Continuous and discontinuous modelling of cohesive-frictional materials:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Schriftenreihe: | Lecture notes in physics
568 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XIV, 307 S. Ill., zahlr. graph. Darst. |
ISBN: | 3540415254 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022146960 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 010308s2001 ad|| |||| 10||| eng d | ||
020 | |a 3540415254 |9 3-540-41525-4 | ||
035 | |a (OCoLC)45621689 | ||
035 | |a (DE-599)BVBBV022146960 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a TA404.2 | |
082 | 0 | |a 620.1/1292 |2 21 | |
084 | |a UD 8220 |0 (DE-625)145543: |2 rvk | ||
084 | |a UQ 8050 |0 (DE-625)146587: |2 rvk | ||
245 | 1 | 0 | |a Continuous and discontinuous modelling of cohesive-frictional materials |c P. A. Vermeer ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XIV, 307 S. |b Ill., zahlr. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in physics |v 568 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Cohesion |x Mathematical models | |
650 | 4 | |a Friction |x Mathematical models | |
650 | 4 | |a Materials |x Mathematical models | |
650 | 0 | 7 | |a Modell |0 (DE-588)4039798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Granulärer Stoff |0 (DE-588)4256351-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Innere Reibung |0 (DE-588)4161806-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohäsion |0 (DE-588)4164485-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 0 | 1 | |a Kohäsion |0 (DE-588)4164485-2 |D s |
689 | 0 | 2 | |a Innere Reibung |0 (DE-588)4161806-3 |D s |
689 | 0 | 3 | |a Modell |0 (DE-588)4039798-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Granulärer Stoff |0 (DE-588)4256351-3 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Kohäsion |0 (DE-588)4164485-2 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Granulärer Stoff |0 (DE-588)4256351-3 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Vermeer, Pieter A. |e Sonstige |4 oth | |
830 | 0 | |a Lecture notes in physics |v 568 |w (DE-604)BV000003166 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015361598&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015361598 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136120844288000 |
---|---|
adam_text | P. A. VERMEER S. DIEBELS W. EHLERS H. J. HERRMANN S. LUDING E. RAMM
(EDS.) CONTINUOUS AND DISCONTINUOUS MODELLING OF COHESIVE-FRICTIONAL
MATERIALS 4PI SPRINGER CONTENTS COMPUTATIONAL MODEIS FOR FAILURE IN
COHESIVE-FRICTIONAL MATERIALS WITH STOCHASTICALLY DISTRIBUTED
IMPERFECTIONS M.A. GUTIERREZ, R. DE BORST 1 1 INTRODUCTION 1 2 THE
FINITE DEMENT RELIABILITY METHOD 2 2.1 INTRODUCTION TO THE RELIABILITY
METHOD 2 2.2 DISCRETISATION OF THE MATERIAL PROPERTIES 4 2.3 RESPONSE AS
A FUNCTION OF THE IMPERFECTIONS 4 2.4 APPROXIMATION OF THE PROBABILITY
OF FAILURE 6 2.5 COMPUTATION OF THE /?-POINTS 8 3 COMPUTATION OF THE
MECHANICAL TRANSFORMATION 9 3.1 COMPUTATION OF THE EQUILIBRIUM PATH 9
3.2 COMPUTATION OF THE GRADIENT OF THE EQUILIBRIUM PATH 12 4 NUMERICAL
SIMULATION 13 5 CONCLUSIONS 15 REFERENCES 15 MODELLING OF LOCALIZED
DAMAGE AND FRACTURE IN QUASIBRITTLE MATERIALS M. JIRDSEK 17 1
REPRESENTATION OF LOCALIZED DEFORMATION 17 1.1 KINEMATIC DESCRIPTION 17
1.2 CONSTITUTIVE MODEIS 19 1.3 NUMERICAL APPROXIMATIONS 21 1.4 COMBINED
CONTINUOUS-DISCONTINUOUS DESCRIPTION 22 2 ELEMENTS WITH EMBEDDED
LOCALIZATION ZONES 23 2.1 MOTIVATION 23 2.2 LOW-ORDER ELEMENTS 25 2.3
HIGHER-ORDER ELEMENTS 26 2.4 ENRICHED ELEMENTS 27 3 CONCLUDING REMARKS
28 REFERENCES 29 VIII CONTENTS MICROPLANE MODELLING AND PARTICLE
MODELLING OF COHESIVE-FRICTIONAL MATERIALS E. KUEHL, G.A. D ADDETTA, M.
