Advances in unmanned marine vehicles:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
London
Institution of Electrical Engineers
2006
|
Schriftenreihe: | IEE control engineering series
69 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XVIII, 441 S. Ill., graph. Darst. |
ISBN: | 0863414508 9780863414503 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022153971 | ||
003 | DE-604 | ||
005 | 20081212 | ||
007 | t | ||
008 | 050512s2006 ad|| |||| 00||| eng d | ||
020 | |a 0863414508 |9 0-86341-450-8 | ||
020 | |a 9780863414503 |9 978-0-86341-450-3 | ||
035 | |a (OCoLC)61757487 | ||
035 | |a (DE-599)BVBBV022153971 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-83 | ||
050 | 0 | |a TC1662 | |
082 | 0 | |a 629.046 |2 22 | |
245 | 1 | 0 | |a Advances in unmanned marine vehicles |c edited by Geoff Roberts and Robert Sutton |
264 | 1 | |a London |b Institution of Electrical Engineers |c 2006 | |
300 | |a XVIII, 441 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a IEE control engineering series |v 69 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Navires de recherche | |
650 | 4 | |a Robots sous-marins | |
650 | 4 | |a Véhicules télécommandés | |
650 | 4 | |a Remote submersibles | |
650 | 4 | |a Research vessels | |
650 | 4 | |a Vehicles, Remotely piloted | |
650 | 0 | 7 | |a Fernsteuerung |0 (DE-588)4016862-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kleinstunterseeboot |0 (DE-588)4300499-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unterseeboot |0 (DE-588)4078646-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fernsteuerung |0 (DE-588)4016862-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Unterseeboot |0 (DE-588)4078646-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kleinstunterseeboot |0 (DE-588)4300499-4 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Roberts, Geoffrey N. |e Sonstige |0 (DE-588)136914349 |4 oth | |
700 | 1 | |a Sutton, Robert |d 1948- |e Sonstige |0 (DE-588)136914314 |4 oth | |
830 | 0 | |a IEE control engineering series |v 69 |w (DE-604)BV001899902 |9 69 | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015368625&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015368625 |
Datensatz im Suchindex
_version_ | 1804136128173834240 |
---|---|
adam_text | * * * * * * * * * ***** * * * * * * * * * * * * * * * * * * * EDITORIAL:
N A V I G A T I O N , G U I D A N C E AND C O N T R O L O F
U N M A N N E D M A R I N E * V E H I C L E S 1 * G.N.
ROBERTS AND R. SUTTON 1.1 INTRODUCTION* I * 1.2 CONTRIBUTIONS* 4* 1.3
CONC1UDING REMARKS* 11* 2 * N O N L I N E A R M O D E L L I N G ,
I D E N T I F I C A T I O N A N D C O N T R O L O F U U V
S 13* TI. FOSSEN AND A. ROSS 2.1 INTRODUCTION* 13* 2.1.1 NOTATION* 13*
2.2 MODELLING OFUUVS* 14* 2.2.1 SIX DOF KINEMATIC EQUATIONS* 14* 2.2.2
KINETICS* 16* 2.2.3 EQUATIONS OF MOTION* 16* 2.2.4 EQUATIONS OFMOTION
INCLUDING OCEAN CURRENTS 19* 2.2.5 LONGITUDINAL AND LATERAL MODELS.* 20*
2.3 IDENTIFICATION OF UUVS* 24* 2.3.1 APRIORI ESTIMATES OF RIGID-BODY
PARAMETERS 25* 2.3.2 APRIORI ESTIMATES OF HYDRODYNAMIC ADDED MASS 25*
2.3.3 IDENTIFICATION OF DAMPING TERMS* 25* 2.4 NONLINEAR CONTROL OFUUVS*
31* 2.4.1 SPEED, DEPTH AND PITCH CONTROL* 32* 2.4.2 HEADING CONTROL* 37*
2.4.3 ALTERNATIVE METHODS OF CONTROL* 40* 2.5 CONC1USIONS* 40* VI
CONTENTS 3 GUIDANCE LAWS, OBSTACLE AVOIDANCE AND ARTIFICIAL POTENTIAL
FUNCTIONS 43 AJ HEALEY 3.1 INTRODUCTION 43 3.2 VEHICLE GUIDANCE, TRACK
FOLLOWING 44 3.2.1 VEHICLE STEERING MODEL 45 3.2.2 LINE OF SIGHT
GUIDANCE 46 3.2.3 CROSS-TRACK ERROR 47 3.2.4 LINE OF SIGHT WITH
CROSS-TRACK ERROR CONTROLLER 49 3.2.5 SLIDING MODE CROSS-TRACK ERROR
GUIDANCE 50 3.2.6 LARGE HEADING ERROR MODE 51 3.2.7 TRACK PATH
TRANSITIONS 52 3.3 OBSTACLE AVOIDANCE 52 3.3.1 PLANNED AVOIDANCE
DEVIATION IN PATH 52 3.3.2 REACTIVE AVOIDANCE 54 3.4 ARTIFICIAL
POTENTIAL FUNCTIONS 59 3.4.1 POTENTIAL FUNCTION FOR OBSTACLE AVOIDANCE
61 3.4.2 MULTIPLE OBSTACLES 62 3.5 CONCLUSIONS 64 3.6 ACKNOWLEDGEMENTS
65 4 BEHAVIOUR CONTROL OF UUVS 67 M. CARRERAS, P RIDAO, R. GARCIA AND J
BATLLE 4.1 INTRODUCTION 67 4.2 PRINCIPLES OF BEHAVIOUR-BASED CONTROL
SYSTEMS 69 4.2.1 COORDINATION 71 4.2.2 ADAPTATION 72 4.3 CONTROL
ARCHITECTURE 72 4.3.1 HYBRID COORDINATION OFBEHAVIOURS 73 4.3.2
REINFORCEMENT LEAMING-BASED BEHAVIOURS 75 4.4 EXPERIMENTAL SET-UP 76
4.4.1 URIS UUV 76 4.4.2 SET-UP 78 4.4.3 SOFTWARE ARCHITECTURE 78 4.4.4
COMPUTER VISION AS A NAVIGATION TOOL 79 4.5 RESULTS 80 4.5.1 TARGET
TRACKING TASK 80 4.5.2 EXPLORATION AND MAPPING OF UNKNOWN ENVIRONMENTS
82 4.6 CONCLUSIONS 83 CONTENTS VB 5 THRUSTER CONTROL ALLOCATION FOR
OVER-ACTUATED, OPEN-FRAME UNDERWATER VEHICLES 87 E. OMERDIC AND G.N.
