Partial differential equation methods in control and shape analysis:
This up-to-date resource - based on the International Federation for Information Processing WG 7.2 Conference, held recently in Pisa, Italy - provides recent results as well as entirely new material on control theory and shape analysis
Gespeichert in:
Format: | Tagungsbericht Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Dekker
1997
|
Schriftenreihe: | Lecture notes in pure and applied mathematics
188 |
Schlagworte: | |
Zusammenfassung: | This up-to-date resource - based on the International Federation for Information Processing WG 7.2 Conference, held recently in Pisa, Italy - provides recent results as well as entirely new material on control theory and shape analysis Written by leading authorities from various disciplines, Partial Differential Equation Methods in Control and Shape Analysis presents a shape variational formulation of a hydrodynamic free interface that appears behind a three dimensional lifting profile...introduces new asymptotic results on singular perturbations and ergodic optimal control problems for systems with spatial state constraints...derives the first order conditions for optimality in optimal control problems governed by quasilinear elliptic equations...calculates the shape gradients of mixed finite element functionals with respect to the domain...studies the existence of an optimal domain for energy shape minimization problems...offers a model for the physical system formed by an elastic shell and an incompressible fluid...and more Containing key bibliographic citations as well as enlightening illustrations, Partial Differential Equation Methods in Control and Shape Analysis is an excellent reference for mathematical analysts, pure and applied mathematicians, geometers, control and electrical and electronics engineers and scientists, physicists, computer scientists, and graduate students in these disciplines |
Beschreibung: | Literaturangaben |
Beschreibung: | VIII, 331 S. Ill. |
ISBN: | 0824798376 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022119983 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 980310s1997 a||| |||| 10||| eng d | ||
020 | |a 0824798376 |9 0-8247-9837-6 | ||
035 | |a (OCoLC)36126968 | ||
035 | |a (DE-599)BVBBV022119983 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA612.7 | |
082 | 0 | |a 629.8/312 |2 21 | |
084 | |a SD 1996 |0 (DE-625)142730: |2 rvk | ||
245 | 1 | 0 | |a Partial differential equation methods in control and shape analysis |c [Conference on Control and Shape Optimization]. Ed. by Giuseppe Da Prato ... |
264 | 1 | |a New York [u.a.] |b Dekker |c 1997 | |
300 | |a VIII, 331 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in pure and applied mathematics |v 188 | |
500 | |a Literaturangaben | ||
520 | 3 | |a This up-to-date resource - based on the International Federation for Information Processing WG 7.2 Conference, held recently in Pisa, Italy - provides recent results as well as entirely new material on control theory and shape analysis | |
520 | |a Written by leading authorities from various disciplines, Partial Differential Equation Methods in Control and Shape Analysis presents a shape variational formulation of a hydrodynamic free interface that appears behind a three dimensional lifting profile...introduces new asymptotic results on singular perturbations and ergodic optimal control problems for systems with spatial state constraints...derives the first order conditions for optimality in optimal control problems governed by quasilinear elliptic equations...calculates the shape gradients of mixed finite element functionals with respect to the domain...studies the existence of an optimal domain for energy shape minimization problems...offers a model for the physical system formed by an elastic shell and an incompressible fluid...and more | ||
520 | |a Containing key bibliographic citations as well as enlightening illustrations, Partial Differential Equation Methods in Control and Shape Analysis is an excellent reference for mathematical analysts, pure and applied mathematicians, geometers, control and electrical and electronics engineers and scientists, physicists, computer scientists, and graduate students in these disciplines | ||
650 | 7 | |a Controleleer |2 gtt | |
650 | 7 | |a Differentiaalvergelijkingen |2 gtt | |
650 | 7 | |a Topologie |2 gtt | |
650 | 4 | |a Control theory |v Congresses | |
650 | 4 | |a Differential equations, Partial |v Congresses | |
650 | 4 | |a Shape theory (Topology) |v Congresses | |
650 | 0 | 7 | |a Shape-Theorie |0 (DE-588)4193842-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
651 | 7 | |a Pisa |0 (DE-588)4046151-8 |2 gnd |9 rswk-swf | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Shape-Theorie |0 (DE-588)4193842-2 |D s |
689 | 1 | 2 | |a Pisa |0 (DE-588)4046151-8 |D g |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 2 | 1 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 2 | 2 | |a Pisa |0 (DE-588)4046151-8 |D g |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Da Prato, Giuseppe |d 1936-2023 |e Sonstige |0 (DE-588)121352641 |4 oth | |
