Nonlinear functional analysis and its applications: 2,A Linear monotone operators
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
1990
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 467 S. Ill. |
ISBN: | 3540968024 0387968024 9781461269717 |
Internformat
MARC
LEADER | 00000nam a2200000zcc4500 | ||
---|---|---|---|
001 | BV022096134 | ||
003 | DE-604 | ||
005 | 20170919 | ||
007 | t | ||
008 | 960614s1990 a||| |||| 00||| eng d | ||
020 | |a 3540968024 |9 3-540-96802-4 | ||
020 | |a 0387968024 |9 0-387-96802-4 | ||
020 | |a 9781461269717 |9 978-1-4612-6971-7 | ||
035 | |a (OCoLC)311239194 | ||
035 | |a (DE-599)BVBBV022096134 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-91G |a DE-91 |a DE-384 |a DE-862 |a DE-355 |a DE-634 |a DE-83 |a DE-11 |a DE-824 |a DE-29T |a DE-210 |a DE-19 |a DE-703 |a DE-739 |a DE-20 |a DE-188 | ||
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Zeidler, Eberhard |d 1940-2016 |e Verfasser |0 (DE-588)121295869 |4 aut | |
240 | 1 | 0 | |a Vorlesungen über nichtlineare Funktionalanalysis |
245 | 1 | 0 | |a Nonlinear functional analysis and its applications |n 2,A |p Linear monotone operators |c Eberhard Zeidler |
250 | |a 1. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 1990 | |
300 | |a XVIII, 467 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Anwendung |0 (DE-588)4196864-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |D s |
689 | 0 | 1 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |D s |
689 | 1 | |5 DE-604 | |
773 | 0 | 8 | |w (DE-604)BV002366938 |g 2,1 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015310992&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015310992 |
Datensatz im Suchindex
DE-BY-862_location | 2801 |
---|---|
DE-BY-FWS_call_number | 2801/1991:3348 |
DE-BY-FWS_katkey | 385838 |
DE-BY-FWS_media_number | 083100397098 |
_version_ | 1806174434447327232 |
adam_text | Contents (Part
II/A)
Preface to Part
И/А
INTRODUCTION TO THE SUBJECT
1
CHAPTER
18
Variational Problems, the
Ritz
Method, and
the Idea of Orthogonality
15
§18.1.
The Space Cf (G) and the Variational Lemma
17
§18.2.
Integration by Parts
19
§18.3.
The First Boundary Value Problem and the
Ritz
Method
21
§18.4.
The Second and Third Boundary Value Problems and
the
Ritz
Method
28
§18.5.
Eigenvalue Problems and the
Ritz
Method
32
§18.6.
The Holder Inequality and its Applications
35
§18.7.
The History of the Dirichlet Principle and Monotone Operators
40
§18.8.
The Main Theorem on Quadratic Minimum Problems
56
§18.9.
The Inequality of
Poincaré-Friedrichs
59
§18.10.
The Functional Analytic Justification of the Dirichlet Principle
60
§ 18.11.
The Perpendicular Principle, the Riesz Theorem, and
the Main Theorem on Linear Monotone Operators
64
§18.12.
The Extension Principle and the Completion Principle
70
§18.13.
Proper Subregions
71
§18.14.
The Smoothing Principle
72
§18.15.
The Idea of the Regularity of Generalized Solutions and
the Lemma of Weyl
78
§18.16.
The Localization Principle
79
§18.17.
Convex Variational Problems, Elliptic Differential Equations,
and Monotonidty
81
xiii
xiv Contents (Part
II/A)
§18.18.
The General
Euler-Lagrange
Equations
85
§18.19.
The Historical Development of the 19th and 20th Problems of
Hubert and Monotone Operators
86
§18.20.
Sufficient Conditions for Local and Global Minima and
Locally Monotone Operators
93
CHAPTER
19
The Galerkin Method for Differential and Integral Equations,
the
Friedrichs
Extension, and the Idea of Self-Adjointness
101
§19.1.