ROBERTS 5.1 INTRADUCTION 87 5.2 PROBLEM FONNULATION 88 5.3 NOMENCLATURE
90 5.3.1 CONSTRAINED CONTRAI SUBSET Q 90 5.3.2 ATTAINABLE COMMAND SET 91
5.4 PSEUDOINVERSE 92 5.5 FIXED-POINT ITERATION METHOD 95 5.6 HYBRID
APPROACH 96 5.7 APPLICATION TO THRUSTER CONTROL ALLOCATION FOR
OVER-ACTUATED THRUSTER-PROPELLED UVS 98 5.8 CONCLUSIONS 103 6
SWITCHING-BASED SUPERVISORY CONTROL OF UNDERWATER VEHICLES 105 G.
IPPOLITI, L. JETTO AND S. LONGHI 6.1 INTRODUCTION 105 6.2 MULTIPLE
MODELS SWITCHING-BASED SUPERVISORY CONTROL 106 6.3 THE EBSC APPROACH 109
6.3.1 AN IMPLEMENTATION ASPECT OFTHE EBSC 110 6.4 THE HSSC APPROACH 111
6.4.1 THE SWITCHING POLICY 111 6.5 STABILITY ANALYSIS 112 6.5.1
ESTIMATION-BASED SUPERVISORY CONTRAL 112 6.5.2 HIERARCHICALLY SUPERVISED
SWITCHING CONTROL 113 6.6 THE ROV MODEL 114 6.6.1 THE LINEARISED MODEL
116 6.7 NUMERICAL RESULTS 116 6.8 CONCLUSIONS 121 7 NAVIGATION, GUIDANCE
AND CONTROL OF THE HAMMERHEAD AUTONOMOUS UNDERWATER VEHICLE 127 D.
LOEBIS, W NAEEM, R. SUTTON. J. CHUDLEY AND A. TIANO 7.1 INTRODUCTION 127
7.2 THE HAMMERHEAD AUV NAVIGATION SYSTEM 129 7.2.1 FUZZY KAIMAN FILTER
129 7.2.2 FUZZY IOGIC OBSERVER 130 7.2.3 FUZZY MEMBERSHIP FUNCTIONS
OPTIMISATION 131 7.2.4 IMPIEMENTATION RESULTS 131 7.2.5 GPS/INS
NAVIGATION 136 7.3 SYSTEM MODELLING 145 7.3.1 IDENTIFICATION RESULTS 146
VIII CONTENTS 7.4 GUIDANCE* 147* 7.5 HAMMERHEAD AUTOPILOT DESIGN* 148*
7.5.1* LQG/LTR CONTROLLER DESIGN 149* 7.5.2* MODEL PREDICTIVE CONTRO1
150* 7.6 CONCLUDING REMARKS* 155* 8* ROBUST CONTROL OF AUTONOMOUS
UNDERWATER VEHICLES AND VERIFICATION* ON A TETHERED SSIGHT VEHICLE 161*
Z. FENG AND R. ALLEN 8.1 INTRODUCTION* 161* 8.2 DESIGN OF ROBUST
AUTOPI1OTS FOR TORPEDO-SHAPED AUVS 162* 8.2.1* DYNAMICS OF SUBZERO III
(EXCLUDING TETHER) 163* 8.2.2* PLANT MODELS FOR CONTRO1 DESIGN 165*
8.2.3* DESIGN OF REDUCED-ORDER AUTOPI1OTS 166* 8.3 TETHER COMPENSATION
FOR SUBZERO III* 169* 8.3.1* COMPOSITE CONTRO1 SCHEME 169* 8.3.2*
EVALUATION OFTETHER EFFECTS 170* 8.3.3* REDUCTION OF TETHER EFFECTS 177*
8.3.4* VERIFICATION OF COMPOSITE CONTRO1 BY NONLINEAR* SIMULATIONS 179*
8.4 VERIFICATION OFROBUST AUTOPI1OTS VIA FIE1D TESTS* 181* 8.5
CONCLUSIONS* 183* 9* LOW-COST HIGH-PRECISION MOTION CONTROL FOR ROVS
187* M. CACCIA 9.1 INTRODUCTION* 187* 9.2 RELATED RESEARCH* 189* 9.2.1*
MODELLING AND IDENTIFICATION 189* 9.2.2* GUIDANCE AND CONTRO1 189*
9.2.3* SENSING TECHNO1OGIES 190* 9.3 ROMEO ROV MECHANICA1 DESIGN* 192*
9.4 GUIDANCE AND CONTRO1* 193* 9.4.1* VELOCITY CONTRO1 (DYNAMICS) 194*
9.4.2* GUIDANCE (TASK KINEMATICS) 195* 9.5 VISION-BASED MOTION
ESTIMATION* 196* 9.5.1* VISION SYSTEM DESIGN 196* 9.5.2*
THREE-DIMENSIONA1 OPTICA11ASER TRIANGULATION SENSOR 199* 9.5.3* TEMP1ATE
DETECTION AND TRACKING 200* 9.5.4* MOTION FROM TOKENS 201* 9.5.5* PITCH
AND ROLL DISTURBANCE REJECTION 201* 9.6 EXPERIMENTAL RESU1TS* 202* 9.7
CONCLUSIONS* 208* IX CONTENTS 10* AUTONOMOUS MANIPULATION FOR AN
INTERVENTION AUV G. MARANI, J. YUH AND S.K. CHOI 10.1 INTRODUCTION 10.2
UNDERWATER MANIPULATORS 10.3 CONTROL SYSTEM 10.3.1* KINEMATIC CONTROL
10.3.2* KINEMATICS, INVERSE KINEMATICS AND REDUNDANCY RESOLUTION 10.3.3*
RESOLVED MOTION RATE CONTROL 10.3.4* MEASURE OF MANIPULABILITY 10.3.5*
SINGULARITY AVOIDANCE FOR A SINGLE TASK 10.3.6* EXTENSION TO INVERSE
KINEMATICS WITH TASK PRIORITY 10.3.7* EXAMPLE 10.3.8* COLLISION ANDJOINT
LIMITS AVOIDANCE 10.4 VEHICLE COMMUNICATION AND USER INTERFACE 10.5
