Spectra of partial differential operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
North-Holland
1986
|
Ausgabe: | 2. ed. |
Schriftenreihe: | North-Holland series in applied mathematics and mechanics
14 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 310 S. |
ISBN: | 044487822X |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022114193 | ||
003 | DE-604 | ||
005 | 20160428 | ||
007 | t | ||
008 | 871126s1986 |||| 00||| eng d | ||
020 | |a 044487822X |9 0-444-87822-X | ||
035 | |a (OCoLC)12669470 | ||
035 | |a (DE-599)BVBBV022114193 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA329.42 | |
082 | 0 | |a 515.7/242 |2 19 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Schechter, Martin |d 1930- |e Verfasser |0 (DE-588)1042649022 |4 aut | |
245 | 1 | 0 | |a Spectra of partial differential operators |
250 | |a 2. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b North-Holland |c 1986 | |
300 | |a XIII, 310 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a North-Holland series in applied mathematics and mechanics |v 14 | |
650 | 4 | |a Opérateurs différentiels partiels | |
650 | 7 | |a Opérateurs différentiels partiels |2 ram | |
650 | 4 | |a Spectre (Mathématiques) | |
650 | 4 | |a Partial differential operators | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektralanalyse |g Stochastik |0 (DE-588)4056125-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operator |0 (DE-588)4130529-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partieller Differentialoperator |0 (DE-588)4173439-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektrum |0 (DE-588)4056139-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Spektralanalyse |g Stochastik |0 (DE-588)4056125-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Operator |0 (DE-588)4130529-2 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Partieller Differentialoperator |0 (DE-588)4173439-7 |D s |
689 | 3 | 1 | |a Spektrum |0 (DE-588)4056139-2 |D s |
689 | 3 | |8 1\p |5 DE-604 | |
689 | 4 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 4 | 1 | |a Spektrum |0 (DE-588)4056139-2 |D s |
689 | 4 | |8 2\p |5 DE-604 | |
689 | 5 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 5 | |8 3\p |5 DE-604 | |
830 | 0 | |a North-Holland series in applied mathematics and mechanics |v 14 |w (DE-604)BV001900898 |9 14 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015329068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015329068 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136088499912704 |
---|---|
adam_text | Titel: Spectra of partial differential operators
Autor: Schechter, Martin
Jahr: 1986
CONTENTS Chapter 1. Functional analysis 1 § 1. Banach and Hilbert spaces 1 § 2. Linear operators 5 § 3. Fredholm operators 12 § 4. The spectrum 13 § 5. Interpolation 18 § 6. Intermediate extensions 21 § 7. Self-adjoint operators 30 Chapter 2. Function spaces 39 § 1. Functions on E 39 § 2. Fourier transforms 43 § 3. L p multipliers 44 § 4. The spaces H s ’ p 46 Chapter 3. Partial differential operators 51 § 1. Constant coefficient operators 51 § 2. Operators with variable coefficients 53 § 3. Elliptic operators 55 Chapter 4. General if theory 57 § 1. The minimal operator 57 § 2. The maximal extension 60 § 3. The spectrum of the minimal operator 63 § 4. The case p ^ 2 65 § 5. Examples 69 § 6. Perturbation by a potential 72 Chapter 5. Relative compactness 77 § 1. Orientation 77 § 2. P 0 -boundedness 78 § 3. P 0 -compactness 84 § 4. Comparison of operators 88 § 5. The operator qQ 0 92 § 6. The adjoint of P 0 +q 94 § 7. Smooth coefficients in 13 95 § 8. The case p = 1 103 § 9. The case 1 p ^ x 105 XI
XII CONTENTS Chapter 6. Elliptic operators 1 14 § 1. An improvement 114 § 2. A condition for boundedness 115 § 3. Bessel potentials 117 § 4. Some new spaces 120 § 5. The Sobolev case 123 § 6. Another estimate 128 § 7. A general inequality 131 § 8. Some comparisons 135 § 9. Relative bounds 140 §10. Elliptic operators 147 Chapter 7. Operators bounded from below 154 § 1. Introduction 154 § 2. Regularly accretive extensions 155 § 3. Invariance of the essential spectrum 159 § 4. Perturbation by an operator 162 § 5. An illustration 165 § 6. Essential spectrum bounded from below 167 § 7. Strongly elliptic operators 169 § 8. A strengthened version for elliptic operators 174 § 9. Perturbation by a potential. Elliptic case 175 §10. Perturbation by an operator. Elliptic case 179 Chapter 8. Self-adjoint extensions 183 § 1. Existence 183 § 2. Extensions with special properties 186 § 3. Intervals containing the essential spectrum 188 § 4. Essentially self-adjoint operators 191 § 5. Finite negative spectrum 192 § 6. Bounded operators 198 § 7. Some related spaces 201 Chapter 9. Second order operators 212 § 1. Introduction 212 § 2. Essential self-adjointness 215 § 3. Some observations 222 § 4. Comparison of operators 228 § 5. Estimating the essential spectrum 234 § 6. The quadratic form J( p) 237 § 7. Adding of spectra 243 § 8. Separation of coordinates 251 § 9. Clusters 254 Chapter 10 Applications 260 § 1. The Schrodinger operator for a particle 260
