Inequalities:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
1971
|
Ausgabe: | 3. print. |
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
30 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 198 S. Ill. |
ISBN: | 3540032835 0387032835 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022117176 | ||
003 | DE-604 | ||
005 | 20160411 | ||
007 | t | ||
008 | 931203s1971 a||| |||| 00||| ger d | ||
020 | |a 3540032835 |9 3-540-03283-5 | ||
020 | |a 0387032835 |9 0-387-03283-5 | ||
035 | |a (OCoLC)3401072 | ||
035 | |a (DE-599)BVBBV022117176 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a ger | |
049 | |a DE-706 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA295 | |
082 | 0 | |a 512.9/7 | |
084 | |a SK 490 |0 (DE-625)143242: |2 rvk | ||
100 | 1 | |a Beckenbach, Edwin F. |d 1906-1982 |e Verfasser |0 (DE-588)1066772495 |4 aut | |
245 | 1 | 0 | |a Inequalities |c E. F. Beckenbach ; R. Bellman |
250 | |a 3. print. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 1971 | |
300 | |a XI, 198 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 30 | |
650 | 4 | |a Inequalities (Mathematics) | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Ungleichung |0 (DE-588)4139098-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ungleichung |0 (DE-588)4139098-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bellman, Richard E. |e Verfasser |4 aut | |
830 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 30 |w (DE-604)BV005871160 |9 30 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015332040&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q HUB-ZB011200708 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015332040 |
Datensatz im Suchindex
_version_ | 1804136090976649216 |
---|---|
adam_text | Contents
Chapter 1. The Fundamental Inequalities and Related Matters 1
§ I. Introduction 1
§ 2. The Cauchy Inequality 2
§ 3. The Lagrange Identity 3
§ 4. The Arithmetic mean — Geometric mean Inequality 3
§ 5. Induction — Forward and Backward 4
§ 6. Calculus and Lagrange Multipliers 5
§ 7. Functional Equations 6
§ 8. Concavity 6
§ 9. Majorization — The Proof of Bohr 7
§ 10. The Proof of Hurwitz 8
§11. A Proof of Ehlers 9
§ 12. The Arithmetic geometric Mean of Gauss; the Elementary Symmetric
Functions , 10
§ 13. A Proof of Jacobsthal 11
§ 14. A Fundamental Relationship 12
§ 15. Young s Inequality 15
§16. The Means M, (*, a) and the Sums S, (*) 16
§ 17. The Inequalities of Holder and Minkowski 19
§ 18. Extensions of the Classical Inequalities 20
§ 19. Quasi Linearization 23
§ 20. Minkowski s Inequality 25
§21. Another Inequality of Minkowski 26
§ 22. Minkowski s Inequality for 0 p 1 26
§ 23. An Inequality of Beckenbach 27
§ 24. An Inequality of Dresher 28
§ 25. Minkowski Mahler Inequality 28
§ 26. Quasi Linearization of Convex and Concave Functions 29
§ 27. Another Type of Quasi Linearization 30
§ 28. An Inequality of Karamata 30
§ 29. The Schur Transformation 31
§ 30. Proof of the Karamata Result 31
§31. An Inequality of Ostrowski 32
§ 32. Continuous Versions 32
§ 33. Symmetric Functions 33
§ 34. A Further Inequality 35
§ 35. Some Results of Whiteley 35
§ 36. Hyperbolic Polynomials 36
§ 37. Garding s Inequality 37
§38. Examples 37
§ 39. Lorentz Spaces 38
§ 40. Converses of Inequalities 39
§41. i Case 41
§ 42. Multidimensional Case 42
§ 43. Generalizations of Favard Berwald 43
Contents IX
§ 44. Other Converses of the Cauchy Theorem 44
§ 45. Refinements of the Cauchy Buniakowsky Schwarz Inequalities ... 45
§ 46. A Result of Mohr and Noll 46
§ 47. Generation of New Inequalities from Old 46
