Self-organizing maps:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2001
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Springer series in information sciences
30 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [403] - 486 |
Beschreibung: | XX, 501 S. Ill. |
ISBN: | 3540679219 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022007778 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 010927s2001 a||| |||| 00||| eng d | ||
020 | |a 3540679219 |9 3-540-67921-9 | ||
035 | |a (OCoLC)45284682 | ||
035 | |a (DE-599)BVBBV022007778 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA76.87 | |
082 | 0 | |a 006.3/2 |2 21 | |
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
100 | 1 | |a Kohonen, Teuvo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Self-organizing maps |c Teuvo Kohonen |
250 | |a 3. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2001 | |
300 | |a XX, 501 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in information sciences |v 30 | |
490 | 0 | |a Physics and astronomy online library | |
500 | |a Literaturverz. S. [403] - 486 | ||
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Self-organizing maps | |
650 | 0 | 7 | |a Selbstorganisierende Karte |0 (DE-588)4305302-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Selbstorganisierende Karte |0 (DE-588)4305302-6 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Springer series in information sciences |v 30 |w (DE-604)BV000008063 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015222410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015222410 |
Datensatz im Suchindex
_version_ | 1804135982625193984 |
---|---|
adam_text | CONTENTS 1. MATHEMATICAL PRELIMINARIES ............................... 1
1.1 MATHEMATICAL CONCEPTS AND NOTATIONS .................... 2 1.1.1
VECTOR SPACE CONCEPTS ............................ 2 1.1.2 MATRIX
NOTATIONS ................................. 8 1.1.3 EIGENVECTORS AND
EIGENVALUES OF MATRICES ............ 11 1.1.4 FURTHER PROPERTIES OF
MATRICES ..................... 13 1.1.5 ON MATRIX DIFFERENTIAL CALCULUS
.................... 15 1.2 DISTANCE MEASURES FOR PATTERNS
........................... 17 1.2.1 MEASURES OF SIMILARITY AND DISTANCE
IN VECTOR SPACES . 17 1.2.2 MEASURES OF SIMILARITY AND DISTANCE BETWEEN
SYMBOL STRINGS ........................... 21 1.2.3 AVERAGES OVER
NONVECTORIAL VARIABLES ............... 28 1.3 STATISTICAL PATTERN
ANALYSIS .............................. 29 1.3.1 BASIC PROBABILISTIC
CONCEPTS ....................... 29 1.3.2 PROJECTION METHODS
............................... 34 1.3.3 SUPERVISED CLASSIFICATION
.......................... 39 1.3.4 UNSUPERVISED CLASSIFICATION
........................ 44 1.4 THE SUBSPACE METHODS OF CLASSIFICATION
................... 46 1.4.1 THE BASIC SUBSPACE METHOD
....................... 46 1.4.2 ADAPTATION OF A MODEL SUBSPACE TO INPUT
SUBSPACE ... 49 1.4.3 THE LEARNING SUBSPACE METHOD (LSM) ..............
53 1.5 VECTOR QUANTIZATION .................................... 59 1.5.1
DEFINITIONS ...................................... 59 1.5.2 DERIVATION
OF THE VQ ALGORITHM .................... 60 1.5.3 POINT DENSITY IN VQ
.............................. 62 1.6 DYNAMICALLY EXPANDING CONTEXT
......................... 64 1.6.1 SETTING UP THE PROBLEM
........................... 65 1.6.2 AUTOMATIC DETERMINATION OF
CONTEXT-INDEPENDENT PRODUCTIONS ................ 66 1.6.3 CONFLICT BIT
...................................... 67 1.6.4 CONSTRUCTION OF MEMORY
FOR THE CONTEXT-DEPENDENT PRODUCTIONS ............. 68 1.6.5 THE
ALGORITHM FOR THE CORRECTION OF NEW STRINGS ..... 68 1.6.6 ESTIMATION
PROCEDURE FOR UNSUCCESSFUL SEARCHES ...... 69 XVI CONTENTS 1.6.7
PRACTICAL EXPERIMENTS ............................ 69 2. NEURAL MODELING
......................................... 71 2.1 MODELS, PARADIGMS, AND
METHODS ......................... 71 2.2 A HISTORY OF SOME MAIN IDEAS IN
NEURAL MODELING .......... 72 2.3 ISSUES ON ARTIFICIAL INTELLIGENCE
........................... 75 2.4 ON THE COMPLEXITY OF BIOLOGICAL
NERVOUS SYSTEMS .......... 76 2.5 WHAT THE BRAIN CIRCUITS ARE NOT
......................... 78 2.6 RELATION BETWEEN BIOLOGICAL AND
ARTIFICIAL NEURAL NETWORKS ........................... 79 2.7 WHAT
FUNCTIONS OF THE BRAIN ARE USUALLY MODELED? ......... 81 2.8 WHEN DO WE
HAVE TO USE NEURAL COMPUTING? ............. 81 2.9 TRANSFORMATION,
RELAXATION, AND DECODER .................. 82 2.10 CATEGORIES OF ANNS
..................................... 85 2.11 A SIMPLE NONLINEAR DYNAMIC
MODEL OF THE NEURON ......... 87 2.12 THREE PHASES OF DEVELOPMENT OF
NEURAL MODELS ............ 89 2.13 LEARNING LAWS
......................................... 91 2.13.1 HEBB*S LAW
...................................... 91 2.13.2 THE RICCATI-TYPE
LEARNING LAW .................... 92 2.13.3 THE PCA-TYPE LEARNING LAW
...................... 95 2.14 SOME REALLY HARD PROBLEMS
............................. 96 2.15 BRAIN MAPS
............................................ 99 3. THE BASIC SOM
........................................... 105 3.1 A QUALITATIVE
INTRODUCTION TO THE SOM ................... 106 3.2 THE ORIGINAL
INCREMENTAL SOM ALGORITHM ................ 109 3.3 THE *DOT-PRODUCT SOM*
................................ 115 3.4 OTHER PRELIMINARY
DEMONSTRATIONS OF TOPOLOGY-PRESERVING MAPPINGS .........................