APPLICATION EXAMPLE 10.6 CONCLUSIONS 11* AUV R2D4 , ITS OPERATION, AND
ROAD MAP FOR AUV DEVELOPMENT T URA 11.1 INTRODUCTION 11.2 AUV R2D4 AND
ITS NO. 16 DIVE AT ROTA UNDERWATER VOLCANO 11.2.1* R-TWOPROJECT 11.2.2*
AUV R2D4 11.2.3* DIVE TO ROTA UNDERWATER VOLCANO 11.3 FUTURE VIEW OFAUV
RESEARCH AND DEVELOPMENT 11.3.1* AUV DIVERSITY 11.3.2* ROAD MAP OF R&D
OFAUVS 11.4 ACKNOWLEDGEMENTS 12* GUIDANCE AND CONTROL OF A
BIOMIMETIC-AUTONOMOUS UNDERWATER VEHICLE J. GUO 12.1 12.2 12.3 12.4
INTRODUCTION DYNAMIC MODELLING 12.2.1* RIGID BODY DYNAMICS 12.2.2
HYDRODYNAMICS GUIDANCE AND CONTROL OFTHE BAUV 12.3.1 GUIDANCE OFTHE BAUV
12.3.2 CONTROLLER DESIGN 12.3.3 EXPERIMENTS CONCLUSIONS 217 217 218 218
218 223 223 224 225 227 230 230 232 233 236 239 239 240 240 241 244 248
250 252 253 255 255 257 258 263 265 266 267 270 273 X* CONTENTS 13*
SEABED-RELATIVE NAVIGATION BY HYBRID STRUCTURED LIGHTING 277 F
DALGLEISH, S. TETLOW AND RL ALLWOOD* 13.1* INTRODUCTION 277* 13.2*
DESCRIPTION OF SENSOR CONFIGURATION 279* 13.3* THEORY 279* 13.3.1* LASER
STRIPE FOR BATHYMETRIC AND REFLECTIVITY SEABED* PROFILING 281* 13.3.2*
REGION-BASED TRACKER 283* 13.4* CONSTRAINED MOTION TESTING 283* 13.4.1*
LASER ALTIMETER MODE 283* 13.4.2* DYNAMIC PERFORMANCE OF THE LASER
ALTIMETER PROCESS 285* 13.4.3* DYNAMIC PERFORMANCE OF REGION-BASED
TRACKER 286* 13.4.4* DYNAMIC IMAGING PERFORMANCE 288* 13.5* SUMMARY 291*
13.6* ACKNOWLEDGEMENTS 291* 14* ADVANCES IN REAL-TIME SPATIO-TEMPORAL3D
DATA VISUALISATION FOR* UNDERWATER ROBOTIC EXPLORATION 293* S. C.
MARTIN, LL WHITCOMB, R. ARSENAULT, M. PLUMLEE AND C. WARE* 14.1*
INTRODUCTION 293* 14.1.1* THE NEED FOR REAL-TIME SPATIO-TEMPORAL DISPLAY
OF* QUANTITATIVE OCEANOGRAPHIC SENSOR DATA 294* 14.2* SYSTEM DESIGN AND
IMPLEMENTATION 295* 14.2.1* NAVIGATION 295* 14.2.2* REAL-TIME
SPATIO-TEMPORAL DATA DISPLAY WITH* GEOZUI3D 295* 14.2.3* REAL-TIME
FUSION OF NAVIGATION DATA AND SCIENTIFIC* SENSOR DATA 297* 14.3* REPLAY
OF SURVEY DATA FROM MEDITERRANEAN EXPEDITION 300* 14.4* COMPARISON
OFREAL-TIME SYSTEM IMPLEMENTED ON THE JHU ROV* TO A LASER SCAN 301*
14.4.1* REAL-TIME SURVEY EXPERIMENTAL SET-UP 301* 14.4.2* LASER SCAN
EXPERIMENTAL SET-UP 302* 14.4.3* REAL-TIME SYSTEM EXPERIMENTAL RESULTS
303* 14.4.4* LASER SCAN EXPERIMENTAL RESULTS 303* 14.4.5* COMPARISON
OFLASER SCAN TO REAL-TIME SYSTEM 305* 14.5* PRELIMINARY FIELD TRIAL ON
THE JASON 2 ROV 305* 14.6* CONCLUSIONS AND FUTURE WORK 308* 15* UNMANNED
SURFACE VEHICLES - GAME CHANGING TECHNOLOGY FOR NAVAL* OPERATIONS 311*
S1. CORFIELD AND J.M. YOUNG CONTENTS XL 15.1 INTRODUCTION* 311* 15.2
UNMANNED SURFACE VEHICLE RESEARCH AND DEVELOPMENT 312* 15.3 SUMMARY OF
MAJOR USV SUBSYSTEMS* 313* 15.3.1* THE MAJOR SYSTEM PARTITIONS 313*
15.3.2* MAJOR USV SUBSYSTEMS 314* 15.3.3* HULLS 314* 15.3.4* AUXILIARY
STRUCTURES 316* 15.3.5* ENGINES, PROPULSION SUBSYSTEMS AND FUEL SYSTEMS
316* 15.3.6* USV AUTONOMY, MISSION PLANNING AND NAVIGATION,* GUIDANCE
AND CONTROL 317* 15.4 USV PAYLOAD SYSTEMS* 318* 15.5 USV LAUNCH AND
RECOVERY SYSTEMS* 319* 15.6 USV DEVELOPMENT EXAMPLES: MIMIR, SWIMS AND
FENRIR 319* 15.6.1* THE MIMIR USV SYSTEM 319* 15.6.2* THE SWIMS USV
SYSTEM 321* 15.6.3* THE FENRIR USV SYSTEM AND CHANGING OPERATIONAL*
SCENARIOS 325* 15.7 THE GAME CHANGING POTENTIAL OFUSVS* 326* 16*
MODELLING, SIMULATION AND CONTROJ OF AN AUTONOMOUS SURFACE MARINE*
VEHICLE FOR SURVEYING APPLICATIONS MEASURING DOLPHIN MESSIN* 329* 1.