§ 48. Refinement of Arithmetic mean — geometric mean Inequality ... 47
§ 49. Inequalities with Alternating Signs 47
§ 50. Steffensen s Inequality 48
§51. Brunk Olkin Inequality 49
§ 52. Extensions of Steffensen s Inequality 49
Bibliographical Notes 50
Chapter 2. Positive Definite Matrices, Characteristic Roots, and Positive Matrices 55
§ 1. Introduction 55
§ 2. Positive Definite Matrices 57
§ 3. A Necessary Condition for Positive Definiteness 57
§ 4. Representation as a Sum of Squares 58
§ 5. A Necessary and Sufficient Condition for Positive Definiteness ... 59
§ 6. Gramians 59
§ 7. Evaluation of an Infinite Integral 61
§ 8. Complex Matrices with Positive Definite Real Part 62
§ 9. A Concavity Theorem 62
§ 10. An Inequality Concerning Minors 63
§ 11. Hadamard s Inequality 64
§ 12. Szasz s Inequality 64
§ 13. A Representation Theorem for the Determinant of a Hermitian Matrix 65
§ 14. Discussion 65
§ 15. Ingham Siegel Integrals and Generalizations 65
§ 16. Group Invariance and Representation Formulas 67
§ 17. Bergstrom s Inequality 67
§ 18. A Generalization 68
§ 19. Canonical Form 68
§ 20. A Generalization of Bergstrom s Inequality 69
§21. A Representation Theorem for |^| » 70
§ 22. An Inequality of Minkowski 70
§23. A Generalization due to Ky Fan 71
§ 24. A Generalization due to Oppenheim 71
§25. The Rayleigh Quotient 71
§ 26. The Fischer Min max Theorem 72
§ 27. A Representation Theorem 73
§ 28. An Inequality of Ky Fan 74
§ 29. An Additive Version 75
§ 30. Results Connecting Characteristic Roots of A, A A*, and (A + A*)f2 75
§31. The Cauchy Poincar6 Separation Theorem 75
§32. An Inequality for A,At,_!... At 76
§33. Discussion 76
§ 34. Additive Version 77
§ 35. Multiplicative Inequality Derived from Additive 77
§ 36. Further Results 78
§ 37. Compound and Adjugate Matrices 79
§ 38. Positive Matrices 80
§39. Variational Characterization of p{A) 81
§ 40. A Modification due to Birkhoff and Varga 82
X Contents
§41. Some Consequences 83
§ 42. Input output Matrices 83
§ 43. Discussion 84
§ 44. Extensions 84
§ 45. Matrices and Hyperbolic Equations 85
§ 46. Nonvanishing of Determinants and the Location of Characteristic
Values 85
§ 47. Monotone Matrix Functions in the Sense of Loewner 86
§ 48. Variation diminishing Transformations 86
§ 49. Domains of Positivity 87
Bibliographical Notes 88
Chapter 3. Moment Spaces and Resonance Theorems 97
§ 1. Introduction 97
§ 2. Moments 102
§ 3. Convexity 103
§ 4. Some Examples of Convex Spaces 104
§ 5. Examples of Nonconvex Spaces 105
§ 6. On the Determination of Convex Sets 105
§ 7. L Space — A Result of F. Riesz 106
§ 8. Bounded Variation 108
§ 9. Positivity 109
§ 10. Representation as Squares 110
§11. Nonnegative Trigonometric and Rational Polynomials Ill
§ 12. Positive Definite Quadratic Forms and Moment Sequences 112
§13. Historical Note 112
§ 14. Positive Definite Sequences 113
§ 15. Positive Definite Functions 114
§ 16. Reproducing Kernels 115
§ 17. Nonconvex Spaces 115
§ 18. A Resonance Theorem of Landau 116
§19. The Banach Steinhaus Theorem 118
§ 20. A Theorem of Minkowski 118
§21. The Theory of Linear Inequalities 119
§ 22. Generalizations 120
§ 23. The Min max Theorem of von Neumann 120
§ 24. The Neyman Pearson Lemma 121
§ 25. Orthogonal Projection 123
§26. Equivalance of Minimization and Maximization Processes 124
Bibliographical Notes 125
Chapter 4. On the Positivity of Operators 131
§ 1. Introduction 131
§ 2. First order Linear Differential Equations 133
§ 3. Discussion 134
§ 4. A Fundamental Result in Stability Theory 134
§ 5. Inequalities of Bihari Langenhop 135
