Calculus with analytic geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Englewood Cliffs, NJ
Prentice Hall
1972
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 989 S. |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021928980 | ||
003 | DE-604 | ||
005 | 20040301000000.0 | ||
007 | t | ||
008 | 960311s1972 |||| 00||| eng d | ||
035 | |a (OCoLC)53715078 | ||
035 | |a (DE-599)BVBBV021928980 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA303 | |
082 | 0 | |a 515/.15 | |
084 | |a SK 399 |0 (DE-625)143236: |2 rvk | ||
100 | 1 | |a Purcell, Edwin J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Calculus with analytic geometry |c Edwin J. Purcell |
250 | |a 2. ed. | ||
264 | 1 | |a Englewood Cliffs, NJ |b Prentice Hall |c 1972 | |
300 | |a XV, 989 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Calcul infinitésimal | |
650 | 4 | |a Géométrie analytique | |
650 | 4 | |a Calculus | |
650 | 4 | |a Geometry, Analytic | |
650 | 0 | 7 | |a Reelle Analysis |0 (DE-588)4627581-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Geometrie |0 (DE-588)4001867-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Reelle Analysis |0 (DE-588)4627581-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144137&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015144137 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135885289029632 |
---|---|
adam_text | contents
Preface vii
Chapter 1: NUMBERS
1.1 Introduction to real numbers 1
1.2 Sets 4
1.3 Fields 7
1.4 Ordered fields. Inequalities 11
1.5 Bounded sets. The completeness axiom 16
1.6 The coordinate line. Intervals 18
1.7 Absolute values 23
1.8 Natural numbers and induction 28
Chapter 2: THE CARTESIAN PLANE
2.1 Rectangular Cartesian coordinates 32
2.2 Slope and midpoint of a line segment 36
2.3 Subsets of the Cartesian plane. Graphs of equations 40
2.4 The straight line 44
2.5 Parallel and perpendicular lines. Distance between a point and a line 48
2.6 Angle from one line to another 54
2.7 The circle 58
2.8 The parabola 62
2.9 Sketching graphs of equations 68
2.10 Translation of coordinate axes 73
2.11 Graphs of inequalities 80
Chapter: 3 FUNCTIONS AND THEIR GRAPHS
3.1 Functions 86
3.2 Operations on functions 91
3.3 Special functions 93
Chapter 4: LIMITS AND CONTINUITY
4.1 Introduction to limits 98
4.2 Refinement of the concept of limit 101
ix
x CONTENTS
4.3 Definition of the limit of a function 108
4.4 Theorems on limits 115
4.5 One sided limits 120
4.6 Continuity 122
4.7 Increments 127
Chapter 5: THE DERIVATIVE
5.1 Tangent to a curve 131
5.2 Instantaneous velocity 134
5.3 The derivative 137
5.4 Rate of change 141
5.5 The derivative and continuity 144
Chapter 6: FORMULAS FOR DIFFERENTIATION OF
ALGEBRAIC FUNCTIONS
6.1 Derivative of a polynomial function 149
6.2 Derivative of a product or quotient of functions 152
6.3 Chain rule for differentiating composite functions 155
6.4 Derivative of any rational power of a function 159
6.5 Derivatives of higher order 162
6.6 Implicit differentiation 165
6.7 Tangents and normals 168
6.8 Related rates 171
Chapter 7: THE MEAN VALUE THEOREM AND
APPLICATIONS
7.1 Rolle s theorem 176
7.2 The mean value theorem 181
7.3 Increasing functions and decreasing functions 184
7.4 Velocity and acceleration in rectilinear motion 187
7.5 Differentials 190
7.6 An extension of the mean value theorem 194
7.7 Differentials as linear approximations 194
Chapter 8: FURTHER APPLICATIONS OF DERIVATIVES
8.1 Relative extrema 199
8.2 Second derivative test for relative extrema 203
8.3 Finding the extrema 204
8.4 Applied problems in maxima and minima 205
8.5 Applications to economics 212