116 3.4.1 ORDERING OF REFERENCE VECTORS IN THE INPUT SPACE ..... 116
3.4.2 DEMONSTRATIONS OF ORDERING OF RESPONSES IN THE OUTPUT SPACE
.............................. 120 3.5 BASIC MATHEMATICAL APPROACHES TO
SELF-ORGANIZATION ........ 127 3.5.1 ONE-DIMENSIONAL CASE
............................ 128 3.5.2 CONSTRUCTIVE PROOF OF ORDERING OF
ANOTHER ONE-DIMENSIONAL SOM .................. 132 3.6 THE BATCH MAP
........................................ 138 3.7 INITIALIZATION OF THE
SOM ALGORITHMS ...................... 142 3.8 ON THE *OPTIMAL*
LEARNING-RATE FACTOR ................... 143 3.9 EFFECT OF THE FORM OF
THE NEIGHBORHOOD FUNCTION ........... 145 3.10 DOES THE SOM ALGORITHM
ENSUE FROM A DISTORTION MEASURE? .............................. 146 3.11
AN ATTEMPT TO OPTIMIZE THE SOM ........................ 148 3.12 POINT
DENSITY OF THE MODEL VECTORS ....................... 152 3.12.1 EARLIER
STUDIES ................................... 152 CONTENTS XVII 3.12.2
NUMERICAL CHECK OF POINT DENSITIES IN A FINITE ONE-DIMENSIONAL SOM
.................. 153 3.13 PRACTICAL ADVICE FOR THE CONSTRUCTION OF
GOOD MAPS ........ 159 3.14 EXAMPLES OF DATA ANALYSES IMPLEMENTED BY THE
SOM ....... 161 3.14.1 ATTRIBUTE MAPS WITH FULL DATA MATRIX
.............. 161 3.14.2 CASE EXAMPLE OF ATTRIBUTE MAPS BASED ON
INCOMPLETE DATA MATRICES (MISSING DATA): *POVERTY MAP*
................................... 165 3.15 USING GRAY LEVELS TO
INDICATE CLUSTERS IN THE SOM ......... 165 3.16 INTERPRETATION OF THE
SOM MAPPING ...................... 166 3.16.1 *LOCAL PRINCIPAL
COMPONENTS* ..................... 166 3.16.2 CONTRIBUTION OF A VARIABLE
TO CLUSTER STRUCTURES ...... 169 3.17 SPEEDUP OF SOM COMPUTATION
........................... 170 3.17.1 SHORTCUT WINNER SEARCH
........................... 170 3.17.2 INCREASING THE NUMBER OF UNITS IN
THE SOM ......... 172 3.17.3 SMOOTHING
....................................... 175 3.17.4 COMBINATION OF
SMOOTHING, LATTICE GROWING, AND SOM ALGORITHM
.............................. 176 4. PHYSIOLOGICAL INTERPRETATION OF
SOM ...................... 177 4.1 CONDITIONS FOR ABSTRACT FEATURE MAPS
IN THE BRAIN ......... 177 4.2 TWO DIFFERENT LATERAL CONTROL MECHANISMS
................ 178 4.2.1 THE WTA FUNCTION, BASED ON LATERAL ACTIVITY
CONTROL ........................ 179 4.2.2 LATERAL CONTROL OF PLASTICITY
....................... 184 4.3 LEARNING EQUATION
...................................... 185 4.4 SYSTEM MODELS OF SOM AND
THEIR SIMULATIONS ............. 185 4.5 RECAPITULATION OF THE FEATURES
OF THE PHYSIOLOGICAL SOM MODEL .......................... 188 4.6
SIMILARITIES BETWEEN THE BRAIN MAPS AND SIMULATED FEATURE MAPS
............................. 188 4.6.1 MAGNIFICATION
.................................... 189 4.6.2 IMPERFECT MAPS
.................................. 189 4.6.3 OVERLAPPING MAPS
................................ 189 5. VARIANTS OF SOM
.......................................... 191 5.1 OVERVIEW OF IDEAS TO
MODIFY THE BASIC SOM ............... 191 5.2 ADAPTIVE TENSORIAL WEIGHTS
.............................. 194 5.3 TREE-STRUCTURED SOM IN SEARCHING
........................ 197 5.4 DIFFERENT DEFINITIONS OF THE
NEIGHBORHOOD .................. 198 5.5 NEIGHBORHOODS IN THE SIGNAL
SPACE ....................... 200 5.6 DYNAMICAL ELEMENTS ADDED TO THE
SOM ................... 204 5.7 THE SOM FOR SYMBOL STRINGS
............................ 205 5.7.1 INITIALIZATION OF THE SOM FOR
STRINGS ................ 205 5.7.2 THE BATCH MAP FOR STRINGS
........................ 206 XVIII CONTENTS 5.7.3 TIE-BREAK RULES
.................................. 206 5.7.4 A SIMPLE EXAMPLE: THE SOM
OF PHONEMIC TRANSCRIPTIONS ............... 207 5.8 OPERATOR MAPS
......................................... 207 5.9 EVOLUTIONARY-LEARNING
SOM ............................. 211 5.9.1 EVOLUTIONARY-LEARNING
FILTERS ...................... 211 5.9.2 SELF-ORGANIZATION ACCORDING TO