§ 6. Matrix Analogues 136
§ 7. A Proof by Taussky 138
§ 8. Variable Matrix 138
§ 9. Discussion 139
§ 10. A Result of Caplygin 139
§ 11. Finite Intervals 140
Contents XI
§ 12. Variational Proof 141
§ 13. Discussion 142
§ 14. Linear Differential Equations of Arbitrary Order 142
§ 15. A Positivity Result for Higher order Linear Differential Operators . .143
§ 16. Some Results of P6lya 144
§ 17. Generalized Convexity 145
§ 18. Discussion 146
§ 19. The Generalized Mean value Theorem of Hartman and Wintner . . 146
§ 20. Generalized Taylor Expansions 147
§21. Positivity of Operators 147
§ 22. Elliptic Equations 148
§ 23. Positive Reproducing Kernels 149
§ 24. Monotonicity of Mean Values 149
§ 25. Positivity of the Parabolic Operator 150
§26. Finite difference Schemes 151
§27. Potential Equations 153
§ 28. Discussion 153
§29. The Inequalities of Haar Westphal Prodi 154
§ 30. Some Inequalities of Wendroff 154
§ 31. Results of Weinberger Bochner 155
§ 32. Variation diminishing Transformations 155
§ 33. Quasi Linearization 155
§ 34. Stability of Operators 156
§ 35. Miscellaneous Results 157
Bibliographical Notes 157
Chapter 5. Inequalities for Differential Operators 164
§ 1. Introduction 164
§ 2. Some Inequalities of B. Sz. Naoy 166
§ 3. Inequalities Connecting «, « , and u 168
§ 4. Inequalities Connecting «, « * , and M( 170
§ 5. Alternative Approach for «, « , and u 171
§ 6. An Inequality of Halperin and von Neumann and Its Extensions . . 172
§ 7. Results Analogous to Those of Nagy 175
§ 8. Carlson s Inequality 175
§ 9. Generalizations of Carlson s Inequality 175
§ 10. Wirtinger s Inequality and Related Results 177
§ 11. Proof Using Fourier Series 178
§ 12. Sturm Liouville Theory 178
§ 13. Integral Identities 179
§ 14. Colautti s Results 180
§ 15. Partial Differential Equations 180
§ 16. Matrix Version 181
§ 17. Higher Derivatives and Higher Powers 182
§ 18. Discrete Versions of Fan, Taussky, and Todd 182*
§ 19. Discrete Case — Second Differences 183
§ 20. Discrete Versions of Northcott Bellman Inequalities 183
§21. Discussion 184
Bibliographical Notes 185
Name Index 189
Subject Index 195
|
adam_txt |
Contents
Chapter 1. The Fundamental Inequalities and Related Matters 1
§ I. Introduction 1
§ 2. The Cauchy Inequality 2
§ 3. The Lagrange Identity 3
§ 4. The Arithmetic mean — Geometric mean Inequality 3
§ 5. Induction — Forward and Backward 4
§ 6. Calculus and Lagrange Multipliers 5
§ 7. Functional Equations 6
§ 8. Concavity 6
§ 9. Majorization — The Proof of Bohr 7
§ 10. The Proof of Hurwitz 8
§11. A Proof of Ehlers 9
§ 12. The Arithmetic geometric Mean of Gauss; the Elementary Symmetric
Functions , 10
§ 13. A Proof of Jacobsthal 11
§ 14. A Fundamental Relationship 12
§ 15. Young's Inequality 15
§16. The Means M, (*, a) and the Sums S, (*) 16
§ 17. The Inequalities of Holder and Minkowski 19
§ 18. Extensions of the Classical Inequalities 20
§ 19. Quasi Linearization 23
§ 20. Minkowski's Inequality 25
§21. Another Inequality of Minkowski 26
§ 22. Minkowski's Inequality for 0 p 1 26
§ 23. An Inequality of Beckenbach 27
§ 24. An Inequality of Dresher 28
§ 25. Minkowski Mahler Inequality 28
§ 26. Quasi Linearization of Convex and Concave Functions 29
§ 27. Another Type of Quasi Linearization 30
§ 28. An Inequality of Karamata 30
§ 29. The Schur Transformation 31
§ 30. Proof of the Karamata Result 31
§31. An Inequality of Ostrowski 32
§ 32. Continuous Versions 32
§ 33. Symmetric Functions 33
§ 34. A Further Inequality 35
§ 35. Some Results of Whiteley 35
§ 36. Hyperbolic Polynomials 36
§ 37. Garding's Inequality 37