8.6 Concavity. Points of inflection 215
8.7 Limits as x— oo. Asymptotes 219
8.8 Graph sketching 225
8.9 Newton s method for determining the roots of f(x) = 0 228
CONTENTS xi
Chapter 9: ANTIDERIVATIVES
9.1 Introduction 234
9.2 Finding antiderivatives 236
9.3 Generalized power formula for antiderivatives 238
9.4 Some applications of antiderivatives 241
Chapter 10: THE DEFINITE INTEGRAL
10.1 Introduction to area 245
10.2 Summation notation 251
10.3 The definite integral 254
10.4 Lower sums and upper sums 260
10.5 Existence of £ f(x)dx 264
10.6 Approximate integration by the trapezoidal rule 267
10.7 Properties of definite integrals 270
10.8 The mean value theorem for integrals 274
10.9 Integrals with variable upper limits 275
10.10 The fundamental theorem of integral calculus 278
10.11 Finding the value of a definite integral 279
Chapter 11: APPLICATIONS OF DEFINITE INTEGRALS
11.1 Plane areas 282
11.2 Volume of a solid of revolution 289
11.3 Volume by cylindrical shells 295
11.4 Centroid of a plane region 300
11.5 Centroid of a solid of revolution 312
11.6 Arc length in rectangular coordinates 317
11.7 Area of a surface of revolution 321
11.8 Liquid pressure 324
11.9 Work 328
11.10 Gravitational attraction 332
11.11 Work and gravitational attraction. Kinetic energy 335
11.12 Rockets 340
Chapter 12: TRANSCENDENTAL FUNCTIONS
12.1 The natural logarithmic function 346
12.2 Graph of the natural logarithmic function 350
12.3 Logarithmic differentiation 353
12.4 Inverse of a function 354
12.5 The exponential function 361
12.6 Exponential and logarithmic functions with bases other than e 366
12.7 Trigonometric functions 370
12.8 Some trigonometric limits 375
12.9 Derivatives of the trigonometric functions 377
12.10 Inverse trigonometric functions 380
xii CONTENTS
12.11 Hyperbolic functions 387
12.12 Inverse hyperbolic functions 391
Chapter 13: TECHNIQUES OF INTEGRATION
13.1 Introduction 394
13.2 The basic integration formulas 395
13.3 Integration by substitution 397
13.4 The first four basic formulas of integration 399
13.5 The basic trigonometric formulas 401
13.6 The basic inverse trigonometric forms 402
13.7 Integration by parts 405
13.8 Integrals involving *V ax + b 408
13.9 Definite integrals. Change of limits 409
13.10 Some trigonometric integrals 412
13.11 Integrands involving Va2 u2, Va2 + u2 or V«2 a2 416
13.12 Integrals of the form f . {fX +. B)dx.n 420
J (x2 + bx + c)n
13.13 Integration of rational functions by partial fractions 423
13.14 Integration by partial fractions (continued) 427
13.15 Rational functions of sin x and cos x 429
13.16 Miscellaneous review exercises 430
13.17 Tables of integrals 432
13.18 Simpson s rule 433
Chapter 14: CONICS
14.1 Introduction 439
14.2 Definition of a conic 441
14.3 Central conies (e # 1) 444
14.4 The ellipse (e 1) 447
14.5 Reflection properties 451
14.6 The hyperbola (e 1) 454
14.7 Other definitions of central conies 460
14.8 The rotation transformation 463
14.9 The graph of any second degree equation 469
14.10 The discriminant 473
14.11 Some problems related to conies 475
Chapter 15: POLAR COORDINATES
15.1 Polar coordinates of a point 479
15.2 The graph of a polar equation 486
15.3 Lines, circles, and conies 493
15.4 Angle from the radius vector to the tangent line 501
15.5 Intersection of curves in polar coordinates 504
15.6 Plane areas in polar coordinates 507
CONTENTS xiii
Chapter 16: PARAMETRIC EQUATIONS AND VECTORS IN
THE PLANE
16.1 Plane curves 512
16.2 The cycloid 518
16.3 Functions defined by parametric equations 521
16.4 Length of a plane arc 524
16.5 Vectors in the plane 530
16.6 Scalars, dot product, and basis vectors 535