CONTENTS XIII § 2. Two particle systems 262 § 3. The existence of bound states 265 § 4. Systems of N particles 268 § 5. The Zeeman effect 271 § 6. Stability 277 Chapter 11. Notes, remarks and references 282 § 1. Chapter 1 282 § 2. Chapter 2 286 § 3. Chapter 3 291 § 4. Chapter 4 293 § 5. Chapter 5 296 § 6. Chapter 6 297 § 7. Chapter 7 298 § 8. Chapter 8 299 § 9. Chapter 9 299 §10. Chapter 10 300 Bibliography 301 List of Symbols 308 Subject Index 309
|
adam_txt |
Titel: Spectra of partial differential operators
Autor: Schechter, Martin
Jahr: 1986
CONTENTS Chapter 1. Functional analysis 1 § 1. Banach and Hilbert spaces 1 § 2. Linear operators 5 § 3. Fredholm operators 12 § 4. The spectrum 13 § 5. Interpolation 18 § 6. Intermediate extensions 21 § 7. Self-adjoint operators 30 Chapter 2. Function spaces 39 § 1. Functions on E" 39 § 2. Fourier transforms 43 § 3. L p multipliers 44 § 4. The spaces H s ’ p 46 Chapter 3. Partial differential operators 51 § 1. Constant coefficient operators 51 § 2. Operators with variable coefficients 53 § 3. Elliptic operators 55 Chapter 4. General if theory 57 § 1. The minimal operator 57 § 2. The maximal extension 60 § 3. The spectrum of the minimal operator 63 § 4. The case p ^ 2 65 § 5. Examples 69 § 6. Perturbation by a potential 72 Chapter 5. Relative compactness 77 § 1. Orientation 77 § 2. P 0 -boundedness 78 § 3. P 0 -compactness 84 § 4. Comparison of operators 88 § 5. The operator qQ 0 92 § 6. The adjoint of P 0 +q 94 § 7. Smooth coefficients in 13 95 § 8. The case p = 1 103 § 9. The case 1 p ^ x 105 XI
XII CONTENTS Chapter 6. Elliptic operators 1 14 § 1. An improvement 114 § 2. A condition for boundedness 115 § 3. Bessel potentials 117 § 4. Some new spaces 120 § 5. The Sobolev case 123 § 6. Another estimate 128 § 7. A general inequality 131 § 8. Some comparisons 135 § 9. Relative bounds 140 §10. Elliptic operators 147 Chapter 7. Operators bounded from below 154 § 1. Introduction 154 § 2. Regularly accretive extensions 155 § 3. Invariance of the essential spectrum 159 § 4. Perturbation by an operator 162 § 5. An illustration 165 § 6. Essential spectrum bounded from below 167 § 7. Strongly elliptic operators 169 § 8. A strengthened version for elliptic operators 174 § 9. Perturbation by a potential. Elliptic case 175 §10. Perturbation by an operator. Elliptic case 179 Chapter 8. Self-adjoint extensions 183 § 1. Existence 183 § 2. Extensions with special properties 186 § 3. Intervals containing the essential spectrum 188 § 4. Essentially self-adjoint operators 191 § 5. Finite negative spectrum 192 § 6. Bounded operators 198 § 7. Some related spaces 201 Chapter 9. Second order operators 212 § 1. Introduction 212 § 2. Essential self-adjointness 215 § 3. Some observations 222 § 4. Comparison of operators 228 § 5. Estimating the essential spectrum 234 § 6. The quadratic form J( p) 237 § 7. Adding of spectra 243 § 8. Separation of coordinates 251 § 9. Clusters 254 Chapter 10 Applications 260 § 1. The Schrodinger operator for a particle 260
CONTENTS XIII § 2. Two particle systems 262 § 3. The existence of bound states 265 § 4. Systems of N particles 268 § 5. The Zeeman effect 271 § 6. Stability 277 Chapter 11. Notes, remarks and references 282 § 1. Chapter 1 282 § 2. Chapter 2 286 § 3. Chapter 3 291 § 4. Chapter 4 293 § 5. Chapter 5 296 § 6. Chapter 6 297 § 7. Chapter 7 298 § 8. Chapter 8 299 § 9. Chapter 9 299 §10. Chapter 10 300 Bibliography 301 List of Symbols 308 Subject Index 309 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schechter, Martin 1930- |
author_GND | (DE-588)1042649022 |
author_facet | Schechter, Martin 1930- |
author_role | aut |
author_sort | Schechter, Martin 1930- |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV022114193 |
callnumber-first | Q - Science |
callnumber-label | QA329 |
callnumber-raw | QA329.42 |
callnumber-search | QA329.42 |
callnumber-sort | QA 3329.42 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 620 |
ctrlnum | (OCoLC)12669470 (DE-599)BVBBV022114193 |
dewey-full | 515.7/242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7/242 |
dewey-search | 515.7/242 |
dewey-sort | 3515.7 3242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02871nam a2200685zcb4500</leader><controlfield tag="001">BV022114193</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160428 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">871126s1986 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">044487822X</subfield><subfield code="9">0-444-87822-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)12669470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022114193</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA329.42</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7/242</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schechter, Martin</subfield><subfield code="d">1930-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1042649022</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectra of partial differential operators</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 310 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">North-Holland series in applied mathematics and mechanics</subfield><subfield code="v">14</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Opérateurs différentiels partiels</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs différentiels partiels</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectre (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektralanalyse</subfield><subfield code="g">Stochastik</subfield><subfield code="0">(DE-588)4056125-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partieller Differentialoperator</subfield><subfield code="0">(DE-588)4173439-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektrum</subfield><subfield code="0">(DE-588)4056139-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spektralanalyse</subfield><subfield code="g">Stochastik</subfield><subfield code="0">(DE-588)4056125-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Partieller Differentialoperator</subfield><subfield code="0">(DE-588)4173439-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Spektrum</subfield><subfield code="0">(DE-588)4056139-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Spektrum</subfield><subfield code="0">(DE-588)4056139-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">North-Holland series in applied mathematics and mechanics</subfield><subfield code="v">14</subfield><subfield code="w">(DE-604)BV001900898</subfield><subfield code="9">14</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015329068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015329068</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022114193 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:15:53Z |
indexdate | 2024-07-09T20:50:50Z |
institution | BVB |
isbn | 044487822X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015329068 |
oclc_num | 12669470 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XIII, 310 S. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | North-Holland |
record_format | marc |
series | North-Holland series in applied mathematics and mechanics |
series2 | North-Holland series in applied mathematics and mechanics |
spelling | Schechter, Martin 1930- Verfasser (DE-588)1042649022 aut Spectra of partial differential operators 2. ed. Amsterdam [u.a.] North-Holland 1986 XIII, 310 S. txt rdacontent n rdamedia nc rdacarrier North-Holland series in applied mathematics and mechanics 14 Opérateurs différentiels partiels Opérateurs différentiels partiels ram Spectre (Mathématiques) Partial differential operators Spectral theory (Mathematics) Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Spektralanalyse Stochastik (DE-588)4056125-2 gnd rswk-swf Operator (DE-588)4130529-2 gnd rswk-swf Differentialoperator (DE-588)4012251-7 gnd rswk-swf Partieller Differentialoperator (DE-588)4173439-7 gnd rswk-swf Spektrum (DE-588)4056139-2 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s DE-604 Spektralanalyse Stochastik (DE-588)4056125-2 s Operator (DE-588)4130529-2 s Partieller Differentialoperator (DE-588)4173439-7 s Spektrum (DE-588)4056139-2 s 1\p DE-604 Differentialoperator (DE-588)4012251-7 s 2\p DE-604 Spektraltheorie (DE-588)4116561-5 s 3\p DE-604 North-Holland series in applied mathematics and mechanics 14 (DE-604)BV001900898 14 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015329068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schechter, Martin 1930- Spectra of partial differential operators North-Holland series in applied mathematics and mechanics Opérateurs différentiels partiels Opérateurs différentiels partiels ram Spectre (Mathématiques) Partial differential operators Spectral theory (Mathematics) Partielle Differentialgleichung (DE-588)4044779-0 gnd Spektralanalyse Stochastik (DE-588)4056125-2 gnd Operator (DE-588)4130529-2 gnd Differentialoperator (DE-588)4012251-7 gnd Partieller Differentialoperator (DE-588)4173439-7 gnd Spektrum (DE-588)4056139-2 gnd Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4056125-2 (DE-588)4130529-2 (DE-588)4012251-7 (DE-588)4173439-7 (DE-588)4056139-2 (DE-588)4116561-5 |
title | Spectra of partial differential operators |
title_auth | Spectra of partial differential operators |
title_exact_search | Spectra of partial differential operators |
title_exact_search_txtP | Spectra of partial differential operators |
title_full | Spectra of partial differential operators |
title_fullStr | Spectra of partial differential operators |
title_full_unstemmed | Spectra of partial differential operators |
title_short | Spectra of partial differential operators |
title_sort | spectra of partial differential operators |
topic | Opérateurs différentiels partiels Opérateurs différentiels partiels ram Spectre (Mathématiques) Partial differential operators Spectral theory (Mathematics) Partielle Differentialgleichung (DE-588)4044779-0 gnd Spektralanalyse Stochastik (DE-588)4056125-2 gnd Operator (DE-588)4130529-2 gnd Differentialoperator (DE-588)4012251-7 gnd Partieller Differentialoperator (DE-588)4173439-7 gnd Spektrum (DE-588)4056139-2 gnd Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Opérateurs différentiels partiels Spectre (Mathématiques) Partial differential operators Spectral theory (Mathematics) Partielle Differentialgleichung Spektralanalyse Stochastik Operator Differentialoperator Partieller Differentialoperator Spektrum Spektraltheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015329068&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001900898 |
work_keys_str_mv | AT schechtermartin spectraofpartialdifferentialoperators |