§38. Examples 37
§ 39. Lorentz Spaces 38
§ 40. Converses of Inequalities 39
§41. i'Case 41
§ 42. Multidimensional Case 42
§ 43. Generalizations of Favard Berwald 43
Contents IX
§ 44. Other Converses of the Cauchy Theorem 44
§ 45. Refinements of the Cauchy Buniakowsky Schwarz Inequalities . 45
§ 46. A Result of Mohr and Noll 46
§ 47. Generation of New Inequalities from Old 46
§ 48. Refinement of Arithmetic mean — geometric mean Inequality . 47
§ 49. Inequalities with Alternating Signs 47
§ 50. Steffensen's Inequality 48
§51. Brunk Olkin Inequality 49
§ 52. Extensions of Steffensen's Inequality 49
Bibliographical Notes 50
Chapter 2. Positive Definite Matrices, Characteristic Roots, and Positive Matrices 55
§ 1. Introduction 55
§ 2. Positive Definite Matrices 57
§ 3. A Necessary Condition for Positive Definiteness 57
§ 4. Representation as a Sum of Squares 58
§ 5. A Necessary and Sufficient Condition for Positive Definiteness . 59
§ 6. Gramians 59
§ 7. Evaluation of an Infinite Integral 61
§ 8. Complex Matrices with Positive Definite Real Part 62
§ 9. A Concavity Theorem 62
§ 10. An Inequality Concerning Minors 63
§ 11. Hadamard's Inequality 64
§ 12. Szasz's Inequality 64
§ 13. A Representation Theorem for the Determinant of a Hermitian Matrix 65
§ 14. Discussion 65
§ 15. Ingham Siegel Integrals and Generalizations 65
§ 16. Group Invariance and Representation Formulas 67
§ 17. Bergstrom's Inequality 67
§ 18. A Generalization 68
§ 19. Canonical Form 68
§ 20. A Generalization of Bergstrom's Inequality 69
§21. A Representation Theorem for |^|"» 70
§ 22. An Inequality of Minkowski 70
§23. A Generalization due to Ky Fan 71
§ 24. A Generalization due to Oppenheim 71
§25. The Rayleigh Quotient 71
§ 26. The Fischer Min max Theorem 72
§ 27. A Representation Theorem 73
§ 28. An Inequality of Ky Fan 74
§ 29. An Additive Version 75
§ 30. Results Connecting Characteristic Roots of A, A A*, and (A + A*)f2 75
§31. The Cauchy Poincar6 Separation Theorem 75
§32. An Inequality for A,At,_!. At 76
§33. Discussion 76
§ 34. Additive Version 77
§ 35. Multiplicative Inequality Derived from Additive 77
§ 36. Further Results 78
§ 37. Compound and Adjugate Matrices 79
§ 38. Positive Matrices 80
§39. Variational Characterization of p{A) 81
§ 40. A Modification due to Birkhoff and Varga 82
X Contents
§41. Some Consequences 83
§ 42. Input output Matrices 83
§ 43. Discussion 84
§ 44. Extensions 84
§ 45. Matrices and Hyperbolic Equations 85
§ 46. Nonvanishing of Determinants and the Location of Characteristic
Values 85
§ 47. Monotone Matrix Functions in the Sense of Loewner 86
§ 48. Variation diminishing Transformations 86
§ 49. Domains of Positivity 87
Bibliographical Notes 88
Chapter 3. Moment Spaces and Resonance Theorems 97
§ 1. Introduction 97
§ 2. Moments 102
§ 3. Convexity 103
§ 4. Some Examples of Convex Spaces 104
§ 5. Examples of Nonconvex Spaces 105
§ 6. On the Determination of Convex Sets 105
§ 7. L" Space — A Result of F. Riesz 106
§ 8. Bounded Variation 108
§ 9. Positivity 109
§ 10. Representation as Squares 110
§11. Nonnegative Trigonometric and Rational Polynomials Ill
§ 12. Positive Definite Quadratic Forms and Moment Sequences 112
§13. Historical Note 112
§ 14. Positive Definite Sequences 113
§ 15. Positive Definite Functions 114
§ 16. Reproducing Kernels 115
§ 17. Nonconvex Spaces 115
§ 18. A "Resonance" Theorem of Landau 116
§19. The Banach Steinhaus Theorem 118
§ 20. A Theorem of Minkowski 118
§21. The Theory of Linear Inequalities 119
§ 22. Generalizations 120
§ 23. The Min max Theorem of von Neumann 120
