The semi-simple zeta function of quaternionic Shimura varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1997
|
Schriftenreihe: | Lecture notes in mathematics
1657 |
Schlagworte: | |
Beschreibung: | Literaturverz. S. 136 - 139 |
Beschreibung: | 143 S. |
ISBN: | 354062645X |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV021936112 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t| | ||
008 | 970828s1997 xx |||| 00||| eng d | ||
020 | |a 354062645X |9 3-540-62645-X | ||
035 | |a (OCoLC)36498880 | ||
035 | |a (DE-599)BVBBV021936112 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.74 |2 21 | |
082 | 0 | |a 510 |2 21 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Reimann, Harry |e Verfasser |4 aut | |
245 | 1 | 0 | |a The semi-simple zeta function of quaternionic Shimura varieties |c Harry Reimann |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1997 | |
300 | |a 143 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Lecture notes in mathematics |v 1657 | |
500 | |a Literaturverz. S. 136 - 139 | ||
650 | 7 | |a Algebra associativa |2 larpcal | |
650 | 4 | |a Fonctions L | |
650 | 7 | |a Fonctions L |2 ram | |
650 | 4 | |a Fonctions zêta | |
650 | 4 | |a Quaternions | |
650 | 7 | |a Shimura variëteiten |2 gtt | |
650 | 4 | |a Shimura, Variétés de | |
650 | 7 | |a Teoria dos numeros |2 larpcal | |
650 | 4 | |a Functions, Zeta | |
650 | 4 | |a L-functions | |
650 | 4 | |a Quaternions | |
650 | 4 | |a Shimura varieties | |
650 | 0 | 7 | |a Divisionsalgebra |0 (DE-588)4138776-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Arithmetische Geometrie |0 (DE-588)4131383-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Shimura-Mannigfaltigkeit |0 (DE-588)4181143-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quaternion |0 (DE-588)4176653-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zetafunktion |0 (DE-588)4190764-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Divisionsalgebra |0 (DE-588)4138776-4 |D s |
689 | 1 | 1 | |a Quaternion |0 (DE-588)4176653-2 |D s |
689 | 1 | 2 | |a Shimura-Mannigfaltigkeit |0 (DE-588)4181143-4 |D s |
689 | 1 | 3 | |a Zetafunktion |0 (DE-588)4190764-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Arithmetische Geometrie |0 (DE-588)4131383-5 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015151265 |
Datensatz im Suchindex
_version_ | 1825578093806354432 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Reimann, Harry |
author_facet | Reimann, Harry |
author_role | aut |
author_sort | Reimann, Harry |
author_variant | h r hr |
building | Verbundindex |
bvnumber | BV021936112 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 SK 180 SK 240 |
ctrlnum | (OCoLC)36498880 (DE-599)BVBBV021936112 |
dewey-full | 512/.74 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512/.74 510 |
dewey-search | 512/.74 510 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV021936112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">970828s1997 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354062645X</subfield><subfield code="9">3-540-62645-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36498880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021936112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reimann, Harry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The semi-simple zeta function of quaternionic Shimura varieties</subfield><subfield code="c">Harry Reimann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">143 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1657</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 136 - 139</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra associativa</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions L</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions L</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions zêta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shimura variëteiten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shimura, Variétés de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria dos numeros</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Zeta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shimura varieties</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Divisionsalgebra</subfield><subfield code="0">(DE-588)4138776-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arithmetische Geometrie</subfield><subfield