A FITNESS FUNCTION .... 212 5.10 SUPERVISED SOM
....................................... 215 5.11 THE ADAPTIVE-SUBSPACE
SOM (ASSOM) ................... 216 5.11.1 THE PROBLEM OF INVARIANT
FEATURES .................. 216 5.11.2 RELATION BETWEEN INVARIANT
FEATURES AND LINEAR SUBSPACES ............................. 218 5.11.3
THE ASSOM ALGORITHM ........................... 222 5.11.4 DERIVATION OF
THE ASSOM ALGORITHM BY STOCHASTIC APPROXIMATION ......................
226 5.11.5 ASSOM EXPERIMENTS ............................. 228 5.12
FEEDBACK-CONTROLLED ADAPTIVE-SUBSPACE SOM (FASSOM) ... 242 6. LEARNING
VECTOR QUANTIZATION ............................. 245 6.1 OPTIMAL
DECISION ....................................... 245 6.2 THE LVQ1
............................................. 246 6.3 THE
OPTIMIZED-LEARNING-RATE LVQ1 (OLVQ1) ............. 250 6.4 THE
BATCH-LVQ1 ....................................... 251 6.5 THE
BATCH-LVQ1 FOR SYMBOL STRINGS ...................... 252 6.6 THE LVQ2
(LVQ2.1) .................................... 252 6.7 THE LVQ3
............................................. 253 6.8 DIFFERENCES
BETWEEN LVQ1, LVQ2 AND LVQ3 ............... 254 6.9 GENERAL
CONSIDERATIONS .................................. 254 6.10 THE
HYPERMAP-TYPE LVQ ............................... 256 6.11 THE *LVQ-SOM*
....................................... 261 7. APPLICATIONS
.............................................. 263 7.1 PREPROCESSING OF
OPTIC PATTERNS .......................... 264 7.1.1 BLURRING
......................................... 265 7.1.2 EXPANSION IN TERMS
OF GLOBAL FEATURES .............. 266 7.1.3 SPECTRAL ANALYSIS
................................. 266 7.1.4 EXPANSION IN TERMS OF LOCAL
FEATURES (WAVELETS) ..... 267 7.1.5 RECAPITULATION OF FEATURES OF OPTIC
PATTERNS ......... 267 7.2 ACOUSTIC PREPROCESSING
.................................. 268 7.3 PROCESS AND MACHINE
MONITORING ......................... 269 7.3.1 SELECTION OF INPUT
VARIABLES AND THEIR SCALING ....... 269 7.3.2 ANALYSIS OF LARGE SYSTEMS
......................... 270 7.4 DIAGNOSIS OF SPEECH VOICING
.............................. 274 7.5 TRANSCRIPTION OF CONTINUOUS
SPEECH ....................... 274 7.6 TEXTURE ANALYSIS
....................................... 280 CONTENTS XIX 7.7 CONTEXTUAL
MAPS ....................................... 281 7.7.1 ARTIFICALLY
GENERATED CLAUSES ...................... 283 7.7.2 NATURAL TEXT
..................................... 285 7.8 ORGANIZATION OF LARGE
DOCUMENT FILES .................... 286 7.8.1 STATISTICAL MODELS OF
DOCUMENTS .................... 286 7.8.2 CONSTRUCTION OF VERY LARGE
WEBSOM MAPS BY THE PROJECTION METHOD ......................... 292 7.8.3
THE WEBSOM OF ALL ELECTRONIC PATENT ABSTRACTS .... 296 7.9 ROBOT-ARM
CONTROL ..................................... 299 7.9.1 SIMULTANEOUS
LEARNING OF INPUT AND OUTPUT PARAMETERS ........................... 299
7.9.2 ANOTHER SIMPLE ROBOT-ARM CONTROL ................ 303 7.10
TELECOMMUNICATIONS .................................... 304 7.10.1
ADAPTIVE DETECTOR FOR QUANTIZED SIGNALS ............ 304 7.10.2 CHANNEL
EQUALIZATION IN THE ADAPTIVE QAM ......... 305 7.10.3 ERROR-TOLERANT
TRANSMISSION OF IMAGES BY A PAIR OF SOMS
................................ 306 7.11 THE SOM AS AN ESTIMATOR
............................... 308 7.11.1 SYMMETRIC
(AUTOASSOCIATIVE)MAPPING .............. 308 7.11.2 ASYMMETRIC
(HETEROASSOCIATIVE)MAPPING ............ 309 8. SOFTWARE TOOLS FOR SOM
.................................. 311 8.1 NECESSARY REQUIREMENTS
................................. 311 8.2 DESIRABLE AUXILIARY FEATURES
............................. 313 8.3 SOM PROGRAM PACKAGES
................................. 315 8.3.1 SOM PAK
...................................... 315 8.3.2 SOM TOOLBOX
.................................... 317 8.3.3 NENET (NEURAL NETWORKS
TOOL) ..................... 318 8.3.4 VISCOVERY SOMINE