Elliptic Differential Equations and the Galerkin Method
108
§19.2.
Parabolic Differential Equations and the Galerkin Method
111
§19.3.
Hyperbolic Differential Equations and the Galerkin Method
113
§19.4.
Integral Equations and the Galerkin Method
115
§19.5.
Complete
Orthonormal
Systems and Abstract Fourier Series
116
§19.6.
Eigenvalues of Compact Symmetric Operators
(Hilbert-Schmidt Theory)
119
§19.7.
Proof of Theorem 19.B
121
§19.8.
Self-Adjoint Operators
124
§19.9.
The
Friedrichs
Extension of Symmetric Operators
126
§19.10.
Proof of Theorem 19.C
129
§19.11.
Application to the
Poisson
Equation
132
§19.12.
Application to the Eigenvalue Problem for the Laplace Equation
134
§ 19.13.
The Inequality of
Poincaré
and the Compactness
Theorem of Rellich
135
§19.14.
Functions of Self-Adjoint Operators
138
§19.15.
Application to the Heat Equation
141
§19.16.
Application to the Wave Equation
143
§19.17.
Semigroups and Propagators, and Their Physical Relevance
145
§19.18.
Main Theorem on Abstract Linear Parabolic Equations
153
§19.19.
Proof of Theorem 19.D
155
§19.20.
Monotone Operators and the Main Theorem on
Linear
Nonexpansive
Semigroups
159
§19.21.
The Main Theorem on One-Parameter Unitary Groups
160
§19.22.
Proof of Theorem 19.E
162
§19.23.
Abstract
Semilinear
Hyperbolic Equations
164
§19.24.
Application to
Semilinear
Wave Equations
166
§19.25.
The
Semilinear Schrödinger
Equation
167
§19.26.
Abstract
Semilinear
Parabolic Equations, Fractional Powers of
Operators, and Abstract Sobolev Spaces
168
§19.27.
Application to Semilinear Parabolic Equations
171
§19.28.
Proof of Theorem
19.1 171
§19.29.
Five General Uniqueness Principles and Monotone Operators
174
§19.30.
A General Existence Principle and Linear Monotone Operators
175
CHAPTER
20
Difference Methods and Stability
192
§20.1.
Consistency, Stability, and Convergence
195
§20.2.
Approximation of Differential Quotients
199
Contents (Part
Н/А)
XV
§20.3.
Application to Boundary Value Problems for
Ordinary Differential Equations
200
§20.4.
Application to Parabolic Differential Equations
203
§20.5.
Application to Elliptic Differential Equations
208
§20.6.
The Equivalence Between Stability and Convergence
210
§20.7.
The Equivalence Theorem of Lax for Evolution Equations
211
LINEAR MONOTONE PROBLEMS
225
CHAPTER
21
Auxiliary Tools and the Convergence of the Galerkin
Method for Linear Operator Equations
229
§21.1.
Generalized Derivatives
231
§21.2.
Sobolev Spaces
235
§21.3.
The Sobolev Embedding Theorems
237
§21.4,
Proof of the Sobolev Embedding Theorems
241
§21.5.
Duality in B-Spaces
251
§21.6.
Duality in H-Spaces
253
§21.7.
The Idea of Weak Convergence
255
§21.8.
The Idea of Weak* Convergence
260
§21.9.
Linear Operators
261
§21.10.
Bilinear Forms
262
§21.11.
Application to Embeddings
265
§21.12.
Projection Operators
265
§21.13.
Bases and Galerkin Schemes
271
§21.14.
Application to Finite Elements
273
§21.15.
Riesz-Schauder Theory and Abstract
Fredholm
Alternatives
275
§21.16.
The Main Theorem on the Approximation-Solvability of Linear
Operator Equations, and the Convergence of the Galerkin Method
279
§21.17.
Interpolation Inequalities and a Convergence Trick
283
§21.18.