711 | 2 | |a Conference on Control and Shape Optimization |d 1996 |c Pisa |j Sonstige |0 (DE-588)5244384-X |4 oth | |
830 | 0 | |a Lecture notes in pure and applied mathematics |v 188 |w (DE-604)BV005871364 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015334733 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136093841358848 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)121352641 |
building | Verbundindex |
bvnumber | BV022119983 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.7 |
callnumber-search | QA612.7 |
callnumber-sort | QA 3612.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SD 1996 |
ctrlnum | (OCoLC)36126968 (DE-599)BVBBV022119983 |
dewey-full | 629.8/312 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8/312 |
dewey-search | 629.8/312 |
dewey-sort | 3629.8 3312 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Mathematik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03999nam a2200661zcb4500</leader><controlfield tag="001">BV022119983</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">980310s1997 a||| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0824798376</subfield><subfield code="9">0-8247-9837-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36126968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022119983</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8/312</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SD 1996</subfield><subfield code="0">(DE-625)142730:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial differential equation methods in control and shape analysis</subfield><subfield code="c">[Conference on Control and Shape Optimization]. Ed. by Giuseppe Da Prato ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Dekker</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 331 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in pure and applied mathematics</subfield><subfield code="v">188</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This up-to-date resource - based on the International Federation for Information Processing WG 7.2 Conference, held recently in Pisa, Italy - provides recent results as well as entirely new material on control theory and shape analysis</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Written by leading authorities from various disciplines, Partial Differential Equation Methods in Control and Shape Analysis presents a shape variational formulation of a hydrodynamic free interface that appears behind a three dimensional lifting profile...introduces new asymptotic results on singular perturbations and ergodic optimal control problems for systems with spatial state constraints...derives the first order conditions for optimality in optimal control problems governed by quasilinear elliptic equations...calculates the shape gradients of mixed finite element functionals with respect to the domain...studies the existence of an optimal domain for energy shape minimization problems...offers a model for the physical system formed by an elastic shell and an incompressible fluid...and more</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Containing key bibliographic citations as well as enlightening illustrations, Partial Differential Equation Methods in Control and Shape Analysis is an excellent reference for mathematical analysts, pure and applied mathematicians, geometers, control and electrical and electronics engineers and scientists, physicists, computer scientists, and graduate students in these disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Controleleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shape theory (Topology)</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Shape-Theorie</subfield><subfield code="0">(DE-588)4193842-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">Pisa</subfield><subfield code="0">(DE-588)4046151-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Shape-Theorie</subfield><subfield code="0">(DE-588)4193842-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Pisa</subfield><subfield code="0">(DE-588)4046151-8</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Pisa</subfield><subfield code="0">(DE-588)4046151-8</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Da Prato, Giuseppe</subfield><subfield code="d">1936-2023</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121352641</subfield><subfield code="4">oth</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">Conference on Control and Shape Optimization</subfield><subfield code="d">1996</subfield><subfield code="c">Pisa</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)5244384-X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in pure and applied mathematics</subfield><subfield code="v">188</subfield><subfield code="w">(DE-604)BV005871364</subfield><subfield code="9"></subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015334733</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
geographic | Pisa (DE-588)4046151-8 gnd |
geographic_facet | Pisa |
id | DE-604.BV022119983 |
illustrated | Illustrated |
index_date | 2024-07-02T16:16:13Z |
indexdate | 2024-07-09T20:50:55Z |
institution | BVB |
institution_GND | (DE-588)5244384-X |
isbn | 0824798376 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015334733 |