................................ 318 8.4 EXAMPLES OF THE USE OF SOM PAK
........................ 319 8.4.1 FILE FORMATS
..................................... 319 8.4.2 DESCRIPTION OF THE
PROGRAMS IN SOM PAK ........... 322 8.4.3 A TYPICAL TRAINING SEQUENCE
....................... 326 8.5 NEURAL-NETWORKS SOFTWARE WITH THE SOM
OPTION ........... 327 9. HARDWARE FOR SOM
....................................... 329 9.1 AN ANALOG CLASSIFIER
CIRCUIT ............................. 329 9.2 FAST DIGITAL CLASSIFIER
CIRCUITS ........................... 332 9.3 SIMD IMPLEMENTATION OF SOM
........................... 337 9.4 TRANSPUTER IMPLEMENTATION OF SOM
...................... 339 9.5 SYSTOLIC-ARRAY IMPLEMENTATION OF SOM
.................... 341 9.6 THE COKOS CHIP
...................................... 342 9.7 THE TINMANN CHIP
................................... 342 9.8 NBISOM 25 CHIP
...................................... 344 XX CONTENTS 10. AN OVERVIEW
OF SOM LITERATURE .......................... 347 10.1 BOOKS AND REVIEW
ARTICLES .............................. 347 10.2 EARLY WORKS ON
COMPETITIVE LEARNING ..................... 348 10.3 STATUS OF THE
MATHEMATICAL ANALYSES ...................... 349 10.3.1 ZERO-ORDER
TOPOLOGY (CLASSICAL VQ)RESULTS ........ 349 10.3.2 ALTERNATIVE
TOPOLOGICAL MAPPINGS .................. 350 10.3.3 ALTERNATIVE
ARCHITECTURES ......................... 350 10.3.4 FUNCTIONAL VARIANTS
.............................. 351 10.3.5 THEORY OF THE BASIC SOM
......................... 352 10.4 THE LEARNING VECTOR QUANTIZATION
........................ 358 10.5 DIVERSE APPLICATIONS OF SOM
............................ 358 10.5.1 MACHINE VISION AND IMAGE
ANALYSIS ................ 358 10.5.2 OPTICAL CHARACTER AND SCRIPT
READING .............. 360 10.5.3 SPEECH ANALYSIS AND RECOGNITION
.................. 360 10.5.4 ACOUSTIC AND MUSICAL STUDIES
..................... 361 10.5.5 SIGNAL PROCESSING AND RADAR
MEASUREMENTS ......... 362 10.5.6 TELECOMMUNICATIONS
.............................. 362 10.5.7 INDUSTRIAL AND OTHER
REAL-WORLD MEASUREMENTS ..... 362 10.5.8 PROCESS CONTROL
................................. 363 10.5.9 ROBOTICS
........................................ 364 10.5.10 ELECTRONIC-CIRCUIT
DESIGN ......................... 364 10.5.11 PHYSICS
......................................... 364 10.5.12 CHEMISTRY
...................................... 365 10.5.13 BIOMEDICAL
APPLICATIONS WITHOUT IMAGE PROCESSING .. 365 10.5.14 NEUROPHYSIOLOGICAL
RESEARCH ...................... 366 10.5.15 DATA PROCESSING AND ANALYSIS
..................... 366 10.5.16 LINGUISTIC AND AI PROBLEMS
....................... 367 10.5.17 MATHEMATICAL AND OTHER THEORETICAL
PROBLEMS ...... 368 10.6 APPLICATIONS OF LVQ
.................................... 369 10.7 SURVEY OF SOM AND LVQ
IMPLEMENTATIONS ................. 370 11. GLOSSARY OF *NEURAL* TERMS
.............................. 373 REFERENCES
.................................................... 403 INDEX
......................................................... 487
|
adam_txt |
CONTENTS 1. MATHEMATICAL PRELIMINARIES . 1
1.1 MATHEMATICAL CONCEPTS AND NOTATIONS . 2 1.1.1
VECTOR SPACE CONCEPTS . 2 1.1.2 MATRIX
NOTATIONS . 8 1.1.3 EIGENVECTORS AND
EIGENVALUES OF MATRICES . 11 1.1.4 FURTHER PROPERTIES OF
MATRICES . 13 1.1.5 ON MATRIX DIFFERENTIAL CALCULUS
. 15 1.2 DISTANCE MEASURES FOR PATTERNS
. 17 1.2.1 MEASURES OF SIMILARITY AND DISTANCE
IN VECTOR SPACES . 17 1.2.2 MEASURES OF SIMILARITY AND DISTANCE BETWEEN
SYMBOL STRINGS . 21 1.2.3 AVERAGES OVER
NONVECTORIAL VARIABLES . 28 1.3 STATISTICAL PATTERN
ANALYSIS . 29 1.3.1 BASIC PROBABILISTIC
CONCEPTS . 29 1.3.2 PROJECTION METHODS
. 34 1.3.3 SUPERVISED CLASSIFICATION
. 39 1.3.4 UNSUPERVISED CLASSIFICATION
. 44 1.4 THE SUBSPACE METHODS OF CLASSIFICATION
. 46 1.4.1 THE BASIC SUBSPACE METHOD
. 46 1.4.2 ADAPTATION OF A MODEL SUBSPACE TO INPUT
SUBSPACE . 49 1.4.3 THE LEARNING SUBSPACE METHOD (LSM) .