Application to the Refined Banach Fixed-Point Theorem and
the Convergence of Iteration Methods
285
§21.19.
The Gagliardo-Nirenberg Inequalities
286
§21.20.
The Strategy of the Fourier Transform for Sobolev Spaces
290
§21.21.
Banach Algebras and Sobolev Spaces
292
§21.22. Moser-Type
Calculus Inequalities
294
§21.23.
Weakly Sequentially Continuous Nonlinear Operators on
Sobolev Spaces
296
CHAPTER
22
Hubert Space Methods and Linear Elliptic Differential Equations
314
§22.1.
Main Theorem on Quadratic Minimum Problems and the
Ritz
Method
320
§22.2.
Application to Boundary Value Problems
325
§22.3.
The Method of Orthogonal Projection, Duality, and a posteriori
Error Estimates for the
Ritz
Method
335
§22.4.
Application to Boundary Value Problems
337
xvi Contents (Part
II/A)
§22.5.
Main Theorem on Linear Strongly Monotone Operators and
the Galerkin Method
339
§22.6.
Application to Boundary Value Problems
345
§22.7.
Compact Perturbations of Strongly Monotone Operators,
Fredholm
Alternatives, and the Galerkin Method
347
§22.8.
Application to Integral Equations
349
§22.9.
Application to Bilinear Forms
350
§22.10.
Application to Boundary Value Problems
351
§22.11.
Eigenvalue Problems and the
Ritz
Method
352
§22.12.
Application to Bilinear Forms
357
§22.13.
Application to Boundary-Eigenvalue Problems
361
§22.14.
Gårding
Forms
364
§22.15.
The
Gårding
Inequality for Elliptic Equations
366
§22.16.
The Main Theorems on
Gårding
Forms
369
§22.17.
Application to Strongly Elliptic Differential Equations of Order 2m
371
§22.18.
Difference Approximations
374
§22.19.
Interior Regularity of Generalized Solutions
376
§22.20.
Proof of Theorem 22.H
378
§22.21.
Regularity of Generalized Solutions up to the Boundary
383
§22.22.
Proof of Theorem
22.1 384
CHAPTER
23
Hubert Space Methods and Linear Parabolic Differential Equations
402
§23.1.
Particularities in the Treatment of Parabolic Equations
402
§23.2.
The Lebesgue Space Lp(0, T; X) of Vector-Valued Functions
406
§23.3.
The Dual Space to Lp(0,T;X)
410
§23.4.
Evolution Triples
416
§23.5.
Generalized Derivatives
417
§23.6.
The Sobolev Space Wpl{0,
T; V, H)
422
§23.7.
Main Theorem on First-Order Linear Evolution Equations and
the Galerkin Method
423
§23.8.
Application to Parabolic Differential Equations
426
§23.9.
Proof of the Main Theorem
430
CHAPTER
24
Hubert Space Methods and Linear Hyperbolic
Differential Equations
452
§24.1.
Main Theorem on Second-Order Linear Evolution Equations
and the Galerkin Method
453
§24.2.
Application to Hyperbolic Differential Equations
456
§24.3.
Proof of the Main Theorem
459
|
adam_txt |
Contents (Part
II/A)
Preface to Part
И/А
INTRODUCTION TO THE SUBJECT
1
CHAPTER
18
Variational Problems, the
Ritz
Method, and
the Idea of Orthogonality
15
§18.1.
The Space Cf (G) and the Variational Lemma
17
§18.2.
Integration by Parts
19
§18.3.
The First Boundary Value Problem and the
Ritz
Method
21
§18.4.
The Second and Third Boundary Value Problems and
the
Ritz
Method
28
§18.5.
Eigenvalue Problems and the
Ritz
Method
32
§18.6.
The Holder Inequality and its Applications
35
§18.7.
The History of the Dirichlet Principle and Monotone Operators
40
§18.8.
The Main Theorem on Quadratic Minimum Problems
56
§18.9.
The Inequality of
Poincaré-Friedrichs
59
§18.10.
