Bayesian inference in wavelet-based models:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
1999
|
Schriftenreihe: | Lecture notes in statistics
141 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XIII, 394 S. Ill., graph. Darst. |
ISBN: | 0387988858 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022148083 | ||
003 | DE-604 | ||
005 | 20200113 | ||
007 | t | ||
008 | 990803s1999 ad|| |||| 00||| eng d | ||
020 | |a 0387988858 |9 0-387-98885-8 | ||
035 | |a (OCoLC)41284972 | ||
035 | |a (DE-599)BVBBV022148083 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA279.5 | |
082 | 0 | |a 519.5/42 |2 21 | |
084 | |a SI 856 |0 (DE-625)143202: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
245 | 1 | 0 | |a Bayesian inference in wavelet-based models |c Peter Müller ... (ed.) |
264 | 1 | |a New York [u.a.] |b Springer |c 1999 | |
300 | |a XIII, 394 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in statistics |v 141 | |
500 | |a Literaturangaben | ||
650 | 7 | |a Besliskunde |2 gtt | |
650 | 7 | |a Methode van Bayes |2 gtt | |
650 | 4 | |a Ondelettes | |
650 | 7 | |a Ondelettes |2 ram | |
650 | 4 | |a Statistique bayésienne | |
650 | 7 | |a Statistique bayésienne |2 ram | |
650 | 7 | |a Wavelets |2 gtt | |
650 | 7 | |a débruitage |2 inriac | |
650 | 7 | |a décomposition en ondelettes |2 inriac | |
650 | 7 | |a inférence statistique |2 inriac | |
650 | 7 | |a modélisation |2 inriac | |
650 | 7 | |a méthode bayésienne |2 inriac | |
650 | 7 | |a ondelette |2 inriac | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 4 | |a Wavelets (Mathematics) | |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regressionsmodell |0 (DE-588)4127980-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenpaket |0 (DE-588)4127186-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wellenpaket |0 (DE-588)4127186-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Regressionsmodell |0 (DE-588)4127980-3 |D s |
689 | 1 | 1 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 1 | 2 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Müller, Peter |d 1963- |e Sonstige |0 (DE-588)1121511155 |4 oth | |
830 | 0 | |a Lecture notes in statistics |v 141 |w (DE-604)BV002447846 |9 141 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015362721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015362721 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136122055393280 |
---|---|
adam_text | PETER MUELLER BRANI VIDAKOVIC (EDITORS) BAYESIAN INFERENCE IN
WAVELET-BASED MODELS SPRINGER CONTENTS I INTRODUCTION 1 AN INTRODUCTION
TO WAVELETS 1 B. VIDAKOVIC AND P. MUELLER 2 SPECTRAL VIEW OF WAVELETS AND
NONLINEAR REGRESSION 19 J.S. MARRON II PRIOR MODELS - INDEPENDENT CASE 3
BAYESIAN APPROACH TO WAVELET DECOMPOSITION AND SHRINKAGE F. ABRAMOVICH
AND T. SAPATINAS 4 SOME OBSERVATIONS ON THE TRACTABILITY OF CERTAIN
MULTI-SCALE MODELS. E. D. KOLACZYK 5 BAYESIAN ANALYSIS OF CHANGE-POINT
MODELS T. OGDEN AND J.D. LYNCH 6 PRIOR ELICITATION IN THE WAVELET DOMAIN
H.A. CHIPMAN AND L.J. WOLFSON 7 WAVELET NONPARAMETRIC REGRESSION USING
BASIS AVERAGING P. YAU AND R. KOHN III DECISION THEORETIC WAVELET
SHRINKAGE 8 AN OVERVIEW OF WAVELET REGULAERIZATION 109 Y. WANG 9 MINIMAX
RESTORATION AND DECONVOLUTION 115 J. KALIFA AND S. MALLAT 33 51 67 83 95
VM 10 ROBUST BAYESIAN AND BAYESIAN DECISION THEORETIC WAVELET SHRINKAGE
139 F. RUGGERI 11 BEST BASIS REPRESENTATIONS WITH PRIOR STATISTICAL
MODELS 155 D. LEPORINI, J.-C. PESQUET, AND H. KRIM IV PRIOR MODELS -
DEPENDENT CASE 12 MODELING DEPENDENCE IN THE WAVELET DOMAIN 173 M.
VANNUCCI AND F. CORRADI 13 MCMC METHODS IN WAVELET SHRINKAGE 187 P.
MUELLER AND B. VIDAKOVIC V SPATIAL MODELS 14 EMPIRICAL BAYESIAN SPATIAL
PREDICTION USING WAVELETS H.-C. HUANG AND N. CRESSIE 15 GEOMETRICAL
PRIORS FOR NOISEFREE WAVELET COEFFICIENTS IN IMAGE DENOISING M. JANSEN
AND A. BULTHEEL 16 MULTISCALE HIDDEN MARKOV MODELS FOR BAYESIAN IMAGE
ANALYSIS R.D. NOWAK 17 WAVELETS FOR OBJECT REPRESENTATION AND
RECOGNITION IN COMPUTER VISION L. PASTOR, A. RODRIGUEZ AND D. RIOS INSUA
18 BAYESIAN DENOISING OF VISUAL IMAGES IN THE WAVELET DOMAIN E. P.
SIMONCELLI 203 223 243 267 291 *5 VI EMPIRICAL BAYES IX 19 EMPIRICAL
BAYES ESTIMATION IN WAVELET NONPARAMETRIC REGRESSION 309 M.A. CLYDE AND
E.I. GEORGE 20 NONPARAMETRIC EMPIRICAL BAYES ESTIMATION VIA WAVELETS 323
M. PENSKY VII CASE STUDIES 21 MULTIRESOLUTION WAVELET ANALYSES IN
HIERARCHICAL BAYESIAN TURBULENCE MODELS 341 L.M. BERLINER, CK. WIKLE,
AND R.F. MILLIFF 22 LOW DIMENSIONAL TURBULENT TRANSPORT MECHANICS NEAR
THE FOREST-ATMOSPHERE INTERFACE 361 G. KATUL AND J. ALBERTSON 23 LATENT
STRUCTURE ANALYSES OF TURBULENCE DATA USING WAVELETS AND TIME SERIES
DECOMPOSITIONS 381 0. AGUILAR
|
adam_txt |
PETER MUELLER BRANI VIDAKOVIC (EDITORS) BAYESIAN INFERENCE IN
WAVELET-BASED MODELS SPRINGER CONTENTS I INTRODUCTION 1 AN INTRODUCTION
TO WAVELETS 1 B. VIDAKOVIC AND P. MUELLER 2 SPECTRAL VIEW OF WAVELETS AND
NONLINEAR REGRESSION 19 J.S. MARRON II PRIOR MODELS - INDEPENDENT CASE 3
BAYESIAN APPROACH TO WAVELET DECOMPOSITION AND SHRINKAGE F. ABRAMOVICH
AND T. SAPATINAS 4 SOME OBSERVATIONS ON THE TRACTABILITY OF CERTAIN
MULTI-SCALE MODELS. E. D. KOLACZYK 5 BAYESIAN ANALYSIS OF CHANGE-POINT
MODELS T. OGDEN AND J.D. LYNCH 6 PRIOR ELICITATION IN THE WAVELET DOMAIN
H.A. CHIPMAN AND L.J. WOLFSON 7 WAVELET NONPARAMETRIC REGRESSION USING
BASIS AVERAGING P. YAU AND R. KOHN III DECISION THEORETIC WAVELET
SHRINKAGE 8 AN OVERVIEW OF WAVELET REGULAERIZATION 109 Y. WANG 9 MINIMAX
RESTORATION AND DECONVOLUTION 115 J. KALIFA AND S. MALLAT 33 51 67 83 95
VM 10 ROBUST BAYESIAN AND BAYESIAN DECISION THEORETIC WAVELET SHRINKAGE
139 F. RUGGERI 11 BEST BASIS REPRESENTATIONS WITH PRIOR STATISTICAL
MODELS 155 D. LEPORINI, J.-C. PESQUET, AND H. KRIM IV PRIOR MODELS -
DEPENDENT CASE 12 MODELING DEPENDENCE IN THE WAVELET DOMAIN 173 M.
VANNUCCI AND F. CORRADI 13 MCMC METHODS IN WAVELET SHRINKAGE 187 P.
MUELLER AND B. VIDAKOVIC V SPATIAL MODELS 14 EMPIRICAL BAYESIAN SPATIAL
PREDICTION USING WAVELETS H.-C. HUANG AND N. CRESSIE 15 GEOMETRICAL
PRIORS FOR NOISEFREE WAVELET COEFFICIENTS IN IMAGE DENOISING M. JANSEN
AND A. BULTHEEL 16 MULTISCALE HIDDEN MARKOV MODELS FOR BAYESIAN IMAGE
ANALYSIS R.D. NOWAK 17 WAVELETS FOR OBJECT REPRESENTATION AND
RECOGNITION IN COMPUTER VISION L. PASTOR, A. RODRIGUEZ AND D. RIOS INSUA
18 BAYESIAN DENOISING OF VISUAL IMAGES IN THE WAVELET DOMAIN E. P.
SIMONCELLI 203 223 243 267 291 *5 VI EMPIRICAL BAYES IX 19 EMPIRICAL
BAYES ESTIMATION IN WAVELET NONPARAMETRIC REGRESSION 309 M.A. CLYDE AND
E.I. GEORGE 20 NONPARAMETRIC EMPIRICAL BAYES ESTIMATION VIA WAVELETS 323
M. PENSKY VII CASE STUDIES 21 MULTIRESOLUTION WAVELET ANALYSES IN
HIERARCHICAL BAYESIAN TURBULENCE MODELS 341 L.M. BERLINER, CK. WIKLE,
AND R.F. MILLIFF 22 LOW DIMENSIONAL TURBULENT TRANSPORT MECHANICS NEAR
THE FOREST-ATMOSPHERE INTERFACE 361 G. KATUL AND J. ALBERTSON 23 LATENT
STRUCTURE ANALYSES OF TURBULENCE DATA USING WAVELETS AND TIME SERIES
DECOMPOSITIONS 381 0. AGUILAR |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)1121511155 |
building | Verbundindex |
bvnumber | BV022148083 |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279.5 |
callnumber-search | QA279.5 |
callnumber-sort | QA 3279.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 856 SK 830 |
ctrlnum | (OCoLC)41284972 (DE-599)BVBBV022148083 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02481nam a2200661zcb4500</leader><controlfield tag="001">BV022148083</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990803s1999 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387988858</subfield><subfield code="9">0-387-98885-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)41284972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022148083</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 856</subfield><subfield code="0">(DE-625)143202:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian inference in wavelet-based models</subfield><subfield code="c">Peter Müller ... (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 394 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in statistics</subfield><subfield code="v">141</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Besliskunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Methode van Bayes</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ondelettes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ondelettes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistique bayésienne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistique bayésienne</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wavelets</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">débruitage</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">décomposition en ondelettes</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">inférence statistique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">modélisation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">méthode bayésienne</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ondelette</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelets (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsmodell</subfield><subfield code="0">(DE-588)4127980-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenpaket</subfield><subfield code="0">(DE-588)4127186-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wellenpaket</subfield><subfield code="0">(DE-588)4127186-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Regressionsmodell</subfield><subfield code="0">(DE-588)4127980-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Peter</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1121511155</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in statistics</subfield><subfield code="v">141</subfield><subfield code="w">(DE-604)BV002447846</subfield><subfield code="9">141</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015362721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015362721</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022148083 |
illustrated | Illustrated |
index_date | 2024-07-02T16:18:02Z |
indexdate | 2024-07-09T20:51:22Z |
institution | BVB |
isbn | 0387988858 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015362721 |
oclc_num | 41284972 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XIII, 394 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer |
record_format | marc |
series | Lecture notes in statistics |
series2 | Lecture notes in statistics |
spelling | Bayesian inference in wavelet-based models Peter Müller ... (ed.) New York [u.a.] Springer 1999 XIII, 394 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in statistics 141 Literaturangaben Besliskunde gtt Methode van Bayes gtt Ondelettes Ondelettes ram Statistique bayésienne Statistique bayésienne ram Wavelets gtt débruitage inriac décomposition en ondelettes inriac inférence statistique inriac modélisation inriac méthode bayésienne inriac ondelette inriac Bayesian statistical decision theory Wavelets (Mathematics) Wavelet (DE-588)4215427-3 gnd rswk-swf Regressionsmodell (DE-588)4127980-3 gnd rswk-swf Wellenpaket (DE-588)4127186-5 gnd rswk-swf Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Wellenpaket (DE-588)4127186-5 s DE-604 Regressionsmodell (DE-588)4127980-3 s Wavelet (DE-588)4215427-3 s Bayes-Verfahren (DE-588)4204326-8 s 1\p DE-604 Müller, Peter 1963- Sonstige (DE-588)1121511155 oth Lecture notes in statistics 141 (DE-604)BV002447846 141 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015362721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bayesian inference in wavelet-based models Lecture notes in statistics Besliskunde gtt Methode van Bayes gtt Ondelettes Ondelettes ram Statistique bayésienne Statistique bayésienne ram Wavelets gtt débruitage inriac décomposition en ondelettes inriac inférence statistique inriac modélisation inriac méthode bayésienne inriac ondelette inriac Bayesian statistical decision theory Wavelets (Mathematics) Wavelet (DE-588)4215427-3 gnd Regressionsmodell (DE-588)4127980-3 gnd Wellenpaket (DE-588)4127186-5 gnd Bayes-Verfahren (DE-588)4204326-8 gnd |
subject_GND | (DE-588)4215427-3 (DE-588)4127980-3 (DE-588)4127186-5 (DE-588)4204326-8 |
title | Bayesian inference in wavelet-based models |
title_auth | Bayesian inference in wavelet-based models |
title_exact_search | Bayesian inference in wavelet-based models |
title_exact_search_txtP | Bayesian inference in wavelet-based models |
title_full | Bayesian inference in wavelet-based models Peter Müller ... (ed.) |
title_fullStr | Bayesian inference in wavelet-based models Peter Müller ... (ed.) |
title_full_unstemmed | Bayesian inference in wavelet-based models Peter Müller ... (ed.) |
title_short | Bayesian inference in wavelet-based models |
title_sort | bayesian inference in wavelet based models |
topic | Besliskunde gtt Methode van Bayes gtt Ondelettes Ondelettes ram Statistique bayésienne Statistique bayésienne ram Wavelets gtt débruitage inriac décomposition en ondelettes inriac inférence statistique inriac modélisation inriac méthode bayésienne inriac ondelette inriac Bayesian statistical decision theory Wavelets (Mathematics) Wavelet (DE-588)4215427-3 gnd Regressionsmodell (DE-588)4127980-3 gnd Wellenpaket (DE-588)4127186-5 gnd Bayes-Verfahren (DE-588)4204326-8 gnd |
topic_facet | Besliskunde Methode van Bayes Ondelettes Statistique bayésienne Wavelets débruitage décomposition en ondelettes inférence statistique modélisation méthode bayésienne ondelette Bayesian statistical decision theory Wavelets (Mathematics) Wavelet Regressionsmodell Wellenpaket Bayes-Verfahren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015362721&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002447846 |
work_keys_str_mv | AT mullerpeter bayesianinferenceinwaveletbasedmodels |