code="0">(DE-588)4131383-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Shimura-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4181143-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quaternion</subfield><subfield code="0">(DE-588)4176653-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Divisionsalgebra</subfield><subfield code="0">(DE-588)4138776-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quaternion</subfield><subfield code="0">(DE-588)4176653-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Shimura-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4181143-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Arithmetische Geometrie</subfield><subfield code="0">(DE-588)4131383-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015151265</subfield></datafield></record></collection> |
id | DE-604.BV021936112 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:06:37Z |
indexdate | 2025-03-03T13:02:20Z |
institution | BVB |
isbn | 354062645X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015151265 |
oclc_num | 36498880 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 143 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer |
record_format | marc |
series2 | Lecture notes in mathematics |
spelling | Reimann, Harry Verfasser aut The semi-simple zeta function of quaternionic Shimura varieties Harry Reimann Berlin [u.a.] Springer 1997 143 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1657 Literaturverz. S. 136 - 139 Algebra associativa larpcal Fonctions L Fonctions L ram Fonctions zêta Quaternions Shimura variëteiten gtt Shimura, Variétés de Teoria dos numeros larpcal Functions, Zeta L-functions Shimura varieties Divisionsalgebra (DE-588)4138776-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Arithmetische Geometrie (DE-588)4131383-5 gnd rswk-swf Shimura-Mannigfaltigkeit (DE-588)4181143-4 gnd rswk-swf Quaternion (DE-588)4176653-2 gnd rswk-swf Zetafunktion (DE-588)4190764-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s DE-604 Divisionsalgebra (DE-588)4138776-4 s Quaternion (DE-588)4176653-2 s Shimura-Mannigfaltigkeit (DE-588)4181143-4 s Zetafunktion (DE-588)4190764-4 s 1\p DE-604 Arithmetische Geometrie (DE-588)4131383-5 s 2\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Reimann, Harry The semi-simple zeta function of quaternionic Shimura varieties Algebra associativa larpcal Fonctions L Fonctions L ram Fonctions zêta Quaternions Shimura variëteiten gtt Shimura, Variétés de Teoria dos numeros larpcal Functions, Zeta L-functions Shimura varieties Divisionsalgebra (DE-588)4138776-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Arithmetische Geometrie (DE-588)4131383-5 gnd Shimura-Mannigfaltigkeit (DE-588)4181143-4 gnd Quaternion (DE-588)4176653-2 gnd Zetafunktion (DE-588)4190764-4 gnd |
subject_GND | (DE-588)4138776-4 (DE-588)4037379-4 (DE-588)4131383-5 (DE-588)4181143-4 (DE-588)4176653-2 (DE-588)4190764-4 |
title | The semi-simple zeta function of quaternionic Shimura varieties |
title_auth | The semi-simple zeta function of quaternionic Shimura varieties |
title_exact_search | The semi-simple zeta function of quaternionic Shimura varieties |
title_exact_search_txtP | The semi-simple zeta function of quaternionic Shimura varieties |
title_full | The semi-simple zeta function of quaternionic Shimura varieties Harry Reimann |
title_fullStr | The semi-simple zeta function of quaternionic Shimura varieties Harry Reimann |
title_full_unstemmed | The semi-simple zeta function of quaternionic Shimura varieties Harry Reimann |
title_short | The semi-simple zeta function of quaternionic Shimura varieties |
title_sort | the semi simple zeta function of quaternionic shimura varieties |
topic | Algebra associativa larpcal Fonctions L Fonctions L ram Fonctions zêta Quaternions Shimura variëteiten gtt Shimura, Variétés de Teoria dos numeros larpcal Functions, Zeta L-functions Shimura varieties Divisionsalgebra (DE-588)4138776-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Arithmetische Geometrie (DE-588)4131383-5 gnd Shimura-Mannigfaltigkeit (DE-588)4181143-4 gnd Quaternion (DE-588)4176653-2 gnd Zetafunktion (DE-588)4190764-4 gnd |
topic_facet | Algebra associativa Fonctions L Fonctions zêta Quaternions Shimura variëteiten Shimura, Variétés de Teoria dos numeros Functions, Zeta L-functions Shimura varieties Divisionsalgebra Mannigfaltigkeit Arithmetische Geometrie Shimura-Mannigfaltigkeit Quaternion Zetafunktion |
work_keys_str_mv | AT reimannharry thesemisimplezetafunctionofquaternionicshimuravarieties |