LEUKART, E. RAMM 31 1 MOTIVATION 31 2 CONTINUUM-BASED MICROPLANE MODEIS
32 2.1 MICROPLANE ELASTICITY 34 2.2 MICROPLANE ELASTO-PLASTICITY 36 2.3
EXAMPLE 37 3 DISCRETE PARTICLE MODEIS 38 3.1 ELASTIC PARTICLES 39 3.2
ELASTO-PLASTIC PARTICLES 41 4 COMPARISON 43 SHORT-TERM CREEP OF
SHOTCRETE * THERMOCHEMOPLASTIC MATERIAL MODELLING AND NONLINEAR ANALYSIS
OF A LABORATORY TEST AND OF A NATM EXCAVATION BY THE FINITE ELEMENT
METHOD M. LECHNER, CH. HELLMICH, H.A. MANG 47 1 INTRODUCTION AND
MOTIVATION FOR THE INVESTIGATION OF CREEP IN SHOTCRETE . 47 2
THERMOCHEMOPLASTIC MATERIAL MODEL FOR SHOTCRETE 48 2.1 STATE VARIABLES
48 2.2 FIELD EQUATIONS 49 2.3 HEAT CONDUCTION LAW 49 2.4 CONSTITUTIVE
EQUATIONS 49 3 ALGORITHMIC TREATMENT OF THE INCREMENTAL FORMULATION FOR
SHORT-TERM CREEP 52 3.1 DISCRETIZATION OF THE EVOLUTION LAW FOR
SHORT-TERM CREEP 52 3.2 DISCRETIZATION OF THE INCREMENTAL STATE EQUATION
FOR THE STRESSES . . 53 3.3 NUMERICAL EXAMPLE: CREEP TEST WITH TWO
INSTANTS OF LOADING 54 4 RE-ANALYSIS OF A LABORATORY TEST 55 4.1
MODELLING 55 4.2 EXPERIMENTAL DETERMINATION OF MATERIAL PROPERTIES 55
4.3 RESULTS 57 5 SIMULATION OF A TUNNEL DRIVEN ACCORDING TO THE NATM 58
THERMO-PORO-MECHANICS OF RAPID FAULT SHEARING I. VARDOULAKIS 63 1
INTRODUCTION 63 2 FORMULATION 64 2.1 MASS BALANCE 64 2.2 ENERGY BALANCE
65 2.3 MOMENTUM BALANCE 66 3 THE MATHEMATICAL MODEL 68 4 FRICTIONAL
SHEARING STRAIN-RATE SOFTENING 72 CONTENTS IX A VIEW ON THE VARIATIONAL
SETTING OF MICROPOLAR CONTINUA P. STEINMANN 75 1 INTRODUCTION 75 2
GEOMETRICALLY LINEAR MICROPOLAR CONTINUA 76 2.1 GRADIENT TYPE MICROPOLAR
CONTINUUM 77 2.2 COSSERAT TYPE MICROPOLAR CONTINUUM 79 2.3 MIXED
FORMULATION GRADIENT TYPE CASE 80 2.4 REGULARIZED MIXED FORMULATION
GRADIENT TYPE CASE 81 3 GEOMETRICALLY NONLINEAR MICROPOLAR CONTINUA 82
3.1 MIXED FORMULATION GRADIENT TYPE CASE 83 3.2 COSSERAT TYPE MICROPOLAR
CONTINUUM 84 3.3 REGULARIZED FORMULATION GRADIENT TYPE CASE 85 4
CONCLUSION 87 MACROMODELLING OF SOFTENING IN NON-COHESIVE SOILS T.
MARCHER, P.A. VERMEER 89 1 INTRODUCTION 89 2 APPROACH TO FRICTION
SOFTENING 90 3 DRUCKER-PRAGER MODEL WITH LOCAL SOFTENING 92 4 NECESSITY
OF REGULARIZATION 94 5 NONLOCAL DP-MODEL 94 6 INTERNAL LENGTH AND
NUMERICAL SHEAR BAND THICKNESS 96 7 EMPIRICAL SHEAR BAND THICKNESSES 98
8 SOFTENING SCALING ON H AND L 100 9 HARDENING SOIL MODEL 102 10
HS-MODEL WITH NONLOCAL SOFTENING 104 11 GEOMETRICAL NONLINEARITY 106 12
CONCLUSIONS 107 REFERENCES 108 AN EXPERIMENTAL INVESTIGATION OF THE
RELATIONSHIPS BETWEEN GRAIN SIZE DISTRIBUTION AND SHEAR BANDING IN SAND
G. VIGGIANI, M. KUENTZ, J. DESRUES 111 1 INTRODUCTION 111 2 EXPERIMENTAL
DEVICE AND TESTING PROCEDURE 113 3 TESTED SANDS 114 4 EXPERIMENTAL
RESULTS 117 4.1 MONODISPERSE SANDS 119 4.2 BINARY MIXTURES 123 5
DISCUSSION 124 6 CONCLUSIONS 126 REFERENCES 126 X CONTENTS
MICROMECHANICS OF THE ELASTIC BEHAVIOUR OF GRANULAER MATERIALS N.P.