MAJOHR AND T BUCH 16.1 INTRODUCTION AND OBJECTIVES* 329* 16.2
HYDROMECHANICAL CONCEPTION OF THE MESSIN* 330* 16.3 ELECTRICAL
DEVELOPMENTS OF THE MESSIN* 332* 16.4 HIERARCHICAL STEERING SYSTEM AND
OVERALL STEERING STRUCTURE 333* 16.5 POSITIONING AND NAVIGATION* 336*
16.6 MODELLING AND IDENTIFICATION* 337* 16.6.1* SECOND-ORDER COURSE
MODEL [16] 338* 16.6.2* FOURTH-ORDER TRACK MODEL [17] 338* 16.7 ROUTE
PLANNING, MISSION CONTROL AND AUTOMATIE CONTROL 342* 16.8 IMPLEMENTATION
AND SIMULATION* 344* 16.9 TEST RESULTS AND APPLICATION* 346* 17* VEHICLE
AND MISSION CONTROJ OF SINGLE AND MULTIPLE AUTONOMOUS* MARINE ROBOTS
353* A. PASCOAL, C. SILVESTRE AND P OLIVEIRA 17.1 INTRODUCTION* 353*
17.2 MARINE VEHICLES* 354* 17.2.1* THE IN{ANTE AUV 354* XLI CONTENTS
17.2.2* THE DELFIM ASC 355* 17.2.3* THE SIRENE UNDERWATER SHUTTLE 356*
17.2.4* THE CARAVELA 2000 AUTONOMOUS RESEARCH VESSEL 357* 17.3 VEHIC1E
CONTROL* 358* 17.3.1* CONTROL PROBLEMS: MOTIVATION 359* 17.3.2* CONTROL
PROBLEMS: DESIGN TECHNIQUES 362* 17.4 MISSION CONTROL AND OPERATIONS AT
SEA* 375* 17.4.1* THE CORAL MISSION CONTROL SYSTEM 376 17.4.2* MISSIONS
AT SEA 379* 17.5 CONCLUSIONS* 380* 18 WAVE-PIERCING AUTONOMOUS VEHICLES*
387* H. YOUNG, 1. FERGUSON, S. PHILLIPS AND D. HOOK 18.1 INTRODUCTION*
387* 18.1.1* ABBREVIATIONS AND DEFINITIONS 387* 18.1.2* CONCEPTS 388*
18.1.3* HISTORICAL DEVELOPMENT 388* 18.2 WAVE-PIERCING AUTONOMOUS
UNDERWATER VEHIC1ES* 390* 18.2.1* ROBOTIC MINE-HUNTING CONCEPT 391*
18.2.2* EARLY TESTS 393* 18.2.3* US NAVYRMOP 393* 18.2.4* THE CANADIAN
DORADO AND DEVELOPMENT OFTHE FRENCH* ,SEAKEEPER 394* 18.3
WAVE-PIERCING AUTONOMOUS SURFACE VEHIC1ES* 396* 18.3.1* DEVELOPMENT
PROGRAMME 398* 18.3.2* COMMAND AND CONTROL 400* 18.3.3* LAUNCH AND
RECOVERY 401* 18.3.4* APPLICATIONS 402* 18.4 DAUGHTER VEHIC1ES* 403*
18.4.1* APPLICATIONS 404* 18.5 MOBILE BUOYS* 405* 18.5.1* APPLICATIONS
405* 18.6 FUTURE DEVELOPMENT OFUNMANNED WAVE-PIERCING VEHIC1ES 405* 19
DYNAMICS, CONTROI AND COORDINATION OF UNDERWATER GLIDERS 407* R.
BACHMAYER, N.E. LEONARD, P BHATTA, E. FIORELLI AND 1.G. GRAVER 19.1
INTRODUCTION* 407* 19.2 A MATHEMATICAL MODEL FAR UNDERWATER GLIDERS*
408* 19.3 GLIDER STABILITY AND CONTROL* 412* 19.3.1* LINEAR ANALYSIS
412* 19.3.2* PHUGOID-MODE MODEL 415* 19.4 SLOCUM GLIDER MODEL* 417*
19.4.1* THE SLOCUM GLIDER 417* 19.4.2* GLIDER IDENTIFICATION 419*
CONTENTS XILL 19.5 COORDINATED GLIDER CONTRAL AND OPERATIONS* 424
19.5.1* COORDINATING GLIDERS WITH VIRTUAL BODIES AND ARTIFICIAL
POTENTIALS 425 19.5.2* VBAP GLIDER IMPLEMENTATION ISSUES 426 19.5.3*
AOSN II SEA TRIALS 426 19.6 FINAL REMARKS* 429 INDEX* 433
|
adam_txt |
* * * * * * * * * ***** * * * * * * * * * * * * * * * * * * * EDITORIAL:
N A V I G A T I O N , G U I D A N C E AND C O N T R O L O F
U N M A N N E D M A R I N E * V E H I C L E S 1 * G.N.