§ 24. The Neyman Pearson Lemma 121
§ 25. Orthogonal Projection 123
§26. Equivalance of Minimization and Maximization Processes 124
Bibliographical Notes 125
Chapter 4. On the Positivity of Operators 131
§ 1. Introduction 131
§ 2. First order Linear Differential Equations 133
§ 3. Discussion 134
§ 4. A Fundamental Result in Stability Theory 134
§ 5. Inequalities of Bihari Langenhop 135
§ 6. Matrix Analogues 136
§ 7. A Proof by Taussky 138
§ 8. Variable Matrix 138
§ 9. Discussion 139
§ 10. A Result of Caplygin 139
§ 11. Finite Intervals 140
Contents XI
§ 12. Variational Proof 141
§ 13. Discussion 142
§ 14. Linear Differential Equations of Arbitrary Order 142
§ 15. A Positivity Result for Higher order Linear Differential Operators . .143
§ 16. Some Results of P6lya 144
§ 17. Generalized Convexity 145
§ 18. Discussion 146
§ 19. The Generalized Mean value Theorem of Hartman and Wintner . . 146
§ 20. Generalized Taylor Expansions 147
§21. Positivity of Operators 147
§ 22. Elliptic Equations 148
§ 23. Positive Reproducing Kernels 149
§ 24. Monotonicity of Mean Values 149
§ 25. Positivity of the Parabolic Operator 150
§26. Finite difference Schemes 151
§27. Potential Equations 153
§ 28. Discussion 153
§29. The Inequalities of Haar Westphal Prodi 154
§ 30. Some Inequalities of Wendroff 154
§ 31. Results of Weinberger Bochner 155
§ 32. Variation diminishing Transformations 155
§ 33. Quasi Linearization 155
§ 34. Stability of Operators 156
§ 35. Miscellaneous Results 157
Bibliographical Notes 157
Chapter 5. Inequalities for Differential Operators 164
§ 1. Introduction 164
§ 2. Some Inequalities of B. Sz. Naoy 166
§ 3. Inequalities Connecting «, «', and u" 168
§ 4. Inequalities Connecting «, « * , and M("' 170
§ 5. Alternative Approach for «, «', and u" 171
§ 6. An Inequality of Halperin and von Neumann and Its Extensions . . 172
§ 7. Results Analogous to Those of Nagy 175
§ 8. Carlson's Inequality 175
§ 9. Generalizations of Carlson's Inequality 175
§ 10. Wirtinger's Inequality and Related Results 177
§ 11. Proof Using Fourier Series 178
§ 12. Sturm Liouville Theory 178
§ 13. Integral Identities 179
§ 14. Colautti's Results 180
§ 15. Partial Differential Equations 180
§ 16. Matrix Version 181
§ 17. Higher Derivatives and Higher Powers 182
§ 18. Discrete Versions of Fan, Taussky, and Todd 182*
§ 19. Discrete Case — Second Differences 183
§ 20. Discrete Versions of Northcott Bellman Inequalities 183
§21. Discussion 184
Bibliographical Notes 185
Name Index 189
Subject Index 195 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Beckenbach, Edwin F. 1906-1982 Bellman, Richard E. |
author_GND | (DE-588)1066772495 |
author_facet | Beckenbach, Edwin F. 1906-1982 Bellman, Richard E. |
author_role | aut aut |
author_sort | Beckenbach, Edwin F. 1906-1982 |
author_variant | e f b ef efb r e b re reb |
building | Verbundindex |
bvnumber | BV022117176 |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 |
callnumber-search | QA295 |
callnumber-sort | QA 3295 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 490 |
ctrlnum | (OCoLC)3401072 (DE-599)BVBBV022117176 |
dewey-full | 512.9/7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/7 |
dewey-search | 512.9/7 |
