The basic practice of statistics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Freeman
1995
|
Ausgabe: | 2. print. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 680 S. graph. Darst. |
ISBN: | 0716726289 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021929230 | ||
003 | DE-604 | ||
005 | 20040301000000.0 | ||
007 | t | ||
008 | 960320s1995 d||| |||| 00||| eng d | ||
020 | |a 0716726289 |9 0-7167-2628-9 | ||
035 | |a (OCoLC)31434413 | ||
035 | |a (DE-599)BVBBV021929230 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA276.12 | |
082 | 0 | |a 519.5 |2 20 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Moore, David S. |e Verfasser |0 (DE-588)135745551 |4 aut | |
245 | 1 | 0 | |a The basic practice of statistics |c David S. Moore |
250 | |a 2. print. | ||
264 | 1 | |a New York, NY |b Freeman |c 1995 | |
300 | |a XVIII, 680 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Estatistica |2 larpcal | |
650 | 7 | |a Statistiek |2 gtt | |
650 | 4 | |a Statistik | |
650 | 4 | |a Statistics | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015144387 |
Datensatz im Suchindex
_version_ | 1808044137931341824 |
---|---|
adam_text |
CONTENTS
Preface xiii
Introduction: What Is Statistics? 1
PART 1 UNDERSTANDING DATA 6
CHAPTER 1 Examining Distributions 8
Introduction 10
1.1 Displaying Distributions with Graphs 12
Categorical variables 13
Drawing histograms 14
Interpreting histograms 17
Stemplots 23
Time plots 26
Summary 28
Section 1.1 exercises 29
1.2 Describing Distributions with Numbers 34
Measuring center: the mean 36
Measuring center: the median 38
Comparing the mean and the median 40
Measuring spread: the quartiles 41
The five number summary and boxplots 43
Measuring spread: the standard deviation 46
Summary 51
Section 1.2 exercises 52
*Starred sections are optional
v
vi Contents
1.3 The Normal Distributions 54
Density curves 54
The median and mean of a density curve 57
Normal distributions 60
The standard normal distribution 64
Normal distribution calculations 66
Finding a value given a proportion 71
Assessing normality* 73
Summary 75
Section 1.3 exercises 76
Chapter Review 79
Chapter 1 review exercises 81
CHAPTER 2 Examining Relationships 90
Introduction 92
2.1 Scatterplots 96
Interpreting scatterplots 98
Adding categorical variables to scatterplots 102
Summary 105
Section 2.1 exercises 106
2.2 Correlation 111
The correlation r 111
Facts about correlation 114
Summary 117
Section 2.2 exercises 117
2.3 Least Squares Regression 119
The least squares regression line 120
Facts about least squares regression 125
Residuals 129
Influential observations 134
Summary 137
Section 2.3 exercises 138
2.4 Interpreting Correlation and Regression 142
Extrapolation 142
Lurking variables 143
Using averaged data 145
Association is not causation 146
Summary 148
Section 2.4 exercises 149
Contents vii
2.5 Relations In Categorical Data* 150
Marginal distributions 151
Describing relationships 153
Simpson's paradox 157
Summary 161
Section 2.5 exercises 162
Chapter Review 165
Chapter 2 review exercises 167
CHAPTER 3 Producing Data 176
Introduction 178
3.1 Designing Samples 180
Simple random samples 182
Other sampling designs 187
Cautions about sample surveys 189
Inference about the population 193
Summary 194
Section 3.1 exercises 194
3.2 Designing Experiments 198
Comparative experiments 202
Completely randomized experiments 203
The logic of experimental design 208
Cautions about experimentation 210
Other experimental designs 213
Summary 217
Section 3.2 exercises 218
Chapter Review 220
Chapter 3 review exercises 221
PART 2 UNDERSTANDING INFERENCE 226
CHAPTER 4 Sampling Distributions and
Probability 228
Introduction 230
4.1 Sampling Distributions 230
Sampling variability 232
viii Contents
Describing sampling distributions 235
The bias of a statistic 237
The variability of a statistic 239
The language of probability 242
Summary 247
Section 4.1 exercises 248
4.2 Probability Distributions* 250
Discrete random variables 251
Equally likely outcomes 255
The mean and standard deviation of a discrete
random variable 257
Continuous random variables 261
Normal distributions 263
Summary 266
Section 4.2 exercises 267
4.3 Sample Proportions 268
The sampling distribution of p 269
Using the normal approximation for p 272
Sample counts 276
Summary 277
Section 4.3 exercises 278
4.4 The Binomial Distributions* 279
The binomial setting 280
Binomial probabilities 282
Binomial mean and standard deviation 286
Summary 289
Section 4.4 exercises 290
4.5 Sample Means 292
The mean and the standard deviation of x 294
The central limit theorem 297
The law of large numbers 302
Summary 303
Section 4.5 exercises 304
4.6 Control Charts* 305
x charts 306
Using control charts 310
Summary 313
Section 4.6 exercises 314
Contents ix
Chapter Review 317
Chapter 4 review exercises 319
CHAPTER 5 Introduction to Inference 322
Introduction 324