53 1.5 VECTOR QUANTIZATION . 59 1.5.1
DEFINITIONS . 59 1.5.2 DERIVATION
OF THE VQ ALGORITHM . 60 1.5.3 POINT DENSITY IN VQ
. 62 1.6 DYNAMICALLY EXPANDING CONTEXT
. 64 1.6.1 SETTING UP THE PROBLEM
. 65 1.6.2 AUTOMATIC DETERMINATION OF
CONTEXT-INDEPENDENT PRODUCTIONS . 66 1.6.3 CONFLICT BIT
. 67 1.6.4 CONSTRUCTION OF MEMORY
FOR THE CONTEXT-DEPENDENT PRODUCTIONS . 68 1.6.5 THE
ALGORITHM FOR THE CORRECTION OF NEW STRINGS . 68 1.6.6 ESTIMATION
PROCEDURE FOR UNSUCCESSFUL SEARCHES . 69 XVI CONTENTS 1.6.7
PRACTICAL EXPERIMENTS . 69 2. NEURAL MODELING
. 71 2.1 MODELS, PARADIGMS, AND
METHODS . 71 2.2 A HISTORY OF SOME MAIN IDEAS IN
NEURAL MODELING . 72 2.3 ISSUES ON ARTIFICIAL INTELLIGENCE
. 75 2.4 ON THE COMPLEXITY OF BIOLOGICAL
NERVOUS SYSTEMS . 76 2.5 WHAT THE BRAIN CIRCUITS ARE NOT
. 78 2.6 RELATION BETWEEN BIOLOGICAL AND
ARTIFICIAL NEURAL NETWORKS . 79 2.7 WHAT
FUNCTIONS OF THE BRAIN ARE USUALLY MODELED? . 81 2.8 WHEN DO WE
HAVE TO USE NEURAL COMPUTING? . 81 2.9 TRANSFORMATION,
RELAXATION, AND DECODER . 82 2.10 CATEGORIES OF ANNS
. 85 2.11 A SIMPLE NONLINEAR DYNAMIC
MODEL OF THE NEURON . 87 2.12 THREE PHASES OF DEVELOPMENT OF
NEURAL MODELS . 89 2.13 LEARNING LAWS
. 91 2.13.1 HEBB*S LAW
. 91 2.13.2 THE RICCATI-TYPE
LEARNING LAW . 92 2.13.3 THE PCA-TYPE LEARNING LAW
. 95 2.14 SOME REALLY HARD PROBLEMS
. 96 2.15 BRAIN MAPS
. 99 3. THE BASIC SOM
. 105 3.1 A QUALITATIVE
INTRODUCTION TO THE SOM . 106 3.2 THE ORIGINAL
INCREMENTAL SOM ALGORITHM . 109 3.3 THE *DOT-PRODUCT SOM*
. 115 3.4 OTHER PRELIMINARY
DEMONSTRATIONS OF TOPOLOGY-PRESERVING MAPPINGS .
116 3.4.1 ORDERING OF REFERENCE VECTORS IN THE INPUT SPACE . 116
3.4.2 DEMONSTRATIONS OF ORDERING OF RESPONSES IN THE OUTPUT SPACE
. 120 3.5 BASIC MATHEMATICAL APPROACHES TO
SELF-ORGANIZATION . 127 3.5.1 ONE-DIMENSIONAL CASE
. 128 3.5.2 CONSTRUCTIVE PROOF OF ORDERING OF
ANOTHER ONE-DIMENSIONAL SOM . 132 3.6 THE BATCH MAP
. 138 3.7 INITIALIZATION OF THE
SOM ALGORITHMS . 142 3.8 ON THE *OPTIMAL*
LEARNING-RATE FACTOR . 143 3.9 EFFECT OF THE FORM OF
THE NEIGHBORHOOD FUNCTION . 145 3.10 DOES THE SOM ALGORITHM
ENSUE FROM A DISTORTION MEASURE? . 146 3.11
AN ATTEMPT TO OPTIMIZE THE SOM . 148 3.12 POINT
DENSITY OF THE MODEL VECTORS . 152 3.12.1 EARLIER
STUDIES . 152 CONTENTS XVII 3.12.2
NUMERICAL CHECK OF POINT DENSITIES IN A FINITE ONE-DIMENSIONAL SOM
. 153 3.13 PRACTICAL ADVICE FOR THE CONSTRUCTION OF
GOOD MAPS . 159 3.14 EXAMPLES OF DATA ANALYSES IMPLEMENTED BY THE
SOM . 161 3.14.1 ATTRIBUTE MAPS WITH FULL DATA MATRIX
. 161 3.14.2 CASE EXAMPLE OF ATTRIBUTE MAPS BASED ON
INCOMPLETE DATA MATRICES (MISSING DATA): *POVERTY MAP*
. 165 3.15 USING GRAY LEVELS TO
INDICATE CLUSTERS IN THE SOM . 165 3.16 INTERPRETATION OF THE
SOM MAPPING . 166 3.16.1 *LOCAL PRINCIPAL
COMPONENTS* . 166 3.16.2 CONTRIBUTION OF A VARIABLE
TO CLUSTER STRUCTURES . 169 3.17 SPEEDUP OF SOM COMPUTATION
. 170 3.17.1 SHORTCUT WINNER SEARCH
. 170 3.17.2 INCREASING THE NUMBER OF UNITS IN
THE SOM . 172 3.17.3 SMOOTHING
. 175 3.17.4 COMBINATION OF
SMOOTHING, LATTICE GROWING, AND SOM ALGORITHM
. 176 4. PHYSIOLOGICAL INTERPRETATION OF
SOM . 177 4.1 CONDITIONS FOR ABSTRACT FEATURE MAPS
IN THE BRAIN . 177 4.2 TWO DIFFERENT LATERAL CONTROL MECHANISMS
. 178 4.2.1 THE WTA FUNCTION, BASED ON LATERAL ACTIVITY
CONTROL . 179 4.2.2 LATERAL CONTROL OF PLASTICITY
. 184 4.3 LEARNING EQUATION
. 185 4.4 SYSTEM MODELS OF SOM AND
THEIR SIMULATIONS . 185 4.5 RECAPITULATION OF THE FEATURES
OF THE PHYSIOLOGICAL SOM MODEL . 188 4.6
SIMILARITIES BETWEEN THE BRAIN MAPS AND SIMULATED FEATURE MAPS
. 188 4.6.1 MAGNIFICATION
. 189 4.6.2 IMPERFECT MAPS
. 189 4.6.3 OVERLAPPING MAPS
. 189 5. VARIANTS OF SOM
. 191 5.1 OVERVIEW OF IDEAS TO
MODIFY THE BASIC SOM . 191 5.2 ADAPTIVE TENSORIAL WEIGHTS
. 194 5.3 TREE-STRUCTURED SOM IN SEARCHING
. 197 5.4 DIFFERENT DEFINITIONS OF THE
NEIGHBORHOOD . 198 5.5 NEIGHBORHOODS IN THE SIGNAL
SPACE . 200 5.6 DYNAMICAL ELEMENTS ADDED TO THE
SOM . 204 5.7 THE SOM FOR SYMBOL STRINGS
. 205 5.7.1 INITIALIZATION OF THE SOM FOR
STRINGS . 205 5.7.2 THE BATCH MAP FOR STRINGS
. 206 XVIII CONTENTS 5.7.3 TIE-BREAK RULES
. 206 5.7.4 A SIMPLE EXAMPLE: THE SOM
OF PHONEMIC TRANSCRIPTIONS . 207 5.8 OPERATOR MAPS
. 207 5.9 EVOLUTIONARY-LEARNING
SOM . 211 5.9.1 EVOLUTIONARY-LEARNING
FILTERS . 211 5.9.2 SELF-ORGANIZATION ACCORDING TO
A FITNESS FUNCTION . 212 5.10 SUPERVISED SOM
. 215 5.11 THE ADAPTIVE-SUBSPACE
SOM (ASSOM) . 216 5.11.1 THE PROBLEM OF INVARIANT
FEATURES . 216 5.11.2 RELATION BETWEEN INVARIANT
FEATURES AND LINEAR SUBSPACES . 218 5.11.3
THE ASSOM ALGORITHM . 222 5.11.4 DERIVATION OF
THE ASSOM ALGORITHM BY STOCHASTIC APPROXIMATION .
226 5.11.5 ASSOM EXPERIMENTS . 228 5.12
FEEDBACK-CONTROLLED ADAPTIVE-SUBSPACE SOM (FASSOM) . 242 6. LEARNING
VECTOR QUANTIZATION . 245 6.1 OPTIMAL
DECISION . 245 6.2 THE LVQ1
. 246 6.3 THE
OPTIMIZED-LEARNING-RATE LVQ1 (OLVQ1) . 250 6.4 THE
BATCH-LVQ1 . 251 6.5 THE
BATCH-LVQ1 FOR SYMBOL STRINGS . 252 6.6 THE LVQ2
(LVQ2.1) . 252 6.7 THE LVQ3
. 253 6.8 DIFFERENCES
BETWEEN LVQ1, LVQ2 AND LVQ3 . 254 6.9 GENERAL
CONSIDERATIONS . 254 6.10 THE
HYPERMAP-TYPE LVQ . 256 6.11 THE *LVQ-SOM*
. 261 7. APPLICATIONS
. 263 7.1 PREPROCESSING OF
OPTIC PATTERNS . 264 7.1.1 BLURRING
. 265 7.1.2 EXPANSION IN TERMS
OF GLOBAL FEATURES . 266 7.1.3 SPECTRAL ANALYSIS
. 266 7.1.4 EXPANSION IN TERMS OF LOCAL
FEATURES (WAVELETS) . 267 7.1.5 RECAPITULATION OF FEATURES OF OPTIC
PATTERNS . 267 7.2 ACOUSTIC PREPROCESSING
. 268 7.3 PROCESS AND MACHINE
MONITORING . 269 7.3.1 SELECTION OF INPUT
VARIABLES AND THEIR SCALING . 269 7.3.2 ANALYSIS OF LARGE SYSTEMS
. 270 7.4 DIAGNOSIS OF SPEECH VOICING
. 274 7.5 TRANSCRIPTION OF CONTINUOUS
SPEECH . 274 7.6 TEXTURE ANALYSIS
. 280 CONTENTS XIX 7.7 CONTEXTUAL
MAPS . 281 7.7.1 ARTIFICALLY
GENERATED CLAUSES . 283 7.7.2 NATURAL TEXT
. 285 7.8 ORGANIZATION OF LARGE
DOCUMENT FILES . 286 7.8.1 STATISTICAL MODELS OF
DOCUMENTS . 286 7.8.2 CONSTRUCTION OF VERY LARGE
WEBSOM MAPS BY THE PROJECTION METHOD . 292 7.8.3
THE WEBSOM OF ALL ELECTRONIC PATENT ABSTRACTS . 296 7.9 ROBOT-ARM
CONTROL . 299 7.9.1 SIMULTANEOUS
LEARNING OF INPUT AND OUTPUT PARAMETERS . 299
7.9.2 ANOTHER SIMPLE ROBOT-ARM CONTROL . 303 7.10
TELECOMMUNICATIONS . 304 7.10.1
ADAPTIVE DETECTOR FOR QUANTIZED SIGNALS . 304 7.10.2 CHANNEL
EQUALIZATION IN THE ADAPTIVE QAM . 305 7.10.3 ERROR-TOLERANT
TRANSMISSION OF IMAGES BY A PAIR OF SOMS
. 306 7.11 THE SOM AS AN ESTIMATOR
. 308 7.11.1 SYMMETRIC
(AUTOASSOCIATIVE)MAPPING . 308 7.11.2 ASYMMETRIC
(HETEROASSOCIATIVE)MAPPING . 309 8. SOFTWARE TOOLS FOR SOM
. 311 8.1 NECESSARY REQUIREMENTS
. 311 8.2 DESIRABLE AUXILIARY FEATURES
. 313 8.3 SOM PROGRAM PACKAGES
. 315 8.3.1 SOM PAK
. 315 8.3.2 SOM TOOLBOX
. 317 8.3.3 NENET (NEURAL NETWORKS
TOOL) . 318 8.3.4 VISCOVERY SOMINE
. 318 8.4 EXAMPLES OF THE USE OF SOM PAK
. 319 8.4.1 FILE FORMATS
. 319 8.4.2 DESCRIPTION OF THE
PROGRAMS IN SOM PAK . 322 8.4.3 A TYPICAL TRAINING SEQUENCE
. 326 8.5 NEURAL-NETWORKS SOFTWARE WITH THE SOM
OPTION . 327 9. HARDWARE FOR SOM
. 329 9.1 AN ANALOG CLASSIFIER
CIRCUIT . 329 9.2 FAST DIGITAL CLASSIFIER
CIRCUITS . 332 9.3 SIMD IMPLEMENTATION OF SOM
. 337 9.4 TRANSPUTER IMPLEMENTATION OF SOM
. 339 9.5 SYSTOLIC-ARRAY IMPLEMENTATION OF SOM
. 341 9.6 THE COKOS CHIP
. 342 9.7 THE TINMANN CHIP
. 342 9.8 NBISOM 25 CHIP
. 344 XX CONTENTS 10. AN OVERVIEW
OF SOM LITERATURE . 347 10.1 BOOKS AND REVIEW
ARTICLES . 347 10.2 EARLY WORKS ON
COMPETITIVE LEARNING . 348 10.3 STATUS OF THE
MATHEMATICAL ANALYSES . 349 10.3.1 ZERO-ORDER
TOPOLOGY (CLASSICAL VQ)RESULTS . 349 10.3.2 ALTERNATIVE
TOPOLOGICAL MAPPINGS . 350 10.3.3 ALTERNATIVE
ARCHITECTURES . 350 10.3.4 FUNCTIONAL VARIANTS
. 351 10.3.5 THEORY OF THE BASIC SOM
. 352 10.4 THE LEARNING VECTOR QUANTIZATION
. 358 10.5 DIVERSE APPLICATIONS OF SOM
. 358 10.5.1 MACHINE VISION AND IMAGE
ANALYSIS . 358 10.5.2 OPTICAL CHARACTER AND SCRIPT
READING . 360 10.5.3 SPEECH ANALYSIS AND RECOGNITION
. 360 10.5.4 ACOUSTIC AND MUSICAL STUDIES
. 361 10.5.5 SIGNAL PROCESSING AND RADAR
MEASUREMENTS . 362 10.5.6 TELECOMMUNICATIONS
. 362 10.5.7 INDUSTRIAL AND OTHER
REAL-WORLD MEASUREMENTS . 362 10.5.8 PROCESS CONTROL
. 363 10.5.9 ROBOTICS
. 364 10.5.10 ELECTRONIC-CIRCUIT
DESIGN . 364 10.5.11 PHYSICS
. 364 10.5.12 CHEMISTRY
. 365 10.5.13 BIOMEDICAL
APPLICATIONS WITHOUT IMAGE PROCESSING . 365 10.5.14 NEUROPHYSIOLOGICAL
RESEARCH . 366 10.5.15 DATA PROCESSING AND ANALYSIS
. 366 10.5.16 LINGUISTIC AND AI PROBLEMS
. 367 10.5.17 MATHEMATICAL AND OTHER THEORETICAL
PROBLEMS . 368 10.6 APPLICATIONS OF LVQ
. 369 10.7 SURVEY OF SOM AND LVQ
IMPLEMENTATIONS . 370 11. GLOSSARY OF *NEURAL* TERMS
. 373 REFERENCES
. 403 INDEX
. 487 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kohonen, Teuvo |
author_facet | Kohonen, Teuvo |
author_role | aut |
author_sort | Kohonen, Teuvo |
author_variant | t k tk |
