Introduction to Hilbert space:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Chelsea Publ. Co.
1976
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 206 S. |
ISBN: | 0828402876 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021937562 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 971121s1976 |||| 00||| eng d | ||
020 | |a 0828402876 |9 0-8284-0287-6 | ||
035 | |a (OCoLC)2765529 | ||
035 | |a (DE-599)BVBBV021937562 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA322.4 | |
082 | 0 | |a 515/.73 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Berberian, Sterling K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Hilbert space |c Sterling K. Berberian |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Chelsea Publ. Co. |c 1976 | |
300 | |a 206 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Hilbert, Espace de | |
650 | 4 | |a Hilbert space | |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015152714&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015152714 |
Datensatz im Suchindex
_version_ | 1804135896624136192 |
---|---|
adam_text | Contents
Chapter I. VECTOR SPACES
§ 1. Complex vector spaces 3
§ 2. First properties of vector spaces 6
§ 3. Finite sums of vectors 7
§ 4. Linear combinations of vectors 11
§ 5. Linear subspaces, linear dependence 13
§ 6. Linear independence 17
§ 7. Basis, dimension 21
§8. Coda 24
Chapter II. HUBERT SPACES
§ 1. Pre Hilbert spaces 25
§ 2. First properties of pre Hilbert spaces 27
§ 3. The norm of a vector 28
§ 4. Metric spaces 33
§ 5. Metric notions in pre Hilbert space; Hilbert spaces 39
§ 6. Orthogonal vectors, orthonormal vectors 43
§ 7. Infinite sums in Hilbert space 49
§ 8. Total sets, separable Hilbert spaces, orthonormal bases 51
§ 9. Isomorphic Hilbert spaces; classical Hilbert space 55
Chapter III. CLOSED UNEAR SUBSPACES
§ 1. Some notations from set theory 57
§ 2. Annihilators 59
§ 3. Closed linear subspaces 62
§ 4. Complete linear subspaces 65
§ 5. Convex sets, minimizing vector 67
§ 6. Orthogonal complement 70
§ 7. Mappings 73
§8. Projection 74
i*
x Contents
Chapter IV. CONTINUOUS LINEAR MAPPINGS
§ 1. Linear mappings 77
§ 2. Isomorphic vector spaces 82
§3. The vector space £CU,W) 84
§ 4. Composition of mappings 86
§5. The algebra £(V) 88
§ 6. Continuous mappings 91
§ 7. Normed spaces, Banach spaces, continuous linear
mappings 92
§ 8. The normed space £C(S,3:) 100
§ 9. The normed algebra £C(S), Banach algebras 103
§ 10. The dual space S 104
Chapter V. CONTINUOUS LINEAR FORMS IN HUBERT SPACE
§ 1. Riesz Frechet theorem 109
§2. Completion 111
§3. Bilinear mappings 116
§ 4. Bounded bilinear mappings 120
§ 5. Sesquilinear mappings 123
§ 6. Bounded sesquilinear mappings 128
§ 7. Bounded sesquilinear forms in Hilbert space 130
§8. Adjoints 131
Chapter VI. OPERATORS IN HILBERT SPACE
§ 1. Manifesto 139
§ 2. Preliminaries 140
§ 3. An example 141
§ 4. Isometric operators 143
§ 5. Unitary operators 145
§ 6. Self adjoint operators 147
§ 7. Projection operators 151
§ 8. Normal operators 154
§ 9. Invariant and reducing subspaces 156
Chapter VII. PROPER VALUES
§ 1. Proper vectors, proper values 163
§ 2. Proper subspaces 166
§ 3. Approximate proper values 168
Contents xi
Chapter VIII. COMPLETELY CONTINUOUS OPERATORS
§ 1. Completely continuous operators 172
§ 2. An example 177
§ 3. Proper values of CC operators 178
§ 4. Spectral theorem for a normal CC operator 181
Appendix 189
Index 203
|
adam_txt |
Contents
Chapter I. VECTOR SPACES
§ 1. Complex vector spaces 3
§ 2. First properties of vector spaces 6
§ 3. Finite sums of vectors 7
§ 4. Linear combinations of vectors 11
§ 5. Linear subspaces, linear dependence 13
§ 6. Linear independence 17
§ 7. Basis, dimension 21
§8. Coda 24
Chapter II. HUBERT SPACES
§ 1. Pre Hilbert spaces 25
§ 2. First properties of pre Hilbert spaces 27
§ 3. The norm of a vector 28
§ 4. Metric spaces 33
§ 5. Metric notions in pre Hilbert space; Hilbert spaces 39
§ 6. Orthogonal vectors, orthonormal vectors 43
§ 7. Infinite sums in Hilbert space 49
§ 8. Total sets, separable Hilbert spaces, orthonormal bases 51
§ 9. Isomorphic Hilbert spaces; classical Hilbert space 55
Chapter III. CLOSED UNEAR SUBSPACES
§ 1. Some notations from set theory 57
§ 2. Annihilators 59
§ 3. Closed linear subspaces 62
§ 4. Complete linear subspaces 65
§ 5. Convex sets, minimizing vector 67
§ 6. Orthogonal complement 70
§ 7. Mappings 73
§8. Projection 74
i*
x Contents
Chapter IV. CONTINUOUS LINEAR MAPPINGS
§ 1. Linear mappings 77
§ 2. Isomorphic vector spaces 82
§3. The vector space £CU,W) 84
§ 4. Composition of mappings 86
§5. The algebra £(V) 88