oclc_num | 36126968 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | VIII, 331 S. Ill. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Dekker |
record_format | marc |
series | Lecture notes in pure and applied mathematics |
series2 | Lecture notes in pure and applied mathematics |
spelling | Partial differential equation methods in control and shape analysis [Conference on Control and Shape Optimization]. Ed. by Giuseppe Da Prato ... New York [u.a.] Dekker 1997 VIII, 331 S. Ill. txt rdacontent n rdamedia nc rdacarrier Lecture notes in pure and applied mathematics 188 Literaturangaben This up-to-date resource - based on the International Federation for Information Processing WG 7.2 Conference, held recently in Pisa, Italy - provides recent results as well as entirely new material on control theory and shape analysis Written by leading authorities from various disciplines, Partial Differential Equation Methods in Control and Shape Analysis presents a shape variational formulation of a hydrodynamic free interface that appears behind a three dimensional lifting profile...introduces new asymptotic results on singular perturbations and ergodic optimal control problems for systems with spatial state constraints...derives the first order conditions for optimality in optimal control problems governed by quasilinear elliptic equations...calculates the shape gradients of mixed finite element functionals with respect to the domain...studies the existence of an optimal domain for energy shape minimization problems...offers a model for the physical system formed by an elastic shell and an incompressible fluid...and more Containing key bibliographic citations as well as enlightening illustrations, Partial Differential Equation Methods in Control and Shape Analysis is an excellent reference for mathematical analysts, pure and applied mathematicians, geometers, control and electrical and electronics engineers and scientists, physicists, computer scientists, and graduate students in these disciplines Controleleer gtt Differentiaalvergelijkingen gtt Topologie gtt Control theory Congresses Differential equations, Partial Congresses Shape theory (Topology) Congresses Shape-Theorie (DE-588)4193842-2 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Pisa (DE-588)4046151-8 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Optimale Kontrolle (DE-588)4121428-6 s DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s Shape-Theorie (DE-588)4193842-2 s Pisa (DE-588)4046151-8 g 1\p DE-604 Kontrolltheorie (DE-588)4032317-1 s 2\p DE-604 Da Prato, Giuseppe 1936-2023 Sonstige (DE-588)121352641 oth Conference on Control and Shape Optimization 1996 Pisa Sonstige (DE-588)5244384-X oth Lecture notes in pure and applied mathematics 188 (DE-604)BV005871364 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Partial differential equation methods in control and shape analysis Lecture notes in pure and applied mathematics Controleleer gtt Differentiaalvergelijkingen gtt Topologie gtt Control theory Congresses Differential equations, Partial Congresses Shape theory (Topology) Congresses Shape-Theorie (DE-588)4193842-2 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Kontrolltheorie (DE-588)4032317-1 gnd |
subject_GND | (DE-588)4193842-2 (DE-588)4044779-0 (DE-588)4121428-6 (DE-588)4032317-1 (DE-588)4046151-8 (DE-588)1071861417 |
title | Partial differential equation methods in control and shape analysis |
title_auth | Partial differential equation methods in control and shape analysis |
title_exact_search | Partial differential equation methods in control and shape analysis |
title_exact_search_txtP | Partial differential equation methods in control and shape analysis |
title_full | Partial differential equation methods in control and shape analysis [Conference on Control and Shape Optimization]. Ed. by Giuseppe Da Prato ... |
title_fullStr | Partial differential equation methods in control and shape analysis [Conference on Control and Shape Optimization]. Ed. by Giuseppe Da Prato ... |
title_full_unstemmed | Partial differential equation methods in control and shape analysis [Conference on Control and Shape Optimization]. Ed. by Giuseppe Da Prato ... |
title_short | Partial differential equation methods in control and shape analysis |
title_sort | partial differential equation methods in control and shape analysis |
topic | Controleleer gtt Differentiaalvergelijkingen gtt Topologie gtt Control theory Congresses Differential equations, Partial Congresses Shape theory (Topology) Congresses Shape-Theorie (DE-588)4193842-2 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Kontrolltheorie (DE-588)4032317-1 gnd |
topic_facet | Controleleer Differentiaalvergelijkingen Topologie Control theory Congresses Differential equations, Partial Congresses Shape theory (Topology) Congresses Shape-Theorie Partielle Differentialgleichung Optimale Kontrolle Kontrolltheorie Pisa Konferenzschrift |
volume_link | (DE-604)BV005871364 |
work_keys_str_mv | AT dapratogiuseppe partialdifferentialequationmethodsincontrolandshapeanalysis AT conferenceoncontrolandshapeoptimizationpisa partialdifferentialequationmethodsincontrolandshapeanalysis |