Positive polynomials and product type actions of compact groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
American Math. Soc.
1985
|
Schriftenreihe: | Memoirs of the American Mathematical Society
320 |
Schlagworte: | |
Beschreibung: | XI, 79 S. |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022145407 | ||
003 | DE-604 | ||
005 | 20040229000000.0 | ||
007 | t | ||
008 | 880202s1985 |||| 00||| eng d | ||
035 | |a (OCoLC)11915200 | ||
035 | |a (DE-599)BVBBV022145407 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-188 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.55 |2 19 | |
082 | 0 | |a 510 |2 19 | |
100 | 1 | |a Handelman, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Positive polynomials and product type actions of compact groups |
264 | 1 | |a Providence, RI |b American Math. Soc. |c 1985 | |
300 | |a XI, 79 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v 320 | |
650 | 4 | |a C*-algebras | |
650 | 4 | |a Compact groups | |
650 | 4 | |a K-theory | |
650 | 4 | |a Polynomials | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Rings (Algebra) | |
650 | 0 | 7 | |a C-Stern-Algebra |0 (DE-588)4136693-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a K-Theorie |0 (DE-588)4033335-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ringtheorie |0 (DE-588)4126571-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ring |g Mathematik |0 (DE-588)4128084-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |D s |
689 | 1 | 1 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 1 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a K-Theorie |0 (DE-588)4033335-8 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Ringtheorie |0 (DE-588)4126571-3 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
689 | 5 | 0 | |a C-Stern-Algebra |0 (DE-588)4136693-1 |D s |
689 | 5 | |8 5\p |5 DE-604 | |
830 | 0 | |a Memoirs of the American Mathematical Society |v 320 |w (DE-604)BV008000141 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015360039 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136118888693760 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Handelman, David |
author_facet | Handelman, David |
author_role | aut |
author_sort | Handelman, David |
author_variant | d h dh |
building | Verbundindex |
bvnumber | BV022145407 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)11915200 (DE-599)BVBBV022145407 |
dewey-full | 512/.55 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512/.55 510 |
dewey-search | 512/.55 510 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02616nam a2200697zcb4500</leader><controlfield tag="001">BV022145407</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040229000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880202s1985 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)11915200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022145407</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Handelman, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Positive polynomials and product type actions of compact groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 79 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">320</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C*-algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">C-Stern-Algebra</subfield><subfield code="0">(DE-588)4136693-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">C-Stern-Algebra</subfield><subfield code="0">(DE-588)4136693-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">320</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9"></subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015360039</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022145407 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:17:51Z |
indexdate | 2024-07-09T20:51:19Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015360039 |
oclc_num | 11915200 |
open_access_boolean | |
owner | DE-706 DE-188 |
owner_facet | DE-706 DE-188 |
physical | XI, 79 S. |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | American Math. Soc. |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Handelman, David Verfasser aut Positive polynomials and product type actions of compact groups Providence, RI American Math. Soc. 1985 XI, 79 S. txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society 320 C*-algebras Compact groups K-theory Polynomials Representations of groups Rings (Algebra) C-Stern-Algebra (DE-588)4136693-1 gnd rswk-swf K-Theorie (DE-588)4033335-8 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 gnd rswk-swf Kompakte Gruppe (DE-588)4164840-7 gnd rswk-swf Ringtheorie (DE-588)4126571-3 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Ring Mathematik (DE-588)4128084-2 s DE-604 Kompakte Gruppe (DE-588)4164840-7 s Polynom (DE-588)4046711-9 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 K-Theorie (DE-588)4033335-8 s 2\p DE-604 Ringtheorie (DE-588)4126571-3 s 3\p DE-604 Toeplitz-Operator (DE-588)4191521-5 s 4\p DE-604 C-Stern-Algebra (DE-588)4136693-1 s 5\p DE-604 Memoirs of the American Mathematical Society 320 (DE-604)BV008000141 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Handelman, David Positive polynomials and product type actions of compact groups Memoirs of the American Mathematical Society C*-algebras Compact groups K-theory Polynomials Representations of groups Rings (Algebra) C-Stern-Algebra (DE-588)4136693-1 gnd K-Theorie (DE-588)4033335-8 gnd Ring Mathematik (DE-588)4128084-2 gnd Toeplitz-Operator (DE-588)4191521-5 gnd Kompakte Gruppe (DE-588)4164840-7 gnd Ringtheorie (DE-588)4126571-3 gnd Polynom (DE-588)4046711-9 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4136693-1 (DE-588)4033335-8 (DE-588)4128084-2 (DE-588)4191521-5 (DE-588)4164840-7 (DE-588)4126571-3 (DE-588)4046711-9 (DE-588)4148816-7 |
title | Positive polynomials and product type actions of compact groups |
title_auth | Positive polynomials and product type actions of compact groups |
title_exact_search | Positive polynomials and product type actions of compact groups |
title_exact_search_txtP | Positive polynomials and product type actions of compact groups |
title_full | Positive polynomials and product type actions of compact groups |
title_fullStr | Positive polynomials and product type actions of compact groups |
title_full_unstemmed | Positive polynomials and product type actions of compact groups |
title_short | Positive polynomials and product type actions of compact groups |
title_sort | positive polynomials and product type actions of compact groups |
topic | C*-algebras Compact groups K-theory Polynomials Representations of groups Rings (Algebra) C-Stern-Algebra (DE-588)4136693-1 gnd K-Theorie (DE-588)4033335-8 gnd Ring Mathematik (DE-588)4128084-2 gnd Toeplitz-Operator (DE-588)4191521-5 gnd Kompakte Gruppe (DE-588)4164840-7 gnd Ringtheorie (DE-588)4126571-3 gnd Polynom (DE-588)4046711-9 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | C*-algebras Compact groups K-theory Polynomials Representations of groups Rings (Algebra) C-Stern-Algebra K-Theorie Ring Mathematik Toeplitz-Operator Kompakte Gruppe Ringtheorie Polynom Darstellungstheorie |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT handelmandavid positivepolynomialsandproducttypeactionsofcompactgroups |