5.1 Estimating with Confidence 325
Statistical confidence 327
Confidence intervals 331
How confidence intervals behave 338
Choosing the sample size 341
Some cautions 342
Summary 345
Section 5.1 exercises 347
5.2 Tests of Significance 349
The reasoning of a significance test 350
Outline of a test 354
More detail: stating hypotheses 356
More detail: P values and statistical significance 359
Tests for a population mean 363
Tests with fixed significance level 370
Tests from confidence intervals 374
Summary 376
Section 5.2 exercises 377
5.3 Using Significance Tests 380
Choosing a level of significance 380
Statistical significance and practical significance 382
Statistical inference is not valid for all sets of data 383
Beware of multiple analyses 384
Summary 386
Section 5.3 exercises 386
5.4 Inference As Decision* 387
Type 1 and Type II errors 388
Error probabilities 388
Power 394
Different views of statistical tests 396
Summary 397
Section 5.4 exercises 398
Chapter Review 399
Chapter 5 review exercises 401
x Contents
CHAPTER 6 Inference for Distributions 406
Introduction 408
6.1 Inference for the Mean of a Population 408
The t distributions 409
The t confidence intervals and tests 411
Matched pairs t procedures 419
Robustness of t procedures 424
The power of the t test* 428
Summary 431
Section 6.1 exercises 432
6.2 Comparing Two Means 435
Two sample problems 436
Comparing two population means 437
The sampling distribution of X\ — %2 440
Two sample t procedures 441
Robustness again 448
More accurate levels in the t procedures* 450
The pooled two sample t procedures* 455
Summary 456
Section 6.2 exercises 457
6.3 Inference For Population Spread* 462
Avoid inference about standard deviations 462
The F test for comparing two standard deviations 463
Summary 466
Section 6.3 exercises 467
Chapter Review 468
Chapter 6 review exercises 470
CHAPTER 7 Inference for Proportions 482
Introduction 484
7.1 Inference for a Population Proportion 485
Assumptions for inference 486
The z procedures 490
Choosing the sample size 494
Summary 497
Section 7.1 exercises 497
Contents xi
7.2 Comparing Two Proportions 499
The sampling distribution of pi —pi 501
Confidence intervals for pi — p2 501
Significance tests for pj — p2 504
Summary 508
Section 7.2 exercises 509
Chapter Review 513
Chapter 7 review exercises 514
PART 3 TOPICS IN INFERENCE 518
CHAPTER 8 Inference for Two Way Tables 520
Introduction 522
The problem of multiple comparisons 522
Two Way Tables 524
Expected counts 524
The Chi Square Test 528
The chi square distributions 532
More uses of the chi square test 535
Cell counts required for the chi square test 539
The chi square test and the z test 540
Chapter summary 542
Chapter Review 543
Chapter 8 review exercises 544
CHAPTER 9 One Way Analysis of Variance:
Comparing Several Means 554
Introduction 556
The problem of multiple comparisons 559
The Analysis of Variance F Test 560
The idea of analysis of variance 564
Assumptions for ANOVA 569
Some Details of ANOVA* 576
Chapter summary 582
xii Contents
Chapter Review 583
Chapter 9 review exercises 584
CHAPTER 10 Inference for Regression 588
Introduction 590
The regression model 592
Inference about the Model 594
Confidence intervals for the regression slope 598
Testing the hypothesis of no linear relationship 600
Inference about Prediction 605
Checking the Regression Assumptions 610
Chapter summary 615
Chapter Review 615
Chapter 10 review exercises 617
Appendix
Table A Standard normal probabilities 626
Table B Random digits 628
Table C t distribution critical values 629
Table D F distribution critical values 630
Table E Chi square distribution critical values 634
Solutions to Selected Exercises 635
Index of Symbols 671
Index of Procedures 673
Index 675 |
adam_txt |
CONTENTS
Preface xiii
Introduction: What Is Statistics? 1
PART 1 UNDERSTANDING DATA 6
CHAPTER 1 Examining Distributions 8
Introduction 10
1.1 Displaying Distributions with Graphs 12
Categorical variables 13
Drawing histograms 14
Interpreting histograms 17
Stemplots 23
Time plots 26
Summary 28
Section 1.1 exercises 29
1.2 Describing Distributions with Numbers 34
Measuring center: the mean 36
Measuring center: the median 38
Comparing the mean and the median 40
Measuring spread: the quartiles 41
The five number summary and boxplots 43
Measuring spread: the standard deviation 46
Summary 51
Section 1.2 exercises 52
*Starred sections are optional
v
vi Contents
1.3 The Normal Distributions 54
Density curves 54
The median and mean of a density curve 57
Normal distributions 60
The standard normal distribution 64
Normal distribution calculations 66
Finding a value given a proportion 71
Assessing normality* 73
Summary 75
Section 1.3 exercises 76
Chapter Review 79
Chapter 1 review exercises 81
CHAPTER 2 Examining Relationships 90
Introduction 92
2.1 Scatterplots 96
Interpreting scatterplots 98
Adding categorical variables to scatterplots 102
