A first course in wavelets with Fourier analysis:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Upper Saddle River, NJ
Prentice-Hall
2001
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 279 - 280 |
Beschreibung: | XIX, 283 S. graph. Darst. |
ISBN: | 0130228095 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021968099 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 030219s2001 d||| |||| 00||| eng d | ||
020 | |a 0130228095 |9 0-13-022809-5 | ||
035 | |a (OCoLC)223439959 | ||
035 | |a (DE-599)BVBBV021968099 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA403.3 | |
082 | 0 | |a 515/.2453 |2 22 | |
082 | 0 | |a 515/.2433 |2 21 | |
082 | 0 | |a 515.2433 |2 22 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Boggess, Albert |e Verfasser |4 aut | |
245 | 1 | 0 | |a A first course in wavelets with Fourier analysis |c Albert Boggess ; Francis J. Narcowich |
250 | |a 1. ed. | ||
264 | 1 | |a Upper Saddle River, NJ |b Prentice-Hall |c 2001 | |
300 | |a XIX, 283 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 279 - 280 | ||
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Wavelets (Mathematics) | |
650 | 0 | 7 | |a Wavelet-Analyse |0 (DE-588)4760859-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wavelet-Transformation |0 (DE-588)4814181-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 0 | 1 | |a Wavelet-Transformation |0 (DE-588)4814181-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 1 | 1 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wavelet-Analyse |0 (DE-588)4760859-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Narcowich, Francis J. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015183249&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015183249 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135938022965248 |
---|---|
adam_text | Contents
Preface xi
Acknowledgments xix
0 Inner Product Spaces 1
0.1 Motivation 1
0.2 Definition of Inner Product 1
0.3 The Spaces L2 and I2 4
0.3.1 Definitions 4
0.3.2 Convergence in I? versus Uniform Convergence 7
0.4 Schwarz and Triangle Inequalities 10
0.5 Orthogonality 12
0.5.1 Definitions and Examples 12
0.5.2 Orthogonal Projections 14
0.5.3 Gram Schmidt Orthogonalization 19
0.6 Linear Operators and Their Adjoints 20
0.6.1 Linear Operators 20
0.6.2 Adjoints 21
0.7 Least Squares and Linear Predictive Coding 23
0.7.1 Best Fit Line for Data 23
0.7.2 General Least Squares Algorithm 27
0.7.3 Linear Predictive Coding 29
0.8 Exercises 32
1 Fourier Series 37
1.1 Introduction 37
1.1.1 Historical Perspective 37
1.1.2 Signal Analysis 38
1.1.3 Partial Differential Equations 39
vii
viii Contents
1.2 Computation of Fourier Series 41
1.2.1 On the Interval n x n 41
1.2.2 Other Intervals 43
1.2.3 Cosine and Sine Expansions 45
1.2.4 Examples 49
1.2.5 The Complex Form of Fourier Series 57
1.3 Convergence Theorems for Fourier Series 61
1.3.1 The Riemann Lebesgue Lemma 61
1.3.2 Convergence at a Point of Continuity 63
1.3.3 Convergence at a Point of Discontinuity 67
1.3.4 Uniform Convergence 72
1.3.5 Convergence in the Mean 75
1.4 Exercises 82
2 The Fourier Transform 91
2.1 Informal Development of the Fourier Transform 91
2.1.1 The Fourier Inversion Theorem 91
2.1.2 Examples 94
2.2 Properties of the Fourier Transform 98
2.2.1 Basic Properties 98
2.2.2 Fourier Transform of a Convolution 104
2.2.3 Adjoint of the Fourier Transform 107
2.2.4 Plancherel Formula 107
2.3 Linear Filters 108
2.3.1 Time Invariant Filters 108
2.3.2 Causality and the Design of Filters 113
2.4 The Sampling Theorem 117
2.5 The Uncertainty Principle 120
2.6 Exercises 125
3 Discrete Fourier Analysis 131
3.1 The Discrete Fourier Transform 131
3.1.1 Definition of Discrete Fourier Transform 133
3.1.2 Properties of the Discrete Fourier Transform 134
3.1.3 The Fast Fourier Transform 136
3.1.4 The FFT Approximation to the Fourier Transform .... 142
3.1.5 Application—Parameter Identification 143
3.1.6 Application—Discretizations of Ordinary
Differential Equations 144
3.2 Discrete Signals 145
3.2.1 Time Invariant, Discrete Linear Filters 145
3.2.2 Z Transform and Transfer Functions 147