KRUYT, L. ROTHENBURG 129 1 INTRODUCTION 129 2 MICROMECHANICS 130 2.1
BRANCH AND POLYGON VECTOR 130 2.2 STRESS, STRAIN AND WORK 132 2.3 GROUP
AVERAGING 132 2.4 CONTACT CONSTITUTIVE RELATION 133 3 EXTREMUM
PRINCIPLES 133 3.1 STATISTICAL MINIMUM POTENTIAL ENERGY THEORY 134 4
DISCRETE ELEMENT SIMULATIONS 134 4.1 PARTICLE SIZE DISTRIBUTION 135 4.2
ASSEMBLIES 135 4.3 DISCRETE ELEMENT SIMULATIONS 135 4.4 AVERAGING 136 5
RESULTS FROM DISCRETE ELEMENT SIMULATIONS 136 5.1 GEOMETRY 137 5.2
MODULI 138 5.3 RELATIVE DISPLACEMENTS 138 5.4 ENERGY DISTRIBUTION 140
REFERENCES 141 ON STICKY-SPHERE ASSEMBLIES J.D. GODDARD 143 1 COHESIVE
MATERIALS 144 2 CONCLUSIONS AND RECOMMENDATIONS 147 REFERENCES 147
COHESIVE GRANULAER TEXTURE F. RADJAI) I. PREECHAWUTTIPONG, R. PEYROUX 149
1 INTRODUCTION 149 2 SIMPLE CONTACT LAWS WITH ADHESION 150 3 EXAMPLES OF
OBSERVED BEHAVIORS 156 REFERENCES 162 MICRO-MECHANISMS OF DEFORMATION IN
GRANULAER MATERIALS: EXPERIMENTS AND NUMERICAL RESULTS J. LANIER 163 1
EXPERIMENTAL RESULTS 163 1.1 EXPERIMENTAL PROCEDURE 163 1.2
DISPLACEMENTS FIELD OF RODS CENTERS 164 1.3 GRAINS ROTATION 166 1.4
ROLLING WITHOUT SLIDING 166 1.5 LOCAL DEFORMATION AND SHEAR BAND 167 2
NUMERICAL SIMULATIONS 168 2.1 NUMERICAL SIMULATIONS OF BIAXIAL TESTS 169
CONTENTS XI 2.2 LOCAL MECHANISMS OF DEFORMATION 170 2.3 NUMERICAL
SIMULATION OF PULL-OUT TEST 170 3 CONCLUSION 172 REFERENCES 172 SCALING
PROPERTIES OF GRANULAER MATERIALS T. POESCHEL, C. SALUENA, T. SCHWAGER 173
1 INTRODUCTION 173 2 THE NORMAL FORCE F N 174 3 SCALING PROPERTIES 175 4
SCALING LARGE PHENOMENA DOWN TO LAB-SIZE EXPERIMENTS 177 5 BOUNCING
BALL 181 6 CONSIDERATION OF THE TANGENTIAL FORCE 181 7 CONCLUSION 183
REFERENCES 183 DISCRETE AND CONTINUUM MODELLING OF GRANULAER MATERIALS
H.-B. MUEHLHAUS, H. SAKAGUCHI, L. MORESI, M. FAHEY 185 1 INTRODUCTION 185
2 FORMULATION 186 2.1 CONTINUUM MODEL 186 2.2 DISCRETE ELEMENT MODEL 189
3 LAGRANGIAN PARTICLE METHOD 192 3.1 LAGRANGIAN PARTICLES 193 3.2
NUMERICAL INTEGRATION 194 3.3 ELEMENT MATRICES AND PARTICLE PROPERTIES
195 3.4 PARTICLE SPLITTING 195 3.5 ELEMENT INVERSE MAPPING 197 4
EXAMPLES 198 4.1 DEM MODEL SIMULATING A TRIAXIAL COMPRESSION TEST 198
4.2 DEM MODEL OF GRANULAER FLOW 199 4.3 LPM LARGE DEFORMATION BENCHMARK
200 4.4 LPM MODEL OF DISCHARGING SILO 202 5 CONCLUDING REMARKS 203
REFERENCES 204 DIFNCULTIES AND LIMITATION OF STATISTICAL HOMOGENIZATION
IN GRANULAER MATERIALS B. CAMBOU, PH. DUBUJET 205 1 DEFINITION OF
STATISTICAL HOMOGENIZATION IN GRANULAER MATERIALS 205 2 STATIC AVERAGING
OPERATOR 206 3 STATIC LOCALISATION OPERATOR 207 3.1 GENERAL FORMULATION
207 3.2 ANALYSIS OF THE PHYSICAL MEANINGS OF INTERNAL PARAMETERS I AND
E^ 207 XII CONTENTS 3.3 ANALYSIS OF THE CAPACITY OF DIFFERENT
LOCALISATION OPERATORS FROM A NUMERICAL SIMULATION 208 4 KINEMATIC
AVERAGING OPERATOR 210 5 KINEMATIC LOCALISATION OPERATOR 213 6
CONCLUSIONS 214 REFERENCES 214 FROM DISCONTINUOUS MODEIS TOWARDS A
CONTINUUM DESCRIPTION M. LAETZEL, S. LUDING, H.J. HERRMANN 215 1
INTRODUCTION 215 2 MODEL SYSTEM AND SIMULATION 216 2.1 THE COUETTE
SHEAR-CELL SETUP 216 2.2 THE DISCRETE ELEMENT MODEL 217 3 PROM THE
MICRO- TO A MACRO-DESCRIPTION 218 3.1 AVERAGING STRATEGY 219 3.2
AVERAGING FORMALISM 219 4 RESULTS ON MACROSCOPIC SCALAR QUANTITIES 220
4.1 VOLUME FRACTION 220 4.2 MASS FLUX DENSITY 220 5 MACROSCOPIC
TENSORIAL QUANTITIES 221 5.1 FABRIC TENSOR 221 5.2 STRESS TENSOR 223 5.3
ELASTIC DEFORMATION GRADIENT 223 5.4 MATERIAL PROPERTIES 223 6
ROTATIONAL DEGREES OF FREEDOM 225 7 SUMMARY AND CONCLUSION 228
REFERENCES 229 FROM SOLIDS TO GRANULATES * DISCRETE ELEMENT SIMULATIONS
OF FRACTURE AND FRAGMENTATION PROCESSES IN GEOMATERIALS G.A. D ADDETTA ,