Summary 105
Section 2.1 exercises 106
2.2 Correlation 111
The correlation r 111
Facts about correlation 114
Summary 117
Section 2.2 exercises 117
2.3 Least Squares Regression 119
The least squares regression line 120
Facts about least squares regression 125
Residuals 129
Influential observations 134
Summary 137
Section 2.3 exercises 138
2.4 Interpreting Correlation and Regression 142
Extrapolation 142
Lurking variables 143
Using averaged data 145
Association is not causation 146
Summary 148
Section 2.4 exercises 149
Contents vii
2.5 Relations In Categorical Data* 150
Marginal distributions 151
Describing relationships 153
Simpson's paradox 157
Summary 161
Section 2.5 exercises 162
Chapter Review 165
Chapter 2 review exercises 167
CHAPTER 3 Producing Data 176
Introduction 178
3.1 Designing Samples 180
Simple random samples 182
Other sampling designs 187
Cautions about sample surveys 189
Inference about the population 193
Summary 194
Section 3.1 exercises 194
3.2 Designing Experiments 198
Comparative experiments 202
Completely randomized experiments 203
The logic of experimental design 208
Cautions about experimentation 210
Other experimental designs 213
Summary 217
Section 3.2 exercises 218
Chapter Review 220
Chapter 3 review exercises 221
PART 2 UNDERSTANDING INFERENCE 226
CHAPTER 4 Sampling Distributions and
Probability 228
Introduction 230
4.1 Sampling Distributions 230
Sampling variability 232
viii Contents
Describing sampling distributions 235
The bias of a statistic 237
The variability of a statistic 239
The language of probability 242
Summary 247
Section 4.1 exercises 248
4.2 Probability Distributions* 250
Discrete random variables 251
Equally likely outcomes 255
The mean and standard deviation of a discrete
random variable 257
Continuous random variables 261
Normal distributions 263
Summary 266
Section 4.2 exercises 267
4.3 Sample Proportions 268
The sampling distribution of p 269
Using the normal approximation for p 272
Sample counts 276
Summary 277
Section 4.3 exercises 278
4.4 The Binomial Distributions* 279
The binomial setting 280
Binomial probabilities 282
Binomial mean and standard deviation 286
Summary 289
Section 4.4 exercises 290
4.5 Sample Means 292
The mean and the standard deviation of x 294
The central limit theorem 297
The law of large numbers 302
Summary 303
Section 4.5 exercises 304
4.6 Control Charts* 305
x charts 306
Using control charts 310
Summary 313
Section 4.6 exercises 314
Contents ix
Chapter Review 317
Chapter 4 review exercises 319
CHAPTER 5 Introduction to Inference 322
Introduction 324
5.1 Estimating with Confidence 325
Statistical confidence 327
Confidence intervals 331
How confidence intervals behave 338
Choosing the sample size 341
Some cautions 342
Summary 345
Section 5.1 exercises 347
5.2 Tests of Significance 349
The reasoning of a significance test 350
Outline of a test 354
More detail: stating hypotheses 356
More detail: P values and statistical significance 359
Tests for a population mean 363
Tests with fixed significance level 370
Tests from confidence intervals 374
Summary 376
Section 5.2 exercises 377
5.3 Using Significance Tests 380
Choosing a level of significance 380
Statistical significance and practical significance 382
Statistical inference is not valid for all sets of data 383
Beware of multiple analyses 384
Summary 386
Section 5.3 exercises 386
5.4 Inference As Decision* 387
Type 1 and Type II errors 388
Error probabilities 388
Power 394
Different views of statistical tests 396
Summary 397
Section 5.4 exercises 398
Chapter Review 399
Chapter 5 review exercises 401
x Contents
CHAPTER 6 Inference for Distributions 406
Introduction 408
6.1 Inference for the Mean of a Population 408
The t distributions 409
The t confidence intervals and tests 411
Matched pairs t procedures 419
Robustness of t procedures 424
The power of the t test* 428
Summary 431
Section 6.1 exercises 432
6.2 Comparing Two Means 435
Two sample problems 436
Comparing two population means 437
The sampling distribution of X\ — %2 440
Two sample t procedures 441
Robustness again 448
More accurate levels in the t procedures* 450
The pooled two sample t procedures* 455
Summary 456
Section 6.2 exercises 457
6.3 Inference For Population Spread* 462
Avoid inference about standard deviations 462
The F test for comparing two standard deviations 463
Summary 466
Section 6.3 exercises 467
Chapter Review 468
Chapter 6 review exercises 470
CHAPTER 7 Inference for Proportions 482
Introduction 484
7.1 Inference for a Population Proportion 485
Assumptions for inference 486
The z procedures 490
Choosing the sample size 494
Summary 497
Section 7.1 exercises 497
Contents xi
7.2 Comparing Two Proportions 499
The sampling distribution of pi —pi 501
Confidence intervals for pi — p2 501
Significance tests for pj — p2 504
Summary 508
Section 7.2 exercises 509
Chapter Review 513