The Functional Analytic Justification of the Dirichlet Principle
60
§ 18.11.
The Perpendicular Principle, the Riesz Theorem, and
the Main Theorem on Linear Monotone Operators
64
§18.12.
The Extension Principle and the Completion Principle
70
§18.13.
Proper Subregions
71
§18.14.
The Smoothing Principle
72
§18.15.
The Idea of the Regularity of Generalized Solutions and
the Lemma of Weyl
78
§18.16.
The Localization Principle
79
§18.17.
Convex Variational Problems, Elliptic Differential Equations,
and Monotonidty
81
xiii
xiv Contents (Part
II/A)
§18.18.
The General
Euler-Lagrange
Equations
85
§18.19.
The Historical Development of the 19th and 20th Problems of
Hubert and Monotone Operators
86
§18.20.
Sufficient Conditions for Local and Global Minima and
Locally Monotone Operators
93
CHAPTER
19
The Galerkin Method for Differential and Integral Equations,
the
Friedrichs
Extension, and the Idea of Self-Adjointness
101
§19.1.
Elliptic Differential Equations and the Galerkin Method
108
§19.2.
Parabolic Differential Equations and the Galerkin Method
111
§19.3.
Hyperbolic Differential Equations and the Galerkin Method
113
§19.4.
Integral Equations and the Galerkin Method
115
§19.5.
Complete
Orthonormal
Systems and Abstract Fourier Series
116
§19.6.
Eigenvalues of Compact Symmetric Operators
(Hilbert-Schmidt Theory)
119
§19.7.
Proof of Theorem 19.B
121
§19.8.
Self-Adjoint Operators
124
§19.9.
The
Friedrichs
Extension of Symmetric Operators
126
§19.10.
Proof of Theorem 19.C
129
§19.11.
Application to the
Poisson
Equation
132
§19.12.
Application to the Eigenvalue Problem for the Laplace Equation
134
§ 19.13.
The Inequality of
Poincaré
and the Compactness
Theorem of Rellich
135
§19.14.
Functions of Self-Adjoint Operators
138
§19.15.
Application to the Heat Equation
141
§19.16.
Application to the Wave Equation
143
§19.17.
Semigroups and Propagators, and Their Physical Relevance
145
§19.18.
Main Theorem on Abstract Linear Parabolic Equations
153
§19.19.
Proof of Theorem 19.D
155
§19.20.
Monotone Operators and the Main Theorem on
Linear
Nonexpansive
Semigroups
159
§19.21.
The Main Theorem on One-Parameter Unitary Groups
160
§19.22.
Proof of Theorem 19.E
162
§19.23.
Abstract
Semilinear
Hyperbolic Equations
164
§19.24.
Application to
Semilinear
Wave Equations
166
§19.25.
The
Semilinear Schrödinger
Equation
167
§19.26.
Abstract
Semilinear
Parabolic Equations, Fractional Powers of
Operators, and Abstract Sobolev Spaces
168
§19.27.
Application to Semilinear Parabolic Equations
171
§19.28.
Proof of Theorem
19.1 171
§19.29.
Five General Uniqueness Principles and Monotone Operators
174
§19.30.
A General Existence Principle and Linear Monotone Operators
175
CHAPTER
20
Difference Methods and Stability
192
§20.1.
Consistency, Stability, and Convergence
195
§20.2.
Approximation of Differential Quotients
199
Contents (Part
Н/А)
XV
§20.3.
Application to Boundary Value Problems for
Ordinary Differential Equations
200
§20.4.
Application to Parabolic Differential Equations
203
§20.5.
Application to Elliptic Differential Equations
208
§20.6.
The Equivalence Between Stability and Convergence
210
§20.7.
The Equivalence Theorem of Lax for Evolution Equations
211
LINEAR MONOTONE PROBLEMS
225
CHAPTER
21
Auxiliary Tools and the Convergence of the Galerkin
Method for Linear Operator Equations
229
§21.1.