dewey-sort | 3512.9 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 3. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01597nam a2200433zcb4500</leader><controlfield tag="001">BV022117176</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160411 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">931203s1971 a||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540032835</subfield><subfield code="9">3-540-03283-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387032835</subfield><subfield code="9">0-387-03283-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)3401072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022117176</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA295</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 490</subfield><subfield code="0">(DE-625)143242:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beckenbach, Edwin F.</subfield><subfield code="d">1906-1982</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1066772495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inequalities</subfield><subfield code="c">E. F. Beckenbach ; R. Bellman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1971</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 198 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellman, Richard E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">30</subfield><subfield code="w">(DE-604)BV005871160</subfield><subfield code="9">30</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015332040&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">HUB-ZB011200708</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015332040</subfield></datafield></record></collection> |
id | DE-604.BV022117176 |
illustrated | Illustrated |
index_date | 2024-07-02T16:16:02Z |
indexdate | 2024-07-09T20:50:53Z |
institution | BVB |
isbn | 3540032835 0387032835 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015332040 |
oclc_num | 3401072 |
open_access_boolean | |
owner | DE-706 DE-11 DE-188 |
owner_facet | DE-706 DE-11 DE-188 |
physical | XI, 198 S. Ill. |
psigel | HUB-ZB011200708 |
publishDate | 1971 |
publishDateSearch | 1971 |
publishDateSort | 1971 |
publisher | Springer |
record_format | marc |
series | Ergebnisse der Mathematik und ihrer Grenzgebiete |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spelling | Beckenbach, Edwin F. 1906-1982 Verfasser (DE-588)1066772495 aut Inequalities E. F. Beckenbach ; R. Bellman 3. print. Berlin [u.a.] Springer 1971 XI, 198 S. Ill. txt rdacontent n rdamedia nc rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete 30 Inequalities (Mathematics) Mathematical analysis Ungleichung (DE-588)4139098-2 gnd rswk-swf Ungleichung (DE-588)4139098-2 s DE-604 Bellman, Richard E. Verfasser aut Ergebnisse der Mathematik und ihrer Grenzgebiete 30 (DE-604)BV005871160 30 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015332040&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Beckenbach, Edwin F. 1906-1982 Bellman, Richard E. Inequalities Ergebnisse der Mathematik und ihrer Grenzgebiete Inequalities (Mathematics) Mathematical analysis Ungleichung (DE-588)4139098-2 gnd |
subject_GND | (DE-588)4139098-2 |
title | Inequalities |
title_auth | Inequalities |
title_exact_search | Inequalities |
title_exact_search_txtP | Inequalities |
title_full | Inequalities E. F. Beckenbach ; R. Bellman |
title_fullStr | Inequalities E. F. Beckenbach ; R. Bellman |
title_full_unstemmed | Inequalities E. F. Beckenbach ; R. Bellman |
title_short | Inequalities |
title_sort | inequalities |
topic | Inequalities (Mathematics) Mathematical analysis Ungleichung (DE-588)4139098-2 gnd |
topic_facet | Inequalities (Mathematics) Mathematical analysis Ungleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015332040&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV005871160 |
work_keys_str_mv | AT beckenbachedwinf inequalities AT bellmanricharde inequalities |