Chapter 7 review exercises 514
PART 3 TOPICS IN INFERENCE 518
CHAPTER 8 Inference for Two Way Tables 520
Introduction 522
The problem of multiple comparisons 522
Two Way Tables 524
Expected counts 524
The Chi Square Test 528
The chi square distributions 532
More uses of the chi square test 535
Cell counts required for the chi square test 539
The chi square test and the z test 540
Chapter summary 542
Chapter Review 543
Chapter 8 review exercises 544
CHAPTER 9 One Way Analysis of Variance:
Comparing Several Means 554
Introduction 556
The problem of multiple comparisons 559
The Analysis of Variance F Test 560
The idea of analysis of variance 564
Assumptions for ANOVA 569
Some Details of ANOVA* 576
Chapter summary 582
xii Contents
Chapter Review 583
Chapter 9 review exercises 584
CHAPTER 10 Inference for Regression 588
Introduction 590
The regression model 592
Inference about the Model 594
Confidence intervals for the regression slope 598
Testing the hypothesis of no linear relationship 600
Inference about Prediction 605
Checking the Regression Assumptions 610
Chapter summary 615
Chapter Review 615
Chapter 10 review exercises 617
Appendix
Table A Standard normal probabilities 626
Table B Random digits 628
Table C t distribution critical values 629
Table D F distribution critical values 630
Table E Chi square distribution critical values 634
Solutions to Selected Exercises 635
Index of Symbols 671
Index of Procedures 673
Index 675 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Moore, David S. |
author_GND | (DE-588)135745551 |
author_facet | Moore, David S. |
author_role | aut |
author_sort | Moore, David S. |
author_variant | d s m ds dsm |
building | Verbundindex |
bvnumber | BV021929230 |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.12 |
callnumber-search | QA276.12 |
callnumber-sort | QA 3276.12 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 830 |
ctrlnum | (OCoLC)31434413 (DE-599)BVBBV021929230 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV021929230</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040301000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960320s1995 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0716726289</subfield><subfield code="9">0-7167-2628-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)31434413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021929230</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moore, David S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)135745551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The basic practice of statistics</subfield><subfield code="c">David S. Moore</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Freeman</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 680 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estatistica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistiek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015144387</subfield></datafield></record></collection> |
genre | (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV021929230 |
illustrated | Illustrated |
index_date | 2024-07-02T16:06:12Z |
indexdate | 2024-08-22T00:07:37Z |
institution | BVB |
isbn | 0716726289 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015144387 |
oclc_num | 31434413 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XVIII, 680 S. graph. Darst. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Freeman |
record_format | marc |
spelling | Moore, David S. Verfasser (DE-588)135745551 aut The basic practice of statistics David S. Moore 2. print. New York, NY Freeman 1995 XVIII, 680 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Estatistica larpcal Statistiek gtt Statistik Statistics Statistik (DE-588)4056995-0 gnd rswk-swf (DE-588)4143389-0 Aufgabensammlung gnd-content Statistik (DE-588)4056995-0 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Moore, David S. The basic practice of statistics Estatistica larpcal Statistiek gtt Statistik Statistics Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4143389-0 |
title | The basic practice of statistics |
title_auth | The basic practice of statistics |
title_exact_search | The basic practice of statistics |
title_exact_search_txtP | The basic practice of statistics |
title_full | The basic practice of statistics David S. Moore |
title_fullStr | The basic practice of statistics David S. Moore |
title_full_unstemmed | The basic practice of statistics David S. Moore |
title_short | The basic practice of statistics |
title_sort | the basic practice of statistics |
topic | Estatistica larpcal Statistiek gtt Statistik Statistics Statistik (DE-588)4056995-0 gnd |
topic_facet | Estatistica Statistiek Statistik Statistics Aufgabensammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144387&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mooredavids thebasicpracticeofstatistics |