Generalized Derivatives
231
§21.2.
Sobolev Spaces
235
§21.3.
The Sobolev Embedding Theorems
237
§21.4,
Proof of the Sobolev Embedding Theorems
241
§21.5.
Duality in B-Spaces
251
§21.6.
Duality in H-Spaces
253
§21.7.
The Idea of Weak Convergence
255
§21.8.
The Idea of Weak* Convergence
260
§21.9.
Linear Operators
261
§21.10.
Bilinear Forms
262
§21.11.
Application to Embeddings
265
§21.12.
Projection Operators
265
§21.13.
Bases and Galerkin Schemes
271
§21.14.
Application to Finite Elements
273
§21.15.
Riesz-Schauder Theory and Abstract
Fredholm
Alternatives
275
§21.16.
The Main Theorem on the Approximation-Solvability of Linear
Operator Equations, and the Convergence of the Galerkin Method
279
§21.17.
Interpolation Inequalities and a Convergence Trick
283
§21.18.
Application to the Refined Banach Fixed-Point Theorem and
the Convergence of Iteration Methods
285
§21.19.
The Gagliardo-Nirenberg Inequalities
286
§21.20.
The Strategy of the Fourier Transform for Sobolev Spaces
290
§21.21.
Banach Algebras and Sobolev Spaces
292
§21.22. Moser-Type
Calculus Inequalities
294
§21.23.
Weakly Sequentially Continuous Nonlinear Operators on
Sobolev Spaces
296
CHAPTER
22
Hubert Space Methods and Linear Elliptic Differential Equations
314
§22.1.
Main Theorem on Quadratic Minimum Problems and the
Ritz
Method
320
§22.2.
Application to Boundary Value Problems
325
§22.3.
The Method of Orthogonal Projection, Duality, and a posteriori
Error Estimates for the
Ritz
Method
335
§22.4.
Application to Boundary Value Problems
337
xvi Contents (Part
II/A)
§22.5.
Main Theorem on Linear Strongly Monotone Operators and
the Galerkin Method
339
§22.6.
Application to Boundary Value Problems
345
§22.7.
Compact Perturbations of Strongly Monotone Operators,
Fredholm
Alternatives, and the Galerkin Method
347
§22.8.
Application to Integral Equations
349
§22.9.
Application to Bilinear Forms
350
§22.10.
Application to Boundary Value Problems
351
§22.11.
Eigenvalue Problems and the
Ritz
Method
352
§22.12.
Application to Bilinear Forms
357
§22.13.
Application to Boundary-Eigenvalue Problems
361
§22.14.
Gårding
Forms
364
§22.15.
The
Gårding
Inequality for Elliptic Equations
366
§22.16.
The Main Theorems on
Gårding
Forms
369
§22.17.
Application to Strongly Elliptic Differential Equations of Order 2m
371
§22.18.
Difference Approximations
374
§22.19.
Interior Regularity of Generalized Solutions
376
§22.20.
Proof of Theorem 22.H
378
§22.21.
Regularity of Generalized Solutions up to the Boundary
383
§22.22.
Proof of Theorem
22.1 384
CHAPTER
23
Hubert Space Methods and Linear Parabolic Differential Equations
402
§23.1.
Particularities in the Treatment of Parabolic Equations
402
§23.2.
The Lebesgue Space Lp(0, T; X) of Vector-Valued Functions
406
§23.3.
The Dual Space to Lp(0,T;X)
410
§23.4.
Evolution Triples
416
§23.5.
Generalized Derivatives
417
§23.6.
The Sobolev Space Wpl{0,
T; V, H)
422
§23.7.
Main Theorem on First-Order Linear Evolution Equations and
the Galerkin Method
423
§23.8.
Application to Parabolic Differential Equations
426
§23.9.
Proof of the Main Theorem
430
CHAPTER
24
Hubert Space Methods and Linear Hyperbolic
Differential Equations
452
§24.1.
Main Theorem on Second-Order Linear Evolution Equations
and the Galerkin Method
453
§24.2.
