An introduction to support vector machines and other kernel-based learning methods:
"This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character rec...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2002
|
Ausgabe: | Repr. with corr. |
Schlagworte: | |
Zusammenfassung: | "This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software." -- BOOK JACKET. |
Beschreibung: | Literaturangaben |
Beschreibung: | XIII, 189 S. graph. Darst. |
ISBN: | 0521780195 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021966774 | ||
003 | DE-604 | ||
005 | 20090406 | ||
007 | t | ||
008 | 021015s2002 d||| |||| 00||| eng d | ||
020 | |a 0521780195 |9 0-521-78019-5 | ||
035 | |a (OCoLC)1076674115 | ||
035 | |a (DE-599)BVBBV021966774 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a Q325.5 | |
082 | 0 | |a 006.3/1 |2 21 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Cristianini, Nello |d 1968- |e Verfasser |0 (DE-588)133181499 |4 aut | |
245 | 1 | 0 | |a An introduction to support vector machines and other kernel-based learning methods |c Nello Cristianini and John Shawe-Taylor |
250 | |a Repr. with corr. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2002 | |
300 | |a XIII, 189 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
520 | 1 | |a "This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software." -- BOOK JACKET. | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Kernel functions | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lernendes System |0 (DE-588)4120666-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Support-Vektor-Maschine |0 (DE-588)4505517-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lernendes System |0 (DE-588)4120666-6 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Support-Vektor-Maschine |0 (DE-588)4505517-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Support-Vektor-Maschine |0 (DE-588)4505517-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Shawe-Taylor, John |e Verfasser |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015181924 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135936292814848 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Cristianini, Nello 1968- Shawe-Taylor, John |
author_GND | (DE-588)133181499 |
author_facet | Cristianini, Nello 1968- Shawe-Taylor, John |
author_role | aut aut |
author_sort | Cristianini, Nello 1968- |
author_variant | n c nc j s t jst |
building | Verbundindex |
bvnumber | BV021966774 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1076674115 (DE-599)BVBBV021966774 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | Repr. with corr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02773nam a2200493zc 4500</leader><controlfield tag="001">BV021966774</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090406 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">021015s2002 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521780195</subfield><subfield code="9">0-521-78019-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1076674115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021966774</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cristianini, Nello</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133181499</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to support vector machines and other kernel-based learning methods</subfield><subfield code="c">Nello Cristianini and John Shawe-Taylor</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr. with corr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 189 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software." -- BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shawe-Taylor, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015181924</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021966774 |
illustrated | Illustrated |
index_date | 2024-07-02T16:08:58Z |
indexdate | 2024-07-09T20:48:25Z |
institution | BVB |
isbn | 0521780195 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015181924 |
oclc_num | 1076674115 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XIII, 189 S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Cristianini, Nello 1968- Verfasser (DE-588)133181499 aut An introduction to support vector machines and other kernel-based learning methods Nello Cristianini and John Shawe-Taylor Repr. with corr. Cambridge [u.a.] Cambridge Univ. Press 2002 XIII, 189 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben "This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software." -- BOOK JACKET. Algorithms Kernel functions Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Lernendes System (DE-588)4120666-6 gnd rswk-swf Support-Vektor-Maschine (DE-588)4505517-8 gnd rswk-swf Lernendes System (DE-588)4120666-6 s Maschinelles Lernen (DE-588)4193754-5 s Support-Vektor-Maschine (DE-588)4505517-8 s 1\p DE-604 DE-604 Shawe-Taylor, John Verfasser aut 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cristianini, Nello 1968- Shawe-Taylor, John An introduction to support vector machines and other kernel-based learning methods Algorithms Kernel functions Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd Lernendes System (DE-588)4120666-6 gnd Support-Vektor-Maschine (DE-588)4505517-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4120666-6 (DE-588)4505517-8 |
title | An introduction to support vector machines and other kernel-based learning methods |
title_auth | An introduction to support vector machines and other kernel-based learning methods |
title_exact_search | An introduction to support vector machines and other kernel-based learning methods |
title_exact_search_txtP | An introduction to support vector machines and other kernel-based learning methods |
title_full | An introduction to support vector machines and other kernel-based learning methods Nello Cristianini and John Shawe-Taylor |
title_fullStr | An introduction to support vector machines and other kernel-based learning methods Nello Cristianini and John Shawe-Taylor |
title_full_unstemmed | An introduction to support vector machines and other kernel-based learning methods Nello Cristianini and John Shawe-Taylor |
title_short | An introduction to support vector machines and other kernel-based learning methods |
title_sort | an introduction to support vector machines and other kernel based learning methods |
topic | Algorithms Kernel functions Machine learning Maschinelles Lernen (DE-588)4193754-5 gnd Lernendes System (DE-588)4120666-6 gnd Support-Vektor-Maschine (DE-588)4505517-8 gnd |
topic_facet | Algorithms Kernel functions Machine learning Maschinelles Lernen Lernendes System Support-Vektor-Maschine |
work_keys_str_mv | AT cristianininello anintroductiontosupportvectormachinesandotherkernelbasedlearningmethods AT shawetaylorjohn anintroductiontosupportvectormachinesandotherkernelbasedlearningmethods |