F. KUN, E. RAMM, H.J. HERRMANN 231 1 INTRODUCTION 231 2 DESCRIPTION OF
THE MODEL 233 2.1 GRANULARITY 234 2.2 ELASTIC BEHAVIOUR OF THE SOLID 235
2.3 BREAKING OF THE SOLID 238 2.4 STRESS CALCULATION 239 3 SIMULATION
RESULTS 239 3.1 QUASI-STATIC LOADING SCENARIOS 240 3.2 DYNAMIC
FRAGMENTATION OF SOLIDS 249 4 CONCLUSIONS 256 REFERENCES 257 CONTENTS
XIII MICROSCOPIC MODELLING OF GRANULAER MATERIALS TAKING INTO ACCOUNT
PARTICLE ROTATIONS W. EHLERS, S. DIEBELS, T. MICHELITSCH 259 1
INTRODUCTION 259 2 KINEMATICS 261 3 EQUATIONS OF MOTION 262 4 CONTACT
LAWS 264 5 NUMERICAL ASPECTS 268 6 SIMULATION EXAMPLES AND RESULTS 269 7
CONCLUSIONS 272 REFERENCES 273 MICROSTRUCTURED MATERIALS: LOCAL
CONSTITUTIVE EQUATION WITH INTERNAL LENGHT, THEORETICAL AND NUMERICAL
STUDIES R. CHAMBON, T. MATSUCHIMA, D. CAILLERIE 275 1 INTRODUCTION 275 2
A GENERAL THEORY FOR CONTINUA WITH MICROSTRUCTURE 276 2.1 KINEMATIC
DESCRIPTION OF A CONTINUUM WITH MICROSTRUCTURE 276 2.2 THE INTERNAL
VIRTUAL WORK 276 2.3 THE EXTERNAL VIRTUAL WORK 276 2.4 THE BALANCE
EQUATIONS AND THE BOUNDARY CONDITIONS 277 3 MICROSTRUCTURED CONTINUUM
WITH KINEMATIC CONSTRAINT: SECOND GRADIENT MODEIS 277 3.1 EQUATIONS OF A
SECOND GRADIENT MODEL 277 3.2 LOCAL ELASTO-PLASTIC SECOND GRADIENT
MODEIS 278 4 AN APPLICATION OF LOCAL ELASTO-PLASTIC SECOND GRADIENT
MODEL 279 4.1 THE PROBLEM TO BE SOLVED 279 4.2 PARTIAL SOLUTIONS 280 4.3
PATCH CONDITIONS AND FUELL SOLUTIONS 282 4.4 DISCUSSION 283 5 EQUATIONS
WITH LAGRANGE MULTIPLIERS 284 6 EQUATIONS FOR THE ITERATIVE PROCEDURE
284 7 FINITE ELEMENT METHOD 286 7.1 SHAPE FUNCTIONS 286 7.2 ELEMENT
STIFFNESS MATRIX 287 7.3 ELEMENT RESIDUAL TERMS 288 7.4 GLOBAL MATRICES
289 8 APPLICATIONS: TWO DIMENSIONAL ELASTO-PLASTIC CONSTITUTIVE RELATION
289 9 CONCLUSIONS 291 REFERENCES 291 DAMAGE IN A COMPOSITE MATERIAL
UNDER COMBINED MECHANICAL AND HYGRAL LOAD H. SADOUKI, F. H. WITTMANN 293
1 INTRODUCTION 293 XIV CONTENTS 2 GENERATION OF NUMERICAL CONCRETE 294 3
DRYING PROCESS AND SELF-DESICCATION 295 3.1 BASIC ELEMENTS AND EQUATIONS
GOVERNING THE PROCESSES 295 3.2 MATERIAL PARAMETERS 296 3.3 AN EXAMPLE
OF SIMULATION OF DRYING 298 4 ENDOGENOUS AND DRYING SHRINKAGE 299 4.1
GENERAL CONCEPT 299 4.2 SHRINKAGE IN NORMAL AND HIGH PERFORMANCE
CONCRETE 300 5 CONCLUSIONS 306
|
adam_txt |
P. A. VERMEER S. DIEBELS W. EHLERS H. J. HERRMANN S. LUDING E. RAMM
(EDS.) CONTINUOUS AND DISCONTINUOUS MODELLING OF COHESIVE-FRICTIONAL
MATERIALS 4PI SPRINGER CONTENTS COMPUTATIONAL MODEIS FOR FAILURE IN
COHESIVE-FRICTIONAL MATERIALS WITH STOCHASTICALLY DISTRIBUTED
IMPERFECTIONS M.A. GUTIERREZ, R. DE BORST 1 1 INTRODUCTION 1 2 THE
FINITE DEMENT RELIABILITY METHOD 2 2.1 INTRODUCTION TO THE RELIABILITY
METHOD 2 2.2 DISCRETISATION OF THE MATERIAL PROPERTIES 4 2.3 RESPONSE AS
A FUNCTION OF THE IMPERFECTIONS 4 2.4 APPROXIMATION OF THE PROBABILITY
OF FAILURE 6 2.5 COMPUTATION OF THE /?-POINTS 8 3 COMPUTATION OF THE
MECHANICAL TRANSFORMATION 9 3.1 COMPUTATION OF THE EQUILIBRIUM PATH 9
3.2 COMPUTATION OF THE GRADIENT OF THE EQUILIBRIUM PATH 12 4 NUMERICAL
SIMULATION 13 5 CONCLUSIONS 15 REFERENCES 15 MODELLING OF LOCALIZED
DAMAGE AND FRACTURE IN QUASIBRITTLE MATERIALS M. JIRDSEK 17 1
REPRESENTATION OF LOCALIZED DEFORMATION 17 1.1 KINEMATIC DESCRIPTION 17
1.2 CONSTITUTIVE MODEIS 19 1.3 NUMERICAL APPROXIMATIONS 21 1.4 COMBINED
CONTINUOUS-DISCONTINUOUS DESCRIPTION 22 2 ELEMENTS WITH EMBEDDED
LOCALIZATION ZONES 23 2.1 MOTIVATION 23 2.2 LOW-ORDER ELEMENTS 25 2.3
HIGHER-ORDER ELEMENTS 26 2.4 ENRICHED ELEMENTS 27 3 CONCLUDING REMARKS
28 REFERENCES 29 VIII CONTENTS MICROPLANE MODELLING AND PARTICLE
MODELLING OF COHESIVE-FRICTIONAL MATERIALS E. KUEHL, G.A. D'ADDETTA, M.