Application to Hyperbolic Differential Equations
456
§24.3.
Proof of the Main Theorem
459 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Zeidler, Eberhard 1940-2016 |
author_GND | (DE-588)121295869 |
author_facet | Zeidler, Eberhard 1940-2016 |
author_role | aut |
author_sort | Zeidler, Eberhard 1940-2016 |
author_variant | e z ez |
building | Verbundindex |
bvnumber | BV022096134 |
classification_rvk | SK 400 SK 600 |
ctrlnum | (OCoLC)311239194 (DE-599)BVBBV022096134 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01841nam a2200433zcc4500</leader><controlfield tag="001">BV022096134</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170919 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960614s1990 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540968024</subfield><subfield code="9">3-540-96802-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387968024</subfield><subfield code="9">0-387-96802-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461269717</subfield><subfield code="9">978-1-4612-6971-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)311239194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022096134</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeidler, Eberhard</subfield><subfield code="d">1940-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121295869</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Vorlesungen über nichtlineare Funktionalanalysis</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear functional analysis and its applications</subfield><subfield code="n">2,A</subfield><subfield code="p">Linear monotone operators</subfield><subfield code="c">Eberhard Zeidler</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 467 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV002366938</subfield><subfield code="g">2,1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015310992&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015310992</subfield></datafield></record></collection> |
id | DE-604.BV022096134 |
illustrated | Illustrated |
index_date | 2024-07-02T16:15:02Z |
indexdate | 2024-08-01T10:49:28Z |
institution | BVB |
isbn | 3540968024 0387968024 9781461269717 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015310992 |
oclc_num | 311239194 |
open_access_boolean | |
owner | DE-706 DE-91G DE-BY-TUM DE-91 DE-BY-TUM DE-384 DE-862 DE-BY-FWS DE-355 DE-BY-UBR DE-634 DE-83 DE-11 DE-824 DE-29T DE-210 DE-19 DE-BY-UBM DE-703 DE-739 DE-20 DE-188 |
owner_facet | DE-706 DE-91G DE-BY-TUM DE-91 DE-BY-TUM DE-384 DE-862 DE-BY-FWS DE-355 DE-BY-UBR DE-634 DE-83 DE-11 DE-824 DE-29T DE-210 DE-19 DE-BY-UBM DE-703 DE-739 DE-20 DE-188 |
physical | XVIII, 467 S. Ill. |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer |
record_format | marc |
spellingShingle | Zeidler, Eberhard 1940-2016 Nonlinear functional analysis and its applications Anwendung (DE-588)4196864-5 gnd Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd |
subject_GND | (DE-588)4196864-5 (DE-588)4042093-0 |
title | Nonlinear functional analysis and its applications |
title_alt | Vorlesungen über nichtlineare Funktionalanalysis |
title_auth | Nonlinear functional analysis and its applications |
title_exact_search | Nonlinear functional analysis and its applications |
title_exact_search_txtP | Nonlinear functional analysis and its applications |
title_full | Nonlinear functional analysis and its applications 2,A Linear monotone operators Eberhard Zeidler |
title_fullStr | Nonlinear functional analysis and its applications 2,A Linear monotone operators Eberhard Zeidler |
title_full_unstemmed | Nonlinear functional analysis and its applications 2,A Linear monotone operators Eberhard Zeidler |
title_short | Nonlinear functional analysis and its applications |
title_sort | nonlinear functional analysis and its applications linear monotone operators |
topic | Anwendung (DE-588)4196864-5 gnd Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd |
topic_facet | Anwendung Nichtlineare Funktionalanalysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015310992&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002366938 |
work_keys_str_mv | AT zeidlereberhard vorlesungenubernichtlinearefunktionalanalysis AT zeidlereberhard nonlinearfunctionalanalysisanditsapplications2a |
Inhaltsverzeichnis
THWS Schweinfurt Magazin
Signatur: |
2801 1991:3348 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |