 639 S. Ill., graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | AIAA |
record_format | marc |
series | Progress in astronautics and aeronautics |
series2 | Progress in astronautics and aeronautics |
spelling | Advanced hypersonic test facilities ed. by Frank Lu ... Reston, Va. AIAA 2002 XX, 639 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in astronautics and aeronautics 198 Literaturangaben Aérodynamique hypersonique Champs de tir balistiques Chariots à fusée Souffleries aérodynamiques - Simulateurs de sol - Essais Aerodynamics, Hypersonic Ballistic ranges Hypersonic wind tunnels Rocket sleds Überschallströmung (DE-588)4186626-5 gnd rswk-swf Hyperschallbereich (DE-588)4161092-1 gnd rswk-swf Überschallflugzeug (DE-588)4186622-8 gnd rswk-swf Windkanal (DE-588)4189940-4 gnd rswk-swf Stoßwellenrohr (DE-588)4183445-8 gnd rswk-swf Plasmawindkanal (DE-588)4529416-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Windkanal (DE-588)4189940-4 s Plasmawindkanal (DE-588)4529416-1 s Stoßwellenrohr (DE-588)4183445-8 s Hyperschallbereich (DE-588)4161092-1 s Überschallflugzeug (DE-588)4186622-8 s Überschallströmung (DE-588)4186626-5 s 1\p DE-604 DE-604 Lu, Frank K. Sonstige oth Progress in astronautics and aeronautics 198 (DE-604)BV001890233 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385300&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Advanced hypersonic test facilities Progress in astronautics and aeronautics Aérodynamique hypersonique Champs de tir balistiques Chariots à fusée Souffleries aérodynamiques - Simulateurs de sol - Essais Aerodynamics, Hypersonic Ballistic ranges Hypersonic wind tunnels Rocket sleds Überschallströmung (DE-588)4186626-5 gnd Hyperschallbereich (DE-588)4161092-1 gnd Überschallflugzeug (DE-588)4186622-8 gnd Windkanal (DE-588)4189940-4 gnd Stoßwellenrohr (DE-588)4183445-8 gnd Plasmawindkanal (DE-588)4529416-1 gnd |
subject_GND | (DE-588)4186626-5 (DE-588)4161092-1 (DE-588)4186622-8 (DE-588)4189940-4 (DE-588)4183445-8 (DE-588)4529416-1 (DE-588)4143413-4 |
title | Advanced hypersonic test facilities |
title_auth | Advanced hypersonic test facilities |
title_exact_search | Advanced hypersonic test facilities |
title_exact_search_txtP | Advanced hypersonic test facilities |
title_full | Advanced hypersonic test facilities ed. by Frank Lu ... |
title_fullStr | Advanced hypersonic test facilities ed. by Frank Lu ... |
title_full_unstemmed | Advanced hypersonic test facilities ed. by Frank Lu ... |
title_short | Advanced hypersonic test facilities |
title_sort | advanced hypersonic test facilities |
topic | Aérodynamique hypersonique Champs de tir balistiques Chariots à fusée Souffleries aérodynamiques - Simulateurs de sol - Essais Aerodynamics, Hypersonic Ballistic ranges Hypersonic wind tunnels Rocket sleds Überschallströmung (DE-588)4186626-5 gnd Hyperschallbereich (DE-588)4161092-1 gnd Überschallflugzeug (DE-588)4186622-8 gnd Windkanal (DE-588)4189940-4 gnd Stoßwellenrohr (DE-588)4183445-8 gnd Plasmawindkanal (DE-588)4529416-1 gnd |
topic_facet | Aérodynamique hypersonique Champs de tir balistiques Chariots à fusée Souffleries aérodynamiques - Simulateurs de sol - Essais Aerodynamics, Hypersonic Ballistic ranges Hypersonic wind tunnels Rocket sleds Überschallströmung Hyperschallbereich Überschallflugzeug Windkanal Stoßwellenrohr Plasmawindkanal Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385300&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001890233 |
work_keys_str_mv | AT lufrankk advancedhypersonictestfacilities |