LEUKART, E. RAMM 31 1 MOTIVATION 31 2 CONTINUUM-BASED MICROPLANE MODEIS
32 2.1 MICROPLANE ELASTICITY 34 2.2 MICROPLANE ELASTO-PLASTICITY 36 2.3
EXAMPLE 37 3 DISCRETE PARTICLE MODEIS 38 3.1 ELASTIC PARTICLES 39 3.2
ELASTO-PLASTIC PARTICLES 41 4 COMPARISON 43 SHORT-TERM CREEP OF
SHOTCRETE * THERMOCHEMOPLASTIC MATERIAL MODELLING AND NONLINEAR ANALYSIS
OF A LABORATORY TEST AND OF A NATM EXCAVATION BY THE FINITE ELEMENT
METHOD M. LECHNER, CH. HELLMICH, H.A. MANG 47 1 INTRODUCTION AND
MOTIVATION FOR THE INVESTIGATION OF CREEP IN SHOTCRETE . 47 2
THERMOCHEMOPLASTIC MATERIAL MODEL FOR SHOTCRETE 48 2.1 STATE VARIABLES
48 2.2 FIELD EQUATIONS 49 2.3 HEAT CONDUCTION LAW 49 2.4 CONSTITUTIVE
EQUATIONS 49 3 ALGORITHMIC TREATMENT OF THE INCREMENTAL FORMULATION FOR
SHORT-TERM CREEP 52 3.1 DISCRETIZATION OF THE EVOLUTION LAW FOR
SHORT-TERM CREEP 52 3.2 DISCRETIZATION OF THE INCREMENTAL STATE EQUATION
FOR THE STRESSES . . 53 3.3 NUMERICAL EXAMPLE: CREEP TEST WITH TWO
INSTANTS OF LOADING 54 4 RE-ANALYSIS OF A LABORATORY TEST 55 4.1
MODELLING 55 4.2 EXPERIMENTAL DETERMINATION OF MATERIAL PROPERTIES 55
4.3 RESULTS 57 5 SIMULATION OF A TUNNEL DRIVEN ACCORDING TO THE NATM 58
THERMO-PORO-MECHANICS OF RAPID FAULT SHEARING I. VARDOULAKIS 63 1
INTRODUCTION 63 2 FORMULATION 64 2.1 MASS BALANCE 64 2.2 ENERGY BALANCE
65 2.3 MOMENTUM BALANCE 66 3 THE MATHEMATICAL MODEL 68 4 FRICTIONAL
SHEARING STRAIN-RATE SOFTENING 72 CONTENTS IX A VIEW ON THE VARIATIONAL
SETTING OF MICROPOLAR CONTINUA P. STEINMANN 75 1 INTRODUCTION 75 2
GEOMETRICALLY LINEAR MICROPOLAR CONTINUA 76 2.1 GRADIENT TYPE MICROPOLAR
CONTINUUM 77 2.2 COSSERAT TYPE MICROPOLAR CONTINUUM 79 2.3 MIXED
FORMULATION GRADIENT TYPE CASE 80 2.4 REGULARIZED MIXED FORMULATION
GRADIENT TYPE CASE 81 3 GEOMETRICALLY NONLINEAR MICROPOLAR CONTINUA 82
3.1 MIXED FORMULATION GRADIENT TYPE CASE 83 3.2 COSSERAT TYPE MICROPOLAR
CONTINUUM 84 3.3 REGULARIZED FORMULATION GRADIENT TYPE CASE 85 4
CONCLUSION 87 MACROMODELLING OF SOFTENING IN NON-COHESIVE SOILS T.
MARCHER, P.A. VERMEER 89 1 INTRODUCTION 89 2 APPROACH TO FRICTION
SOFTENING 90 3 DRUCKER-PRAGER MODEL WITH LOCAL SOFTENING 92 4 NECESSITY
OF REGULARIZATION 94 5 NONLOCAL DP-MODEL 94 6 INTERNAL LENGTH AND
NUMERICAL SHEAR BAND THICKNESS 96 7 EMPIRICAL SHEAR BAND THICKNESSES 98
8 SOFTENING SCALING ON H AND L 100 9 HARDENING SOIL MODEL 102 10
HS-MODEL WITH NONLOCAL SOFTENING 104 11 GEOMETRICAL NONLINEARITY 106 12
CONCLUSIONS 107 REFERENCES 108 AN EXPERIMENTAL INVESTIGATION OF THE
RELATIONSHIPS BETWEEN GRAIN SIZE DISTRIBUTION AND SHEAR BANDING IN SAND
G. VIGGIANI, M. KUENTZ, J. DESRUES 111 1 INTRODUCTION 111 2 EXPERIMENTAL
DEVICE AND TESTING PROCEDURE 113 3 TESTED SANDS 114 4 EXPERIMENTAL
RESULTS 117 4.1 MONODISPERSE SANDS 119 4.2 BINARY MIXTURES 123 5
DISCUSSION 124 6 CONCLUSIONS 126 REFERENCES 126 X CONTENTS
MICROMECHANICS OF THE ELASTIC BEHAVIOUR OF GRANULAER MATERIALS N.P.