3.3 Exercises 151
Contents ix
4 Haar Wavelet Analysis 155
4.1 Why Wavelets? 155
4.2 Haar Wavelets 156
4.2.1 The Haar Scaling Function 156
4.2.2 Basic Properties of the Haar Scaling Function 157
4.2.3 Basic Properties of the Haar Scaling Function 161
4.2.4 The Haar Wavelet 162
4.3 Haar Decomposition and Reconstruction Algorithms 166
4.3.1 Decomposition 166
4.3.2 Reconstruction 170
4.3.3 Filters and Diagrams 177
4.4 Summary 178
4.5 Exercises 180
5 Multiresolution Analysis 183
5.1 The Multiresolution Framework 183
5.1.1 Definition 183
5.1.2 The Scaling Relation 187
5.1.3 The Associated Wavelet and Wavelet Spaces 190
5.1.4 Decomposition and Reconstruction Formulas:
A Tale of Two Bases 193
5.1.5 Summary 195
5.2 Implementing Decomposition and Reconstruction 196
5.2.1 The Decomposition Algorithm 197
5.2.2 The Reconstruction Algorithm 201
5.2.3 Processing a Signal 205
5.3 Fourier Transform Criteria 208
5.3.1 The Scaling Function 208
5.3.2 Orthogonality via the Fourier Transform 210
5.3.3 The Scaling Equation via the Fourier Transform 213
5.3.4 Iterative Procedure for Constructing the
Scaling Function 217
5.4 Exercises 221
6 The Daubechies Wavelets 227
6.1 Daubechies s Construction 227
6.2 Classification, Moments, and Smoothness 231
6.3 Computational Issues 235
6.4 The Scaling Function at Dyadic Points 236
6.5 Exercises 239
7 Other Wavelet Topics 243
7.1 Computational Complexity 243
7.1.1 Wavelet Algorithm 243
7.1.2 Wavelet Packets 244
7.2 Wavelets in Higher Dimensions 245
x Contents
7.3 Relating Decomposition and Reconstruction 247
7.3.1 Transfer Function Interpretation 251
7.4 Wavelet Transform 253
7.4.1 Definition of the Wavelet Transform 254
7.4.2 Inversion Formula for the Wavelet Transform 255
Appendix A Technical Matters 261
A.I Proof of the Fourier Inversion Formula 261
A.2 Rigorous Proof of Theorem 5.17 264
A.2.1 Proof of Theorem 5.10 268
A.2.2 Proof of the Convergence Part of Theorem 5.23 270
Appendix B Matlab Routines 273
B.I General Compression Routine 273
B.2 Use of MatLAb s FFT Routine for Filtering and Compression . . 273
B.3 Sample Routines Using Matlab s Wavelet Toolbox 275
B.4 Matlab Code for the Algorithms in Section 5.2 276
Bibliography 279
Index 280
|
adam_txt |
Contents
Preface xi
Acknowledgments xix
0 Inner Product Spaces 1
0.1 Motivation 1
0.2 Definition of Inner Product 1
0.3 The Spaces L2 and I2 4
0.3.1 Definitions 4
0.3.2 Convergence in I? versus Uniform Convergence 7
0.4 Schwarz and Triangle Inequalities 10
0.5 Orthogonality 12
0.5.1 Definitions and Examples 12
0.5.2 Orthogonal Projections 14
0.5.3 Gram Schmidt Orthogonalization 19
0.6 Linear Operators and Their Adjoints 20
0.6.1 Linear Operators 20
0.6.2 Adjoints 21
0.7 Least Squares and Linear Predictive Coding 23
0.7.1 Best Fit Line for Data 23
0.7.2 General Least Squares Algorithm 27
0.7.3 Linear Predictive Coding 29
0.8 Exercises 32
1 Fourier Series 37
1.1 Introduction 37
1.1.1 Historical Perspective 37
1.1.2 Signal Analysis 38
1.1.3 Partial Differential Equations 39
vii
viii Contents
1.2 Computation of Fourier Series 41
1.2.1 On the Interval n x n 41
1.2.2 Other Intervals 43
1.2.3 Cosine and Sine Expansions 45
1.2.4 Examples 49
1.2.5 The Complex Form of Fourier Series 57
1.3 Convergence Theorems for Fourier Series 61
1.3.1 The Riemann Lebesgue Lemma 61
1.3.2 Convergence at a Point of Continuity 63
1.3.3 Convergence at a Point of Discontinuity 67
1.3.4 Uniform Convergence 72
1.3.5 Convergence in the Mean 75
1.4 Exercises 82
2 The Fourier Transform 91
2.1 Informal Development of the Fourier Transform 91
2.1.1 The Fourier Inversion Theorem 91
2.1.2 Examples 94
2.2 Properties of the Fourier Transform 98
2.2.1 Basic Properties 98
2.2.2 Fourier Transform of a Convolution 104
2.2.3 Adjoint of the Fourier Transform 107
2.2.4 Plancherel Formula 107
2.3 Linear Filters 108
2.3.1 Time Invariant Filters 108
2.3.2 Causality and the Design of Filters 113
2.4 The Sampling Theorem 117
2.5 The Uncertainty Principle 120
2.6 Exercises 125
3 Discrete Fourier Analysis 131
3.1 The Discrete Fourier Transform 131
3.1.1 Definition of Discrete Fourier Transform 133