ROBERTS AND R. SUTTON 1.1 INTRODUCTION* I * 1.2 CONTRIBUTIONS* 4* 1.3
CONC1UDING REMARKS* 11* 2 * N O N L I N E A R M O D E L L I N G ,
I D E N T I F I C A T I O N A N D C O N T R O L O F U U V
S 13* TI. FOSSEN AND A. ROSS 2.1 INTRODUCTION* 13* 2.1.1 NOTATION* 13*
2.2 MODELLING OFUUVS* 14* 2.2.1 SIX DOF KINEMATIC EQUATIONS* 14* 2.2.2
KINETICS* 16* 2.2.3 EQUATIONS OF MOTION* 16* 2.2.4 EQUATIONS OFMOTION
INCLUDING OCEAN CURRENTS 19* 2.2.5 LONGITUDINAL AND LATERAL MODELS.* 20*
2.3 IDENTIFICATION OF UUVS* 24* 2.3.1 APRIORI ESTIMATES OF RIGID-BODY
PARAMETERS 25* 2.3.2 APRIORI ESTIMATES OF HYDRODYNAMIC ADDED MASS 25*
2.3.3 IDENTIFICATION OF DAMPING TERMS* 25* 2.4 NONLINEAR CONTROL OFUUVS*
31* 2.4.1 SPEED, DEPTH AND PITCH CONTROL* 32* 2.4.2 HEADING CONTROL* 37*
2.4.3 ALTERNATIVE METHODS OF CONTROL* 40* 2.5 CONC1USIONS* 40* VI
CONTENTS 3 GUIDANCE LAWS, OBSTACLE AVOIDANCE AND ARTIFICIAL POTENTIAL
FUNCTIONS 43 AJ HEALEY 3.1 INTRODUCTION 43 3.2 VEHICLE GUIDANCE, TRACK
FOLLOWING 44 3.2.1 VEHICLE STEERING MODEL 45 3.2.2 LINE OF SIGHT
GUIDANCE 46 3.2.3 CROSS-TRACK ERROR 47 3.2.4 LINE OF SIGHT WITH
CROSS-TRACK ERROR CONTROLLER 49 3.2.5 SLIDING MODE CROSS-TRACK ERROR
GUIDANCE 50 3.2.6 LARGE HEADING ERROR MODE 51 3.2.7 TRACK PATH
TRANSITIONS 52 3.3 OBSTACLE AVOIDANCE 52 3.3.1 PLANNED AVOIDANCE
DEVIATION IN PATH 52 3.3.2 REACTIVE AVOIDANCE 54 3.4 ARTIFICIAL
POTENTIAL FUNCTIONS 59 3.4.1 POTENTIAL FUNCTION FOR OBSTACLE AVOIDANCE
61 3.4.2 MULTIPLE OBSTACLES 62 3.5 CONCLUSIONS 64 3.6 ACKNOWLEDGEMENTS
65 4 BEHAVIOUR CONTROL OF UUVS 67 M. CARRERAS, P RIDAO, R. GARCIA AND J
BATLLE 4.1 INTRODUCTION 67 4.2 PRINCIPLES OF BEHAVIOUR-BASED CONTROL
SYSTEMS 69 4.2.1 COORDINATION 71 4.2.2 ADAPTATION 72 4.3 CONTROL
ARCHITECTURE 72 4.3.1 HYBRID COORDINATION OFBEHAVIOURS 73 4.3.2
REINFORCEMENT LEAMING-BASED BEHAVIOURS 75 4.4 EXPERIMENTAL SET-UP 76
4.4.1 URIS UUV 76 4.4.2 SET-UP 78 4.4.3 SOFTWARE ARCHITECTURE 78 4.4.4
COMPUTER VISION AS A NAVIGATION TOOL 79 4.5 RESULTS 80 4.5.1 TARGET
TRACKING TASK 80 4.5.2 EXPLORATION AND MAPPING OF UNKNOWN ENVIRONMENTS
82 4.6 CONCLUSIONS 83 CONTENTS VB 5 THRUSTER CONTROL ALLOCATION FOR
OVER-ACTUATED, OPEN-FRAME UNDERWATER VEHICLES 87 E. OMERDIC AND G.N.
ROBERTS 5.1 INTRADUCTION 87 5.2 PROBLEM FONNULATION 88 5.3 NOMENCLATURE
90 5.3.1 CONSTRAINED CONTRAI SUBSET Q 90 5.3.2 ATTAINABLE COMMAND SET 91
5.4 PSEUDOINVERSE 92 5.5 FIXED-POINT ITERATION METHOD 95 5.6 HYBRID
APPROACH 96 5.7 APPLICATION TO THRUSTER CONTROL ALLOCATION FOR
OVER-ACTUATED THRUSTER-PROPELLED UVS 98 5.8 CONCLUSIONS 103 6
SWITCHING-BASED SUPERVISORY CONTROL OF UNDERWATER VEHICLES 105 G.
IPPOLITI, L. JETTO AND S. LONGHI 6.1 INTRODUCTION 105 6.2 MULTIPLE
MODELS SWITCHING-BASED SUPERVISORY CONTROL 106 6.3 THE EBSC APPROACH 109
6.3.1 AN IMPLEMENTATION ASPECT OFTHE EBSC 110 6.4 THE HSSC APPROACH 111
6.4.1 THE SWITCHING POLICY 111 6.5 STABILITY ANALYSIS 112 6.5.1
ESTIMATION-BASED SUPERVISORY CONTRAL 112 6.5.2 HIERARCHICALLY SUPERVISED
SWITCHING CONTROL 113 6.6 THE ROV MODEL 114 6.6.1 THE LINEARISED MODEL
116 6.7 NUMERICAL RESULTS 116 6.8 CONCLUSIONS 121 7 NAVIGATION, GUIDANCE
AND CONTROL OF THE HAMMERHEAD AUTONOMOUS UNDERWATER VEHICLE 127 D.