§ 6. Continuous mappings 91
§ 7. Normed spaces, Banach spaces, continuous linear
mappings 92
§ 8. The normed space £C(S,3:) 100
§ 9. The normed algebra £C(S), Banach algebras 103
§ 10. The dual space S' 104
Chapter V. CONTINUOUS LINEAR FORMS IN HUBERT SPACE
§ 1. Riesz Frechet theorem 109
§2. Completion 111
§3. Bilinear mappings 116
§ 4. Bounded bilinear mappings 120
§ 5. Sesquilinear mappings 123
§ 6. Bounded sesquilinear mappings 128
§ 7. Bounded sesquilinear forms in Hilbert space 130
§8. Adjoints 131
Chapter VI. OPERATORS IN HILBERT SPACE
§ 1. Manifesto 139
§ 2. Preliminaries 140
§ 3. An example 141
§ 4. Isometric operators 143
§ 5. Unitary operators 145
§ 6. Self adjoint operators 147
§ 7. Projection operators 151
§ 8. Normal operators 154
§ 9. Invariant and reducing subspaces 156
Chapter VII. PROPER VALUES
§ 1. Proper vectors, proper values 163
§ 2. Proper subspaces 166
§ 3. Approximate proper values 168
Contents xi
Chapter VIII. COMPLETELY CONTINUOUS OPERATORS
§ 1. Completely continuous operators 172
§ 2. An example 177
§ 3. Proper values of CC operators 178
§ 4. Spectral theorem for a normal CC operator 181
Appendix 189
Index 203 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Berberian, Sterling K. |
author_facet | Berberian, Sterling K. |
author_role | aut |
author_sort | Berberian, Sterling K. |
author_variant | s k b sk skb |
building | Verbundindex |
bvnumber | BV021937562 |
callnumber-first | Q - Science |
callnumber-label | QA322 |
callnumber-raw | QA322.4 |
callnumber-search | QA322.4 |
callnumber-sort | QA 3322.4 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 600 |
ctrlnum | (OCoLC)2765529 (DE-599)BVBBV021937562 |
dewey-full | 515/.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.73 |
dewey-search | 515/.73 |
dewey-sort | 3515 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01256nam a2200373zc 4500</leader><controlfield tag="001">BV021937562</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">971121s1976 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0828402876</subfield><subfield code="9">0-8284-0287-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)2765529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021937562</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA322.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.73</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berberian, Sterling K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Hilbert space</subfield><subfield code="c">Sterling K. Berberian</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Chelsea Publ. Co.</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">206 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert, Espace de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015152714&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015152714</subfield></datafield></record></collection> |
id | DE-604.BV021937562 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:06:42Z |
indexdate | 2024-07-09T20:47:47Z |
institution | BVB |
isbn | 0828402876 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015152714 |
oclc_num | 2765529 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 206 S. |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Chelsea Publ. Co. |
record_format | marc |
spelling | Berberian, Sterling K. Verfasser aut Introduction to Hilbert space Sterling K. Berberian 2. ed. New York, NY Chelsea Publ. Co. 1976 206 S. txt rdacontent n rdamedia nc rdacarrier Hilbert, Espace de Hilbert space Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015152714&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Berberian, Sterling K. Introduction to Hilbert space Hilbert, Espace de Hilbert space Hilbert-Raum (DE-588)4159850-7 gnd |
subject_GND | (DE-588)4159850-7 |
title | Introduction to Hilbert space |
title_auth | Introduction to Hilbert space |
title_exact_search | Introduction to Hilbert space |
title_exact_search_txtP | Introduction to Hilbert space |
title_full | Introduction to Hilbert space Sterling K. Berberian |
title_fullStr | Introduction to Hilbert space Sterling K. Berberian |
title_full_unstemmed | Introduction to Hilbert space Sterling K. Berberian |
title_short | Introduction to Hilbert space |
title_sort | introduction to hilbert space |
topic | Hilbert, Espace de Hilbert space Hilbert-Raum (DE-588)4159850-7 gnd |
topic_facet | Hilbert, Espace de Hilbert space Hilbert-Raum |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015152714&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT berberiansterlingk introductiontohilbertspace |