3.1.2 Properties of the Discrete Fourier Transform 134
3.1.3 The Fast Fourier Transform 136
3.1.4 The FFT Approximation to the Fourier Transform . 142
3.1.5 Application—Parameter Identification 143
3.1.6 Application—Discretizations of Ordinary
Differential Equations 144
3.2 Discrete Signals 145
3.2.1 Time Invariant, Discrete Linear Filters 145
3.2.2 Z Transform and Transfer Functions 147
3.3 Exercises 151
Contents ix
4 Haar Wavelet Analysis 155
4.1 Why Wavelets? 155
4.2 Haar Wavelets 156
4.2.1 The Haar Scaling Function 156
4.2.2 Basic Properties of the Haar Scaling Function 157
4.2.3 Basic Properties of the Haar Scaling Function 161
4.2.4 The Haar Wavelet 162
4.3 Haar Decomposition and Reconstruction Algorithms 166
4.3.1 Decomposition 166
4.3.2 Reconstruction 170
4.3.3 Filters and Diagrams 177
4.4 Summary 178
4.5 Exercises 180
5 Multiresolution Analysis 183
5.1 The Multiresolution Framework 183
5.1.1 Definition 183
5.1.2 The Scaling Relation 187
5.1.3 The Associated Wavelet and Wavelet Spaces 190
5.1.4 Decomposition and Reconstruction Formulas:
A Tale of Two Bases 193
5.1.5 Summary 195
5.2 Implementing Decomposition and Reconstruction 196
5.2.1 The Decomposition Algorithm 197
5.2.2 The Reconstruction Algorithm 201
5.2.3 Processing a Signal 205
5.3 Fourier Transform Criteria 208
5.3.1 The Scaling Function 208
5.3.2 Orthogonality via the Fourier Transform 210
5.3.3 The Scaling Equation via the Fourier Transform 213
5.3.4 Iterative Procedure for Constructing the
Scaling Function 217
5.4 Exercises 221
6 The Daubechies Wavelets 227
6.1 Daubechies's Construction 227
6.2 Classification, Moments, and Smoothness 231
6.3 Computational Issues 235
6.4 The Scaling Function at Dyadic Points 236
6.5 Exercises 239
7 Other Wavelet Topics 243
7.1 Computational Complexity 243
7.1.1 Wavelet Algorithm 243
7.1.2 Wavelet Packets 244
7.2 Wavelets in Higher Dimensions 245
x Contents
7.3 Relating Decomposition and Reconstruction 247
7.3.1 Transfer Function Interpretation 251
7.4 Wavelet Transform 253
7.4.1 Definition of the Wavelet Transform 254
7.4.2 Inversion Formula for the Wavelet Transform 255
Appendix A Technical Matters 261
A.I Proof of the Fourier Inversion Formula 261
A.2 Rigorous Proof of Theorem 5.17 264
A.2.1 Proof of Theorem 5.10 268
A.2.2 Proof of the Convergence Part of Theorem 5.23 270
Appendix B Matlab Routines 273
B.I General Compression Routine 273
B.2 Use of MatLAb's FFT Routine for Filtering and Compression . . 273
B.3 Sample Routines Using Matlab's Wavelet Toolbox 275
B.4 Matlab Code for the Algorithms in Section 5.2 276
Bibliography 279
Index 280 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Boggess, Albert Narcowich, Francis J. |
author_facet | Boggess, Albert Narcowich, Francis J. |
author_role | aut aut |
author_sort | Boggess, Albert |
author_variant | a b ab f j n fj fjn |
building | Verbundindex |
bvnumber | BV021968099 |
callnumber-first | Q - Science |
callnumber-label | QA403 |
callnumber-raw | QA403.3 |
callnumber-search | QA403.3 |
callnumber-sort | QA 3403.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 450 |
ctrlnum | (OCoLC)223439959 (DE-599)BVBBV021968099 |
dewey-full | 515/.2453 515/.2433 515.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.2453 515/.2433 515.2433 |
dewey-search | 515/.2453 515/.2433 515.2433 |
dewey-sort | 3515 42453 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02311nam a2200577zc 4500</leader><controlfield tag="001">BV021968099</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">030219s2001 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0130228095</subfield><subfield code="9">0-13-022809-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)223439959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021968099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA403.