Field theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Springer
2006
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Graduate texts in mathematics
158 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 332 S. graph. Darst. |
ISBN: | 0387276777 9780387276779 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022170525 | ||
003 | DE-604 | ||
005 | 20101215 | ||
007 | t | ||
008 | 060110s2006 d||| |||| 00||| eng d | ||
020 | |a 0387276777 |9 0-387-27677-7 | ||
020 | |a 9780387276779 |9 978-0-387-27677-9 | ||
035 | |a (OCoLC)255417730 | ||
035 | |a (DE-599)BVBBV022170525 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-91G |a DE-11 |a DE-526 |a DE-384 | ||
050 | 0 | |a QA247 | |
082 | 0 | |a 512.3 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a 17,1 |2 ssgn | ||
084 | |a MAT 120f |2 stub | ||
100 | 1 | |a Roman, Steven |e Verfasser |4 aut | |
245 | 1 | 0 | |a Field theory |c Steven Roman |
250 | |a 2. ed. | ||
264 | 1 | |a New York |b Springer |c 2006 | |
300 | |a XII, 332 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 158 | |
650 | 4 | |a Körpertheorie | |
650 | 0 | 7 | |a Feldtheorie |0 (DE-588)4016698-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Galois-Theorie |0 (DE-588)4155901-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Körper |g Algebra |0 (DE-588)4308063-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Körpertheorie |0 (DE-588)4164455-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Körper |g Algebra |0 (DE-588)4308063-7 |D s |
689 | 1 | 1 | |a Feldtheorie |0 (DE-588)4016698-3 |D s |
689 | 1 | 2 | |a Galois-Theorie |0 (DE-588)4155901-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Körpertheorie |0 (DE-588)4164455-4 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 158 |w (DE-604)BV000000067 |9 158 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015385228 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136145167056896 |
---|---|
adam_text | Contents
Preface vii
Contents ix
0 Preliminaries 1
0.1 Lattices 1
0.2 Groups 2
0.3 The Symmetric Group 10
0.4 Rings 10
0.5 Integral Domains 14
0.6 Unique Factorization Domains 16
0.7 Principal Ideal Domains 16
0.8 Euclidean Domains 17
0.9 Tensor Products 17
Exercises 19
Part I—Field Extensions
1 Polynomials 23
1.1 Polynomials over a Ring 23
1.2 Primitive Polynomials and Irreducibility 24
1.3 The Division Algorithm and Its Consequences 27
1.4 Splitting Fields 32
1.5 The Minimal Polynomial 32
1.6 Multiple Roots 33
1.7 Testing for Irreducibility 35
Exercises 38
2 Field Extensions 41
2.1 The Lattice of Subfields of a Field 41
2.2 Types of Field Extensions 42
2.3 Finitely Generated Extensions 46
2.4 Simple Extensions 47
2.5 Finite Extensions 53
2.6 Algebraic Extensions 54
x Contents
2.7 Algebraic Closures 56
2.8 Embeddings and Their Extensions 58
2.9 Splitting Fields and Normal Extensions 63
Exercises 66
3 Embeddings and Separability 73
3.1 Recap and a Useful Lemma 73
3.2 The Number of Extensions: Separable Degree 75
3.3 Separable Extensions 77
3.4 Perfect Fields 84
3.5 Pure Inseparability 85
*3.6 Separable and Purely Inseparable Closures 88
Exercises 91
4 Algebraic Independence 93
4.1 Dependence Relations 93
4.2 Algebraic Dependence 96
4.3 Transcendence Bases 100
*4.4 Simple Transcendental Extensions 105
Exercises 108
Part II—Galois Theory
5 Galois Theory I: An Historical Perspective 113
5.1 The Quadratic Equation 113
5.2 The Cubic and Quartic Equations 114
5.3 Higher Degree Equations 116
5.4 Newton s Contribution: Symmetric Polynomials 117
5.5 Vandermonde 119
5.6 Lagrange 121
5.7 Gauss 124
5.8 Back to Lagrange 128
5.9 Galois 130
5.10 A Very Brief Look at the Life of Galois 135
6 Galois Theory II: The Theory 137
6.1 Galois Connections 137
6.2 The Galois Correspondence 143
6.3 Who s Closed? 148
6.4 Normal Subgroups and Normal Extensions 154
6.5 More on Galois Groups 159
6.6 Abelian and Cyclic Extensions 164
*6.7 Linear Disjointness 165
Exercises 168
7 Galois Theory III: The Galois Group of a Polynomial 173
7.1 The Galois Group of a Polynomial 173
7.2 Symmetric Polynomials 174
7.3 The Fundamental Theorem of Algebra 179
Contents xi
7.4 The Discriminant of a Polynomial 180
7.5 The Galois Groups of Some Small Degree Polynomials 182
Exercises 193
8 A Field Extension as a Vector Space 197
8.1 The Norm and the Trace 197
*8.2 Characterizing Bases 202
*8.3 The Normal Basis Theorem 206
Exercises 208
9 Finite Fields I: Basic Properties 211
9.1 Finite Fields Redux 211
9.2 Finite Fields as Splitting Fields 212
9.3 The Subfields of a Finite Field 213
9.4 The Multiplicative Structure of a Finite Field 214
9.5 The Galois Group of a Finite Field 215
9.6 Irreducible Polynomials over Finite Fields 215
*9.7 Normal Bases 218
*9.8 The Algebraic Closure of a Finite Field 219
Exercises 223
10 Finite Fields II: Additional Properties 225
10.1 Finite Field Arithmetic 225
*10.2 The Number of Irreducible Polynomials 232
*10.3 Polynomial Functions 234
*10.4 Linearized Polynomials 236
Exercises 238
11 The Roots of Unity 239
11.1 Roots of Unity 239
11.2 Cyclotomic Extensions 241
*11.3 Normal Bases and Roots of Unity 250
*11.4 Wedderburn s Theorem 251
*11.5 Realizing Groups as Galois Groups 253
Exercises 257
12 Cyclic Extensions 261
12.1 Cyclic Extensions 261
12.2 Extensions of Degree Char(F) 265
Exercises 266
13 Solvable Extensions 269
13.1 Solvable Groups 269
13.2 Solvable Extensions 270
13.3 Radical Extensions 273
13.4 Solvability by Radicals 274
13.5 Solvable Equivalent to Solvable by Radicals 276
13.6 Natural and Accessory Irrationalities 278
13.7 Polynomial Equations 280
xii Contents
Exercises 282
Part III—The Theory of Binomials
14 Binomials 289
14.1 Irreducibility 289
14.2 The Galois Group of a Binomial 296
*14.3 The Independence of Irrational Numbers 304
Exercises 307
15 Families of Binomials 309
15.1 The Splitting Field 309
15.2 Dual Groups and Pairings 310
15.3 Kummer Theory 312
Exercises 316
Appendix: Mobius Inversion 319
Partially Ordered Sets 319
The Incidence Algebra of a Partially Ordered Set 320
Classical Mobius Inversion 324
Multiplicative Version of Mobius Inversion 325
References 327
Index 329
|
adam_txt |
Contents
Preface vii
Contents ix
0 Preliminaries 1
0.1 Lattices 1
0.2 Groups 2
0.3 The Symmetric Group 10
0.4 Rings 10
0.5 Integral Domains 14
0.6 Unique Factorization Domains 16
0.7 Principal Ideal Domains 16
0.8 Euclidean Domains 17
0.9 Tensor Products 17
Exercises 19
Part I—Field Extensions
1 Polynomials 23
1.1 Polynomials over a Ring 23
1.2 Primitive Polynomials and Irreducibility 24
1.3 The Division Algorithm and Its Consequences 27
1.4 Splitting Fields 32
1.5 The Minimal Polynomial 32
1.6 Multiple Roots 33
1.7 Testing for Irreducibility 35
Exercises 38
2 Field Extensions 41
2.1 The Lattice of Subfields of a Field 41
2.2 Types of Field Extensions 42
2.3 Finitely Generated Extensions 46
2.4 Simple Extensions 47
2.5 Finite Extensions 53
2.6 Algebraic Extensions 54
x Contents
2.7 Algebraic Closures 56
2.8 Embeddings and Their Extensions 58
2.9 Splitting Fields and Normal Extensions 63
Exercises 66
3 Embeddings and Separability 73
3.1 Recap and a Useful Lemma 73
3.2 The Number of Extensions: Separable Degree 75
3.3 Separable Extensions 77
3.4 Perfect Fields 84
3.5 Pure Inseparability 85
*3.6 Separable and Purely Inseparable Closures 88
Exercises 91
4 Algebraic Independence 93
4.1 Dependence Relations 93
4.2 Algebraic Dependence 96
4.3 Transcendence Bases 100
*4.4 Simple Transcendental Extensions 105
Exercises 108
Part II—Galois Theory
5 Galois Theory I: An Historical Perspective 113
5.1 The Quadratic Equation 113
5.2 The Cubic and Quartic Equations 114
5.3 Higher Degree Equations 116
5.4 Newton's Contribution: Symmetric Polynomials 117
5.5 Vandermonde 119
5.6 Lagrange 121
5.7 Gauss 124
5.8 Back to Lagrange 128
5.9 Galois 130
5.10 A Very Brief Look at the Life of Galois 135
6 Galois Theory II: The Theory 137
6.1 Galois Connections 137
6.2 The Galois Correspondence 143
6.3 Who's Closed? 148
6.4 Normal Subgroups and Normal Extensions 154
6.5 More on Galois Groups 159
6.6 Abelian and Cyclic Extensions 164
*6.7 Linear Disjointness 165
Exercises 168
7 Galois Theory III: The Galois Group of a Polynomial 173
7.1 The Galois Group of a Polynomial 173
7.2 Symmetric Polynomials 174
7.3 The Fundamental Theorem of Algebra 179
Contents xi
7.4 The Discriminant of a Polynomial 180
7.5 The Galois Groups of Some Small Degree Polynomials 182
Exercises 193
8 A Field Extension as a Vector Space 197
8.1 The Norm and the Trace 197
*8.2 Characterizing Bases 202
*8.3 The Normal Basis Theorem 206
Exercises 208
9 Finite Fields I: Basic Properties 211
9.1 Finite Fields Redux 211
9.2 Finite Fields as Splitting Fields 212
9.3 The Subfields of a Finite Field 213
9.4 The Multiplicative Structure of a Finite Field 214
9.5 The Galois Group of a Finite Field 215
9.6 Irreducible Polynomials over Finite Fields 215
*9.7 Normal Bases 218
*9.8 The Algebraic Closure of a Finite Field 219
Exercises 223
10 Finite Fields II: Additional Properties 225
10.1 Finite Field Arithmetic 225
*10.2 The Number of Irreducible Polynomials 232
*10.3 Polynomial Functions 234
*10.4 Linearized Polynomials 236
Exercises 238
11 The Roots of Unity 239
11.1 Roots of Unity 239
11.2 Cyclotomic Extensions 241
*11.3 Normal Bases and Roots of Unity 250
*11.4 Wedderburn's Theorem 251
*11.5 Realizing Groups as Galois Groups 253
Exercises 257
12 Cyclic Extensions 261
12.1 Cyclic Extensions 261
12.2 Extensions of Degree Char(F) 265
Exercises 266
13 Solvable Extensions 269
13.1 Solvable Groups 269
13.2 Solvable Extensions 270
13.3 Radical Extensions 273
13.4 Solvability by Radicals 274
13.5 Solvable Equivalent to Solvable by Radicals 276
13.6 Natural and Accessory Irrationalities 278
13.7 Polynomial Equations 280
xii Contents
Exercises 282
Part III—The Theory of Binomials
14 Binomials 289
14.1 Irreducibility 289
14.2 The Galois Group of a Binomial 296
*14.3 The Independence of Irrational Numbers 304
Exercises 307
15 Families of Binomials 309
15.1 The Splitting Field 309
15.2 Dual Groups and Pairings 310
15.3 Kummer Theory 312
Exercises 316
Appendix: Mobius Inversion 319
Partially Ordered Sets 319
The Incidence Algebra of a Partially Ordered Set 320
Classical Mobius Inversion 324
Multiplicative Version of Mobius Inversion 325
References 327
Index 329 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Roman, Steven |
author_facet | Roman, Steven |
author_role | aut |
author_sort | Roman, Steven |
author_variant | s r sr |
building | Verbundindex |
bvnumber | BV022170525 |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247 |
callnumber-search | QA247 |
callnumber-sort | QA 3247 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 200 SK 230 |
classification_tum | MAT 120f |
ctrlnum | (OCoLC)255417730 (DE-599)BVBBV022170525 |
dewey-full | 512.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.3 |
dewey-search | 512.3 |
dewey-sort | 3512.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02100nam a2200565zcb4500</leader><controlfield tag="001">BV022170525</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060110s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387276777</subfield><subfield code="9">0-387-27677-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387276779</subfield><subfield code="9">978-0-387-27677-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255417730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022170525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA247</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 120f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roman, Steven</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Field theory</subfield><subfield code="c">Steven Roman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 332 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">158</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Körpertheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Theorie</subfield><subfield code="0">(DE-588)4155901-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Körper</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4308063-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Körpertheorie</subfield><subfield code="0">(DE-588)4164455-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Körper</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4308063-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Galois-Theorie</subfield><subfield code="0">(DE-588)4155901-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Körpertheorie</subfield><subfield code="0">(DE-588)4164455-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">158</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">158</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015385228</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022170525 |
illustrated | Illustrated |
index_date | 2024-07-02T16:19:51Z |
indexdate | 2024-07-09T20:51:44Z |
institution | BVB |
isbn | 0387276777 9780387276779 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015385228 |
oclc_num | 255417730 |
open_access_boolean | |
owner | DE-706 DE-91G DE-BY-TUM DE-11 DE-526 DE-384 |
owner_facet | DE-706 DE-91G DE-BY-TUM DE-11 DE-526 DE-384 |
physical | XII, 332 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Roman, Steven Verfasser aut Field theory Steven Roman 2. ed. New York Springer 2006 XII, 332 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 158 Körpertheorie Feldtheorie (DE-588)4016698-3 gnd rswk-swf Galois-Theorie (DE-588)4155901-0 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Körper Algebra (DE-588)4308063-7 gnd rswk-swf Körpertheorie (DE-588)4164455-4 gnd rswk-swf Polynom (DE-588)4046711-9 s DE-604 Körper Algebra (DE-588)4308063-7 s Feldtheorie (DE-588)4016698-3 s Galois-Theorie (DE-588)4155901-0 s Körpertheorie (DE-588)4164455-4 s 1\p DE-604 Graduate texts in mathematics 158 (DE-604)BV000000067 158 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Roman, Steven Field theory Graduate texts in mathematics Körpertheorie Feldtheorie (DE-588)4016698-3 gnd Galois-Theorie (DE-588)4155901-0 gnd Polynom (DE-588)4046711-9 gnd Körper Algebra (DE-588)4308063-7 gnd Körpertheorie (DE-588)4164455-4 gnd |
subject_GND | (DE-588)4016698-3 (DE-588)4155901-0 (DE-588)4046711-9 (DE-588)4308063-7 (DE-588)4164455-4 |
title | Field theory |
title_auth | Field theory |
title_exact_search | Field theory |
title_exact_search_txtP | Field theory |
title_full | Field theory Steven Roman |
title_fullStr | Field theory Steven Roman |
title_full_unstemmed | Field theory Steven Roman |
title_short | Field theory |
title_sort | field theory |
topic | Körpertheorie Feldtheorie (DE-588)4016698-3 gnd Galois-Theorie (DE-588)4155901-0 gnd Polynom (DE-588)4046711-9 gnd Körper Algebra (DE-588)4308063-7 gnd Körpertheorie (DE-588)4164455-4 gnd |
topic_facet | Körpertheorie Feldtheorie Galois-Theorie Polynom Körper Algebra |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015385228&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT romansteven fieldtheory |