KRUYT, L. ROTHENBURG 129 1 INTRODUCTION 129 2 MICROMECHANICS 130 2.1
BRANCH AND POLYGON VECTOR 130 2.2 STRESS, STRAIN AND WORK 132 2.3 GROUP
AVERAGING 132 2.4 CONTACT CONSTITUTIVE RELATION 133 3 EXTREMUM
PRINCIPLES 133 3.1 STATISTICAL MINIMUM POTENTIAL ENERGY THEORY 134 4
DISCRETE ELEMENT SIMULATIONS 134 4.1 PARTICLE SIZE DISTRIBUTION 135 4.2
ASSEMBLIES 135 4.3 DISCRETE ELEMENT SIMULATIONS 135 4.4 AVERAGING 136 5
RESULTS FROM DISCRETE ELEMENT SIMULATIONS 136 5.1 GEOMETRY 137 5.2
MODULI 138 5.3 RELATIVE DISPLACEMENTS 138 5.4 ENERGY DISTRIBUTION 140
REFERENCES 141 ON STICKY-SPHERE ASSEMBLIES J.D. GODDARD 143 1 COHESIVE
MATERIALS 144 2 CONCLUSIONS AND RECOMMENDATIONS 147 REFERENCES 147
COHESIVE GRANULAER TEXTURE F. RADJAI) I. PREECHAWUTTIPONG, R. PEYROUX 149
1 INTRODUCTION 149 2 SIMPLE CONTACT LAWS WITH ADHESION 150 3 EXAMPLES OF
OBSERVED BEHAVIORS 156 REFERENCES 162 MICRO-MECHANISMS OF DEFORMATION IN
GRANULAER MATERIALS: EXPERIMENTS AND NUMERICAL RESULTS J. LANIER 163 1
EXPERIMENTAL RESULTS 163 1.1 EXPERIMENTAL PROCEDURE 163 1.2
DISPLACEMENTS FIELD OF RODS CENTERS 164 1.3 GRAINS ROTATION 166 1.4
ROLLING WITHOUT SLIDING 166 1.5 LOCAL DEFORMATION AND SHEAR BAND 167 2
NUMERICAL SIMULATIONS 168 2.1 NUMERICAL SIMULATIONS OF BIAXIAL TESTS 169
CONTENTS XI 2.2 LOCAL MECHANISMS OF DEFORMATION 170 2.3 NUMERICAL
SIMULATION OF PULL-OUT TEST 170 3 CONCLUSION 172 REFERENCES 172 SCALING
PROPERTIES OF GRANULAER MATERIALS T. POESCHEL, C. SALUENA, T. SCHWAGER 173
1 INTRODUCTION 173 2 THE NORMAL FORCE F N 174 3 SCALING PROPERTIES 175 4
SCALING LARGE PHENOMENA DOWN TO "LAB-SIZE" EXPERIMENTS 177 5 BOUNCING
BALL 181 6 CONSIDERATION OF THE TANGENTIAL FORCE 181 7 CONCLUSION 183
REFERENCES 183 DISCRETE AND CONTINUUM MODELLING OF GRANULAER MATERIALS
H.-B. MUEHLHAUS, H. SAKAGUCHI, L. MORESI, M. FAHEY 185 1 INTRODUCTION 185
2 FORMULATION 186 2.1 CONTINUUM MODEL 186 2.2 DISCRETE ELEMENT MODEL 189
3 LAGRANGIAN PARTICLE METHOD 192 3.1 LAGRANGIAN PARTICLES 193 3.2
NUMERICAL INTEGRATION 194 3.3 ELEMENT MATRICES AND PARTICLE PROPERTIES
195 3.4 PARTICLE SPLITTING 195 3.5 ELEMENT INVERSE MAPPING 197 4
EXAMPLES 198 4.1 DEM MODEL SIMULATING A TRIAXIAL COMPRESSION TEST 198
4.2 DEM MODEL OF GRANULAER FLOW 199 4.3 LPM LARGE DEFORMATION BENCHMARK
200 4.4 LPM MODEL OF DISCHARGING SILO 202 5 CONCLUDING REMARKS 203
REFERENCES 204 DIFNCULTIES AND LIMITATION OF STATISTICAL HOMOGENIZATION
IN GRANULAER MATERIALS B. CAMBOU, PH. DUBUJET 205 1 DEFINITION OF
STATISTICAL HOMOGENIZATION IN GRANULAER MATERIALS 205 2 STATIC AVERAGING
OPERATOR 206 3 STATIC LOCALISATION OPERATOR 207 3.1 GENERAL FORMULATION
207 3.2 ANALYSIS OF THE PHYSICAL MEANINGS OF INTERNAL PARAMETERS \I AND
E^ 207 XII CONTENTS 3.3 ANALYSIS OF THE CAPACITY OF DIFFERENT
LOCALISATION OPERATORS FROM A NUMERICAL SIMULATION 208 4 KINEMATIC
AVERAGING OPERATOR 210 5 KINEMATIC LOCALISATION OPERATOR 213 6
CONCLUSIONS 214 REFERENCES 214 FROM DISCONTINUOUS MODEIS TOWARDS A
CONTINUUM DESCRIPTION M. LAETZEL, S. LUDING, H.J. HERRMANN 215 1
INTRODUCTION 215 2 MODEL SYSTEM AND SIMULATION 216 2.1 THE COUETTE
SHEAR-CELL SETUP 216 2.2 THE DISCRETE ELEMENT MODEL 217 3 PROM THE
MICRO- TO A MACRO-DESCRIPTION 218 3.1 AVERAGING STRATEGY 219 3.2
AVERAGING FORMALISM 219 4 RESULTS ON MACROSCOPIC SCALAR QUANTITIES 220
4.1 VOLUME FRACTION 220 4.2 MASS FLUX DENSITY 220 5 MACROSCOPIC
TENSORIAL QUANTITIES 221 5.1 FABRIC TENSOR 221 5.2 STRESS TENSOR 223 5.3
ELASTIC DEFORMATION GRADIENT 223 5.4 MATERIAL PROPERTIES 223 6
ROTATIONAL DEGREES OF FREEDOM 225 7 SUMMARY AND CONCLUSION 228
REFERENCES 229 FROM SOLIDS TO GRANULATES * DISCRETE ELEMENT SIMULATIONS
OF FRACTURE AND FRAGMENTATION PROCESSES IN GEOMATERIALS G.A. D'ADDETTA ,
F. KUN, E. RAMM, H.J. HERRMANN 231 1 INTRODUCTION 231 2 DESCRIPTION OF
THE MODEL 233 2.1 GRANULARITY 234 2.2 ELASTIC BEHAVIOUR OF THE SOLID 235
2.3 BREAKING OF THE SOLID 238 2.4 STRESS CALCULATION 239 3 SIMULATION
RESULTS 239 3.1 QUASI-STATIC LOADING SCENARIOS 240 3.2 DYNAMIC
FRAGMENTATION OF SOLIDS 249 4 CONCLUSIONS 256 REFERENCES 257 CONTENTS
XIII MICROSCOPIC MODELLING OF GRANULAER MATERIALS TAKING INTO ACCOUNT
PARTICLE ROTATIONS W. EHLERS, S. DIEBELS, T. MICHELITSCH 259 1