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2453</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2433</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boggess, Albert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A first course in wavelets with Fourier analysis</subfield><subfield code="c">Albert Boggess ; Francis J. Narcowich</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, NJ</subfield><subfield code="b">Prentice-Hall</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 283 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 279 - 280</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelets (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet-Analyse</subfield><subfield code="0">(DE-588)4760859-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet-Transformation</subfield><subfield code="0">(DE-588)4814181-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wavelet-Transformation</subfield><subfield code="0">(DE-588)4814181-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wavelet-Analyse</subfield><subfield code="0">(DE-588)4760859-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Narcowich, Francis J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015183249&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015183249</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021968099 |
illustrated | Illustrated |
index_date | 2024-07-02T16:09:04Z |
indexdate | 2024-07-09T20:48:27Z |
institution | BVB |
isbn | 0130228095 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015183249 |
oclc_num | 223439959 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XIX, 283 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Prentice-Hall |
record_format | marc |
spelling | Boggess, Albert Verfasser aut A first course in wavelets with Fourier analysis Albert Boggess ; Francis J. Narcowich 1. ed. Upper Saddle River, NJ Prentice-Hall 2001 XIX, 283 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 279 - 280 Fourier analysis Wavelets (Mathematics) Wavelet-Analyse (DE-588)4760859-6 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Wavelet-Transformation (DE-588)4814181-1 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Wavelet (DE-588)4215427-3 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 s Wavelet-Transformation (DE-588)4814181-1 s 1\p DE-604 Harmonische Analyse (DE-588)4023453-8 s Wavelet (DE-588)4215427-3 s 2\p DE-604 Wavelet-Analyse (DE-588)4760859-6 s 3\p DE-604 Narcowich, Francis J. Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015183249&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Boggess, Albert Narcowich, Francis J. A first course in wavelets with Fourier analysis Fourier analysis Wavelets (Mathematics) Wavelet-Analyse (DE-588)4760859-6 gnd Fourier-Transformation (DE-588)4018014-1 gnd Wavelet-Transformation (DE-588)4814181-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd Wavelet (DE-588)4215427-3 gnd |
subject_GND | (DE-588)4760859-6 (DE-588)4018014-1 (DE-588)4814181-1 (DE-588)4023453-8 (DE-588)4215427-3 |
title | A first course in wavelets with Fourier analysis |
title_auth | A first course in wavelets with Fourier analysis |
title_exact_search | A first course in wavelets with Fourier analysis |
title_exact_search_txtP | A first course in wavelets with Fourier analysis |
title_full | A first course in wavelets with Fourier analysis Albert Boggess ; Francis J. Narcowich |
title_fullStr | A first course in wavelets with Fourier analysis Albert Boggess ; Francis J. Narcowich |
title_full_unstemmed | A first course in wavelets with Fourier analysis Albert Boggess ; Francis J. Narcowich |
title_short | A first course in wavelets with Fourier analysis |
title_sort | a first course in wavelets with fourier analysis |
topic | Fourier analysis Wavelets (Mathematics) Wavelet-Analyse (DE-588)4760859-6 gnd Fourier-Transformation (DE-588)4018014-1 gnd Wavelet-Transformation (DE-588)4814181-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd Wavelet (DE-588)4215427-3 gnd |
topic_facet | Fourier analysis Wavelets (Mathematics) Wavelet-Analyse Fourier-Transformation Wavelet-Transformation Harmonische Analyse Wavelet |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015183249&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT boggessalbert afirstcourseinwaveletswithfourieranalysis AT narcowichfrancisj afirstcourseinwaveletswithfourieranalysis |