building | Verbundindex |
bvnumber | BV022007778 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 |
callnumber-search | QA76.87 |
callnumber-sort | QA 276.87 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 285 ST 301 ST 330 |
ctrlnum | (OCoLC)45284682 (DE-599)BVBBV022007778 |
dewey-full | 006.3/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/2 |
dewey-search | 006.3/2 |
dewey-sort | 16.3 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01621nam a2200445zcb4500</leader><controlfield tag="001">BV022007778</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010927s2001 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540679219</subfield><subfield code="9">3-540-67921-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45284682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022007778</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.87</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kohonen, Teuvo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-organizing maps</subfield><subfield code="c">Teuvo Kohonen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 501 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in information sciences</subfield><subfield code="v">30</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [403] - 486</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-organizing maps</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstorganisierende Karte</subfield><subfield code="0">(DE-588)4305302-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Selbstorganisierende Karte</subfield><subfield code="0">(DE-588)4305302-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in information sciences</subfield><subfield code="v">30</subfield><subfield code="w">(DE-604)BV000008063</subfield><subfield code="9"></subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015222410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015222410</subfield></datafield></record></collection> |
id | DE-604.BV022007778 |
illustrated | Illustrated |
index_date | 2024-07-02T16:11:43Z |
indexdate | 2024-07-09T20:49:09Z |
institution | BVB |
isbn | 3540679219 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015222410 |
oclc_num | 45284682 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XX, 501 S. Ill. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer |
record_format | marc |
series | Springer series in information sciences |
series2 | Springer series in information sciences Physics and astronomy online library |
spelling | Kohonen, Teuvo Verfasser aut Self-organizing maps Teuvo Kohonen 3. ed. Berlin [u.a.] Springer 2001 XX, 501 S. Ill. txt rdacontent n rdamedia nc rdacarrier Springer series in information sciences 30 Physics and astronomy online library Literaturverz. S. [403] - 486 Neural networks (Computer science) Self-organizing maps Selbstorganisierende Karte (DE-588)4305302-6 gnd rswk-swf Selbstorganisierende Karte (DE-588)4305302-6 s DE-604 Springer series in information sciences 30 (DE-604)BV000008063 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015222410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kohonen, Teuvo Self-organizing maps Springer series in information sciences Neural networks (Computer science) Self-organizing maps Selbstorganisierende Karte (DE-588)4305302-6 gnd |
subject_GND | (DE-588)4305302-6 |
title | Self-organizing maps |
title_auth | Self-organizing maps |
title_exact_search | Self-organizing maps |
title_exact_search_txtP | Self-organizing maps |
title_full | Self-organizing maps Teuvo Kohonen |
title_fullStr | Self-organizing maps Teuvo Kohonen |
title_full_unstemmed | Self-organizing maps Teuvo Kohonen |
title_short | Self-organizing maps |
title_sort | self organizing maps |
topic | Neural networks (Computer science) Self-organizing maps Selbstorganisierende Karte (DE-588)4305302-6 gnd |
topic_facet | Neural networks (Computer science) Self-organizing maps Selbstorganisierende Karte |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015222410&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000008063 |
work_keys_str_mv | AT kohonenteuvo selforganizingmaps |