INTRODUCTION 259 2 KINEMATICS 261 3 EQUATIONS OF MOTION 262 4 CONTACT
LAWS 264 5 NUMERICAL ASPECTS 268 6 SIMULATION EXAMPLES AND RESULTS 269 7
CONCLUSIONS 272 REFERENCES 273 MICROSTRUCTURED MATERIALS: LOCAL
CONSTITUTIVE EQUATION WITH INTERNAL LENGHT, THEORETICAL AND NUMERICAL
STUDIES R. CHAMBON, T. MATSUCHIMA, D. CAILLERIE 275 1 INTRODUCTION 275 2
A GENERAL THEORY FOR CONTINUA WITH MICROSTRUCTURE 276 2.1 KINEMATIC
DESCRIPTION OF A CONTINUUM WITH MICROSTRUCTURE 276 2.2 THE INTERNAL
VIRTUAL WORK 276 2.3 THE EXTERNAL VIRTUAL WORK 276 2.4 THE BALANCE
EQUATIONS AND THE BOUNDARY CONDITIONS 277 3 MICROSTRUCTURED CONTINUUM
WITH KINEMATIC CONSTRAINT: SECOND GRADIENT MODEIS 277 3.1 EQUATIONS OF A
SECOND GRADIENT MODEL 277 3.2 LOCAL ELASTO-PLASTIC SECOND GRADIENT
MODEIS 278 4 AN APPLICATION OF LOCAL ELASTO-PLASTIC SECOND GRADIENT
MODEL 279 4.1 THE PROBLEM TO BE SOLVED 279 4.2 PARTIAL SOLUTIONS 280 4.3
PATCH CONDITIONS AND FUELL SOLUTIONS 282 4.4 DISCUSSION 283 5 EQUATIONS
WITH LAGRANGE MULTIPLIERS 284 6 EQUATIONS FOR THE ITERATIVE PROCEDURE
284 7 FINITE ELEMENT METHOD 286 7.1 SHAPE FUNCTIONS 286 7.2 ELEMENT
STIFFNESS MATRIX 287 7.3 ELEMENT RESIDUAL TERMS 288 7.4 GLOBAL MATRICES
289 8 APPLICATIONS: TWO DIMENSIONAL ELASTO-PLASTIC CONSTITUTIVE RELATION
289 9 CONCLUSIONS 291 REFERENCES 291 DAMAGE IN A COMPOSITE MATERIAL
UNDER COMBINED MECHANICAL AND HYGRAL LOAD H. SADOUKI, F. H. WITTMANN 293
1 INTRODUCTION 293 XIV CONTENTS 2 GENERATION OF NUMERICAL CONCRETE 294 3
DRYING PROCESS AND SELF-DESICCATION 295 3.1 BASIC ELEMENTS AND EQUATIONS
GOVERNING THE PROCESSES 295 3.2 MATERIAL PARAMETERS 296 3.3 AN EXAMPLE
OF SIMULATION OF DRYING 298 4 ENDOGENOUS AND DRYING SHRINKAGE 299 4.1
GENERAL CONCEPT 299 4.2 SHRINKAGE IN NORMAL AND HIGH PERFORMANCE
CONCRETE 300 5 CONCLUSIONS 306 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022146960 |
callnumber-first | T - Technology |
callnumber-label | TA404 |
callnumber-raw | TA404.2 |
callnumber-search | TA404.2 |
callnumber-sort | TA 3404.2 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UD 8220 UQ 8050 |
ctrlnum | (OCoLC)45621689 (DE-599)BVBBV022146960 |
dewey-full | 620.1/1292 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/1292 |
dewey-search | 620.1/1292 |
dewey-sort | 3620.1 41292 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02612nam a2200649zcb4500</leader><controlfield tag="001">BV022146960</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010308s2001 ad|| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540415254</subfield><subfield code="9">3-540-41525-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45621689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022146960</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA404.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/1292</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8050</subfield><subfield code="0">(DE-625)146587:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous and discontinuous modelling of cohesive-frictional materials</subfield><subfield code="c">P. A. Vermeer ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 307 S.</subfield><subfield code="b">Ill., zahlr. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">568</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesion</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Friction</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Granulärer Stoff</subfield><subfield code="0">(DE-588)4256351-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Innere Reibung</subfield><subfield code="0">(DE-588)4161806-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohäsion</subfield><subfield code="0">(DE-588)4164485-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohäsion</subfield><subfield code="0">(DE-588)4164485-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Innere Reibung</subfield><subfield code="0">(DE-588)4161806-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Granulärer Stoff</subfield><subfield code="0">(DE-588)4256351-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kohäsion</subfield><subfield code="0">(DE-588)4164485-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Granulärer Stoff</subfield><subfield code="0">(DE-588)4256351-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vermeer, Pieter A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">568</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9"></subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015361598&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015361598</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV022146960 |