LOEBIS, W NAEEM, R. SUTTON. J. CHUDLEY AND A. TIANO 7.1 INTRODUCTION 127
7.2 THE HAMMERHEAD AUV NAVIGATION SYSTEM 129 7.2.1 FUZZY KAIMAN FILTER
129 7.2.2 FUZZY IOGIC OBSERVER 130 7.2.3 FUZZY MEMBERSHIP FUNCTIONS
OPTIMISATION 131 7.2.4 IMPIEMENTATION RESULTS 131 7.2.5 GPS/INS
NAVIGATION 136 7.3 SYSTEM MODELLING 145 7.3.1 IDENTIFICATION RESULTS 146
VIII CONTENTS 7.4 GUIDANCE* 147* 7.5 HAMMERHEAD AUTOPILOT DESIGN* 148*
7.5.1* LQG/LTR CONTROLLER DESIGN 149* 7.5.2* MODEL PREDICTIVE CONTRO1
150* 7.6 CONCLUDING REMARKS* 155* 8* ROBUST CONTROL OF AUTONOMOUS
UNDERWATER VEHICLES AND VERIFICATION* ON A TETHERED SSIGHT VEHICLE 161*
Z. FENG AND R. ALLEN 8.1 INTRODUCTION* 161* 8.2 DESIGN OF ROBUST
AUTOPI1OTS FOR TORPEDO-SHAPED AUVS 162* 8.2.1* DYNAMICS OF SUBZERO III
(EXCLUDING TETHER) 163* 8.2.2* PLANT MODELS FOR CONTRO1 DESIGN 165*
8.2.3* DESIGN OF REDUCED-ORDER AUTOPI1OTS 166* 8.3 TETHER COMPENSATION
FOR SUBZERO III* 169* 8.3.1* COMPOSITE CONTRO1 SCHEME 169* 8.3.2*
EVALUATION OFTETHER EFFECTS 170* 8.3.3* REDUCTION OF TETHER EFFECTS 177*
8.3.4* VERIFICATION OF COMPOSITE CONTRO1 BY NONLINEAR* SIMULATIONS 179*
8.4 VERIFICATION OFROBUST AUTOPI1OTS VIA FIE1D TESTS* 181* 8.5
CONCLUSIONS* 183* 9* LOW-COST HIGH-PRECISION MOTION CONTROL FOR ROVS
187* M. CACCIA 9.1 INTRODUCTION* 187* 9.2 RELATED RESEARCH* 189* 9.2.1*
MODELLING AND IDENTIFICATION 189* 9.2.2* GUIDANCE AND CONTRO1 189*
9.2.3* SENSING TECHNO1OGIES 190* 9.3 ROMEO ROV MECHANICA1 DESIGN* 192*
9.4 GUIDANCE AND CONTRO1* 193* 9.4.1* VELOCITY CONTRO1 (DYNAMICS) 194*
9.4.2* GUIDANCE (TASK KINEMATICS) 195* 9.5 VISION-BASED MOTION
ESTIMATION* 196* 9.5.1* VISION SYSTEM DESIGN 196* 9.5.2*
THREE-DIMENSIONA1 OPTICA11ASER TRIANGULATION SENSOR 199* 9.5.3* TEMP1ATE
DETECTION AND TRACKING 200* 9.5.4* MOTION FROM TOKENS 201* 9.5.5* PITCH
AND ROLL DISTURBANCE REJECTION 201* 9.6 EXPERIMENTAL RESU1TS* 202* 9.7
CONCLUSIONS* 208* IX CONTENTS 10* AUTONOMOUS MANIPULATION FOR AN
INTERVENTION AUV G. MARANI, J. YUH AND S.K. CHOI 10.1 INTRODUCTION 10.2
UNDERWATER MANIPULATORS 10.3 CONTROL SYSTEM 10.3.1* KINEMATIC CONTROL
10.3.2* KINEMATICS, INVERSE KINEMATICS AND REDUNDANCY RESOLUTION 10.3.3*
RESOLVED MOTION RATE CONTROL 10.3.4* MEASURE OF MANIPULABILITY 10.3.5*
SINGULARITY AVOIDANCE FOR A SINGLE TASK 10.3.6* EXTENSION TO INVERSE
KINEMATICS WITH TASK PRIORITY 10.3.7* EXAMPLE 10.3.8* COLLISION ANDJOINT
LIMITS AVOIDANCE 10.4 VEHICLE COMMUNICATION AND USER INTERFACE 10.5
APPLICATION EXAMPLE 10.6 CONCLUSIONS 11* AUV 'R2D4', ITS OPERATION, AND
ROAD MAP FOR AUV DEVELOPMENT T URA 11.1 INTRODUCTION 11.2 AUV 'R2D4' AND
ITS NO. 16 DIVE AT ROTA UNDERWATER VOLCANO 11.2.1* R-TWOPROJECT 11.2.2*
AUV'R2D4' 11.2.3* DIVE TO ROTA UNDERWATER VOLCANO 11.3 FUTURE VIEW OFAUV
RESEARCH AND DEVELOPMENT 11.3.1* AUV DIVERSITY 11.3.2* ROAD MAP OF R&D
OFAUVS 11.4 ACKNOWLEDGEMENTS 12* GUIDANCE AND CONTROL OF A
BIOMIMETIC-AUTONOMOUS UNDERWATER VEHICLE J. GUO 12.1 12.2 12.3 12.4
INTRODUCTION DYNAMIC MODELLING 12.2.1* RIGID BODY DYNAMICS 12.2.2
HYDRODYNAMICS GUIDANCE AND CONTROL OFTHE BAUV 12.3.1 GUIDANCE OFTHE BAUV
12.3.2 CONTROLLER DESIGN 12.3.3 EXPERIMENTS CONCLUSIONS 217 217 218 218
218 223 223 224 225 227 230 230 232 233 236 239 239 240 240 241 244 248
250 252 253 255 255 257 258 263 265 266 267 270 273 X* CONTENTS 13*
SEABED-RELATIVE NAVIGATION BY HYBRID STRUCTURED LIGHTING 277 F
DALGLEISH, S. TETLOW AND RL ALLWOOD* 13.1* INTRODUCTION 277* 13.2*
DESCRIPTION OF SENSOR CONFIGURATION 279* 13.3* THEORY 279* 13.3.1* LASER
STRIPE FOR BATHYMETRIC AND REFLECTIVITY SEABED* PROFILING 281* 13.3.2*
REGION-BASED TRACKER 283* 13.4* CONSTRAINED MOTION TESTING 283* 13.4.1*
LASER ALTIMETER MODE 283* 13.4.2* DYNAMIC PERFORMANCE OF THE LASER
ALTIMETER PROCESS 285* 13.4.3* DYNAMIC PERFORMANCE OF REGION-BASED
TRACKER 286* 13.4.4* DYNAMIC IMAGING PERFORMANCE 288* 13.5* SUMMARY 291*
13.6* ACKNOWLEDGEMENTS 291* 14* ADVANCES IN REAL-TIME SPATIO-TEMPORAL3D
DATA VISUALISATION FOR* UNDERWATER ROBOTIC EXPLORATION 293* S. C.
MARTIN, LL WHITCOMB, R. ARSENAULT, M. PLUMLEE AND C. WARE* 14.1*
INTRODUCTION 293* 14.1.1* THE NEED FOR REAL-TIME SPATIO-TEMPORAL DISPLAY
OF* QUANTITATIVE OCEANOGRAPHIC SENSOR DATA 294* 14.2* SYSTEM DESIGN AND
IMPLEMENTATION 295* 14.2.1* NAVIGATION 295* 14.2.2* REAL-TIME
SPATIO-TEMPORAL DATA DISPLAY WITH* GEOZUI3D 295* 14.2.3* REAL-TIME
FUSION OF NAVIGATION DATA AND SCIENTIFIC* SENSOR DATA 297* 14.3* REPLAY
OF SURVEY DATA FROM MEDITERRANEAN EXPEDITION 300* 14.4* COMPARISON
OFREAL-TIME SYSTEM IMPLEMENTED ON THE JHU ROV* TO A LASER SCAN 301*
14.4.1* REAL-TIME SURVEY EXPERIMENTAL SET-UP 301* 14.4.2* LASER SCAN
EXPERIMENTAL SET-UP 302* 14.4.3* REAL-TIME SYSTEM EXPERIMENTAL RESULTS
303* 14.4.4* LASER SCAN EXPERIMENTAL RESULTS 303* 14.4.5* COMPARISON
OFLASER SCAN TO REAL-TIME SYSTEM 305* 14.5* PRELIMINARY FIELD TRIAL ON
THE JASON 2 ROV 305* 14.6* CONCLUSIONS AND FUTURE WORK 308* 15* UNMANNED
SURFACE VEHICLES - GAME CHANGING TECHNOLOGY FOR NAVAL* OPERATIONS 311*
S1. CORFIELD AND J.M. YOUNG CONTENTS XL 15.1 INTRODUCTION* 311* 15.2
UNMANNED SURFACE VEHICLE RESEARCH AND DEVELOPMENT 312* 15.3 SUMMARY OF
MAJOR USV SUBSYSTEMS* 313* 15.3.1* THE MAJOR SYSTEM PARTITIONS 313*
15.3.2* MAJOR USV SUBSYSTEMS 314* 15.3.3* HULLS 314* 15.3.4* AUXILIARY
STRUCTURES 316* 15.3.5* ENGINES, PROPULSION SUBSYSTEMS AND FUEL SYSTEMS
316* 15.3.6* USV AUTONOMY, MISSION PLANNING AND NAVIGATION,* GUIDANCE
AND CONTROL 317* 15.4 USV PAYLOAD SYSTEMS* 318* 15.5 USV LAUNCH AND
RECOVERY SYSTEMS* 319* 15.6 USV DEVELOPMENT EXAMPLES: MIMIR, SWIMS AND
FENRIR 319* 15.6.1* THE MIMIR USV SYSTEM 319* 15.6.2* THE SWIMS USV
SYSTEM 321* 15.6.3* THE FENRIR USV SYSTEM AND CHANGING OPERATIONAL*
SCENARIOS 325* 15.7 THE GAME CHANGING POTENTIAL OFUSVS* 326* 16*
MODELLING, SIMULATION AND CONTROJ OF AN AUTONOMOUS SURFACE MARINE*
VEHICLE FOR SURVEYING APPLICATIONS MEASURING DOLPHIN MESSIN* 329* 1.
MAJOHR AND T BUCH 16.1 INTRODUCTION AND OBJECTIVES* 329* 16.2
HYDROMECHANICAL CONCEPTION OF THE MESSIN* 330* 16.3 ELECTRICAL
DEVELOPMENTS OF THE MESSIN* 332* 16.4 HIERARCHICAL STEERING SYSTEM AND
OVERALL STEERING STRUCTURE 333* 16.5 POSITIONING AND NAVIGATION* 336*
16.6 MODELLING AND IDENTIFICATION* 337* 16.6.1* SECOND-ORDER COURSE
MODEL [16] 338* 16.6.2* FOURTH-ORDER TRACK MODEL [17] 338* 16.7 ROUTE
PLANNING, MISSION CONTROL AND AUTOMATIE CONTROL 342* 16.8 IMPLEMENTATION
AND SIMULATION* 344* 16.9 TEST RESULTS AND APPLICATION* 346* 17* VEHICLE
AND MISSION CONTROJ OF SINGLE AND MULTIPLE AUTONOMOUS* MARINE ROBOTS
353* A. PASCOAL, C. SILVESTRE AND P OLIVEIRA 17.1 INTRODUCTION* 353*
17.2 MARINE VEHICLES* 354* 17.2.1* THE IN{ANTE AUV 354* XLI CONTENTS
17.2.2* THE DELFIM ASC 355* 17.2.3* THE SIRENE UNDERWATER SHUTTLE 356*
17.2.4* THE CARAVELA 2000 AUTONOMOUS RESEARCH VESSEL 357* 17.3 VEHIC1E
CONTROL* 358* 17.3.1* CONTROL PROBLEMS: MOTIVATION 359* 17.3.2* CONTROL
PROBLEMS: DESIGN TECHNIQUES 362* 17.4 MISSION CONTROL AND OPERATIONS AT
SEA* 375* 17.4.1* THE CORAL MISSION CONTROL SYSTEM 376 17.4.2* MISSIONS
AT SEA 379* 17.5 CONCLUSIONS* 380* 18 WAVE-PIERCING AUTONOMOUS VEHICLES*
387* H. YOUNG, 1. FERGUSON, S. PHILLIPS AND D. HOOK 18.1 INTRODUCTION*
387* 18.1.1* ABBREVIATIONS AND DEFINITIONS 387* 18.1.2* CONCEPTS 388*
18.1.3* HISTORICAL DEVELOPMENT 388* 18.2 WAVE-PIERCING AUTONOMOUS
UNDERWATER VEHIC1ES* 390* 18.2.1* ROBOTIC MINE-HUNTING CONCEPT 391*
18.2.2* EARLY TESTS 393* 18.2.3* US NAVYRMOP 393* 18.2.4* THE CANADIAN
'DORADO' AND DEVELOPMENT OFTHE FRENCH* ,SEAKEEPER' 394* 18.3
WAVE-PIERCING AUTONOMOUS SURFACE VEHIC1ES* 396* 18.3.1* DEVELOPMENT
PROGRAMME 398* 18.3.2* COMMAND AND CONTROL 400* 18.3.3* LAUNCH AND
RECOVERY 401* 18.3.4* APPLICATIONS 402* 18.4 DAUGHTER VEHIC1ES* 403*
18.4.1* APPLICATIONS 404* 18.5 MOBILE BUOYS* 405* 18.5.1* APPLICATIONS
405* 18.6 FUTURE DEVELOPMENT OFUNMANNED WAVE-PIERCING VEHIC1ES 405* 19
DYNAMICS, CONTROI AND COORDINATION OF UNDERWATER GLIDERS 407* R.
BACHMAYER, N.E. LEONARD, P BHATTA, E. FIORELLI AND 1.G. GRAVER 19.1
INTRODUCTION* 407* 19.2 A MATHEMATICAL MODEL FAR UNDERWATER GLIDERS*
408* 19.3 GLIDER STABILITY AND CONTROL* 412* 19.3.1* LINEAR ANALYSIS
412* 19.3.2* PHUGOID-MODE MODEL 415* 19.4 SLOCUM GLIDER MODEL* 417*
19.4.1* THE SLOCUM GLIDER 417* 19.4.2* GLIDER IDENTIFICATION 419*
CONTENTS XILL 19.5 COORDINATED GLIDER CONTRAL AND OPERATIONS* 424
19.5.1* COORDINATING GLIDERS WITH VIRTUAL BODIES AND ARTIFICIAL
POTENTIALS 425 19.5.2* VBAP GLIDER IMPLEMENTATION ISSUES 426 19.5.3*
AOSN II SEA TRIALS 426 19.6 FINAL REMARKS* 429 INDEX* 433 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)136914349 (DE-588)136914314 |
building | Verbundindex |
bvnumber | BV022153971 |
callnumber-first | T - Technology |
callnumber-label | TC1662 |
callnumber-raw | TC1662 |
callnumber-search | TC1662 |
callnumber-sort | TC 41662 |
callnumber-subject | TC - Hydraulic and Ocean Engineering |
ctrlnum | (OCoLC)61757487 (DE-599)BVBBV022153971 |
dewey-full | 629.046 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.046 |
dewey-search | 629.046 |
dewey-sort | 3629.046 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Verkehr / Transport |
discipline_str_mv | Verkehr / Transport |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02017nam a2200529zcb4500</leader><controlfield tag="001">BV022153971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050512s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0863414508</subfield><subfield code="9">0-86341-450-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780863414503</subfield><subfield code="9">978-0-86341-450-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61757487</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022153971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1662</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.046</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in unmanned marine vehicles</subfield><subfield code="c">edited by Geoff Roberts and Robert Sutton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Institution of Electrical Engineers</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 441 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IEE control engineering series</subfield><subfield code="v">69</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Navires de recherche</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robots sous-marins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Véhicules télécommandés</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote submersibles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research vessels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicles, Remotely piloted</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fernsteuerung</subfield><subfield code="0">(DE-588)4016862-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kleinstunterseeboot</subfield><subfield code="0">(DE-588)4300499-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unterseeboot</subfield><subfield code="0">(DE-588)4078646-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fernsteuerung</subfield><subfield code="0">(DE-588)4016862-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Unterseeboot</subfield><subfield code="0">(DE-588)4078646-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kleinstunterseeboot</subfield><subfield code="0">(DE-588)4300499-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roberts, Geoffrey N.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136914349</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sutton, Robert</subfield><subfield code="d">1948-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136914314</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">IEE control engineering series</subfield><subfield code="v">69</subfield><subfield code="w">(DE-604)BV001899902</subfield><subfield code="9">69</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015368625&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015368625</subfield></datafield></record></collection> |
id | DE-604.BV022153971 |
illustrated | Illustrated |
index_date | 2024-07-02T16:18:23Z |
indexdate | 2024-07-09T20:51:28Z |
institution | BVB |
isbn | 0863414508 9780863414503 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015368625 |
oclc_num | 61757487 |
open_access_boolean | |
owner | DE-706 DE-83 |
owner_facet | DE-706 DE-83 |
physical | XVIII, 441 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Institution of Electrical Engineers |
record_format | marc |
series | IEE control engineering series |
series2 | IEE control engineering series |
spelling | Advances in unmanned marine vehicles edited by Geoff Roberts and Robert Sutton London Institution of Electrical Engineers 2006 XVIII, 441 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier IEE control engineering series 69 Literaturangaben Navires de recherche Robots sous-marins Véhicules télécommandés Remote submersibles Research vessels Vehicles, Remotely piloted Fernsteuerung (DE-588)4016862-1 gnd rswk-swf Kleinstunterseeboot (DE-588)4300499-4 gnd rswk-swf Unterseeboot (DE-588)4078646-8 gnd rswk-swf Fernsteuerung (DE-588)4016862-1 s DE-604 Unterseeboot (DE-588)4078646-8 s Kleinstunterseeboot (DE-588)4300499-4 s Roberts, Geoffrey N. Sonstige (DE-588)136914349 oth Sutton, Robert 1948- Sonstige (DE-588)136914314 oth IEE control engineering series 69 (DE-604)BV001899902 69 OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015368625&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Advances in unmanned marine vehicles IEE control engineering series Navires de recherche Robots sous-marins Véhicules télécommandés Remote submersibles Research vessels Vehicles, Remotely piloted Fernsteuerung (DE-588)4016862-1 gnd Kleinstunterseeboot (DE-588)4300499-4 gnd Unterseeboot (DE-588)4078646-8 gnd |
subject_GND | (DE-588)4016862-1 (DE-588)4300499-4 (DE-588)4078646-8 |
title | Advances in unmanned marine vehicles |
title_auth | Advances in unmanned marine vehicles |
title_exact_search | Advances in unmanned marine vehicles |
title_exact_search_txtP | Advances in unmanned marine vehicles |
title_full | Advances in unmanned marine vehicles edited by Geoff Roberts and Robert Sutton |
title_fullStr | Advances in unmanned marine vehicles edited by Geoff Roberts and Robert Sutton |
title_full_unstemmed | Advances in unmanned marine vehicles edited by Geoff Roberts and Robert Sutton |
title_short | Advances in unmanned marine vehicles |
title_sort | advances in unmanned marine vehicles |
topic | Navires de recherche Robots sous-marins Véhicules télécommandés Remote submersibles Research vessels Vehicles, Remotely piloted Fernsteuerung (DE-588)4016862-1 gnd Kleinstunterseeboot (DE-588)4300499-4 gnd Unterseeboot (DE-588)4078646-8 gnd |
topic_facet | Navires de recherche Robots sous-marins Véhicules télécommandés Remote submersibles Research vessels Vehicles, Remotely piloted Fernsteuerung Kleinstunterseeboot Unterseeboot |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015368625&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001899902 |
work_keys_str_mv | AT robertsgeoffreyn advancesinunmannedmarinevehicles AT suttonrobert advancesinunmannedmarinevehicles |