illustrated | Illustrated |
index_date | 2024-07-02T16:17:57Z |
indexdate | 2024-07-09T20:51:21Z |
institution | BVB |
isbn | 3540415254 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015361598 |
oclc_num | 45621689 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XIV, 307 S. Ill., zahlr. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics |
spelling | Continuous and discontinuous modelling of cohesive-frictional materials P. A. Vermeer ... (eds.) Berlin [u.a.] Springer 2001 XIV, 307 S. Ill., zahlr. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in physics 568 Literaturangaben Mathematisches Modell Cohesion Mathematical models Friction Mathematical models Materials Mathematical models Modell (DE-588)4039798-1 gnd rswk-swf Granulärer Stoff (DE-588)4256351-3 gnd rswk-swf Innere Reibung (DE-588)4161806-3 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Werkstoff (DE-588)4065579-9 gnd rswk-swf Kohäsion (DE-588)4164485-2 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Werkstoff (DE-588)4065579-9 s Kohäsion (DE-588)4164485-2 s Innere Reibung (DE-588)4161806-3 s Modell (DE-588)4039798-1 s 1\p DE-604 Granulärer Stoff (DE-588)4256351-3 s Mathematisches Modell (DE-588)4114528-8 s 2\p DE-604 DE-604 Vermeer, Pieter A. Sonstige oth Lecture notes in physics 568 (DE-604)BV000003166 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015361598&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Continuous and discontinuous modelling of cohesive-frictional materials Lecture notes in physics Mathematisches Modell Cohesion Mathematical models Friction Mathematical models Materials Mathematical models Modell (DE-588)4039798-1 gnd Granulärer Stoff (DE-588)4256351-3 gnd Innere Reibung (DE-588)4161806-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Werkstoff (DE-588)4065579-9 gnd Kohäsion (DE-588)4164485-2 gnd |
subject_GND | (DE-588)4039798-1 (DE-588)4256351-3 (DE-588)4161806-3 (DE-588)4114528-8 (DE-588)4065579-9 (DE-588)4164485-2 (DE-588)1071861417 |
title | Continuous and discontinuous modelling of cohesive-frictional materials |
title_auth | Continuous and discontinuous modelling of cohesive-frictional materials |
title_exact_search | Continuous and discontinuous modelling of cohesive-frictional materials |
title_exact_search_txtP | Continuous and discontinuous modelling of cohesive-frictional materials |
title_full | Continuous and discontinuous modelling of cohesive-frictional materials P. A. Vermeer ... (eds.) |
title_fullStr | Continuous and discontinuous modelling of cohesive-frictional materials P. A. Vermeer ... (eds.) |
title_full_unstemmed | Continuous and discontinuous modelling of cohesive-frictional materials P. A. Vermeer ... (eds.) |
title_short | Continuous and discontinuous modelling of cohesive-frictional materials |
title_sort | continuous and discontinuous modelling of cohesive frictional materials |
topic | Mathematisches Modell Cohesion Mathematical models Friction Mathematical models Materials Mathematical models Modell (DE-588)4039798-1 gnd Granulärer Stoff (DE-588)4256351-3 gnd Innere Reibung (DE-588)4161806-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Werkstoff (DE-588)4065579-9 gnd Kohäsion (DE-588)4164485-2 gnd |
topic_facet | Mathematisches Modell Cohesion Mathematical models Friction Mathematical models Materials Mathematical models Modell Granulärer Stoff Innere Reibung Werkstoff Kohäsion Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015361598&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT vermeerpietera continuousanddiscontinuousmodellingofcohesivefrictionalmaterials |