16.7 Vector functions 546
16.8 Curvilinear motion 544
16.9 Vector components. Curvature 547
16.10 Motion of a particle sliding on a plane curve. A property of the cycloid 553
Chapter 17: INDETERMINATE FORMS. IMPROPER INTEGRALS
17.1 Cauchy s mean value theorem 559
17.2 Indeterminate forms 561
17.3 l H6pital s rules 562
17.4 Other indeterminate forms 566
17.5 Infinite limits of integration 568
17.6 Comparison test for convergence 572
17.7 Infinite integrands 575
Chapter 18: THREE DIMENSIONAL SPACES
18.1 Cartesian coordinates in three space 581
18.2 Three dimensional vectors 588
18.3 The cross product 596
18.4 Planes in three dimensional space 600
18.5 Lines in three space 608
18.6 Surfaces 615
18.7 Cylinders 616
18.8 Cylindrical and spherical coordinates 620
18.9 Surfaces of revolution 625
18.10 Symmetry, traces, and plane sections of a surface 627
18.11 Quadric surfaces 631
18.12 Procedure for sketching a surface 637
18.13 Supplementary exercises 638
Chapter 19: VECTOR FUNCTIONS IN THREE DIMENSIONAL
SPACE
19.1 Vector functions 641
19.2 Velocity, acceleration, and arc length 646
19.3 Curvature. Vector components 650
19.4 The laws of planetary motion 656
xiv CONTENTS
Chapter 20: LINEAR ALGEBRA
20.1 Groups 661
20.2 Vector spaces 665
20.3 M Dimensional vectors 670
20.4 Introduction to matrices 674
20.5 Algebra of matrices 682
20.6 Determinants 689
20.7 Properties of determinants 696
20.8 Rank of a matrix. General linear systems 701
Chapter 21: PARTIAL DIFFERENTIATION
21.1 Functions of two or more variables 711
21.2 Partial derivatives 714
21.3 Limits and continuity 718
21.4 Increments and differentials of functions of several variables 724
21.5 Chain rule 727
21.6 The directional derivative and the gradient 732
21.7 Tangent planes and normal lines to a surface 740
21.8 Extrema of a function of two variables 743
21.9 Exact differentials 747
21.10 Line integrals 751
21.11 Work 759
21.12 Supplementary exercises 764
Chapter 22: MULTIPLE INTEGRALS
22.1 Double integrals 768
22.2 Iterated integrals 774
22.3 Evaluation of double integrals by means of iterated integrals 777
22.4 Other applications of double integrals 781
22.5 Green s theorem 787
22.6 Double integrals in polar coordinates 791
22.7 Triple integrals 798
22.8 Applications in rectangular coordinates 802
22.9 Cylindrical and spherical coordinates 805
Chapter 23: INFINITE SERIES
23.1 Sequences 812
23.2 Infinite series 816
23.3 Tests for convergence of series of positive terms 822
23.4 Alternating series. Absolute convergence 830
23.5 Power series 834
23.6 Functions denned by power series 839
23.7 Taylor s formula 843
23.8 Other forms of the remainder in Taylor s theorem 848
23.9 Complex variable 856
CONTENTS xv
Chapter 24: DIFFERENTIAL EQUATIONS
24.1 Ordinary differential equations 862
24.2 Equations of first order and first degree 864
24.3 Homogeneous equations of the first order and first degree 869
24.4 Exact equations of the first order and first degree 870
24.5 Linear equations of first order 873
24.6 Second order equations solvable by first order methods 875
24.7 Linear equations of any order 880
24.8 Homogeneous linear equations with constant coefficients 881
24.9 Solution of second order homogeneous linear equations with constant
coefficients 882
24.10 Nonhomogeneous linear equations of order two 886
24.11 A vibrating spring 890
24.12 Electric circuits 895
24.13 Linear differential equations with nonconstant coefficients 901
APPENDIX
A.I Theorems on limits 906
A.2 Theorems on continuous functions 908
A.3 Formulas from geometry and trigonometry 914
A.4 A short table of integrals 916
A.5 Numerical tables 926
ANSWERS TO ODD NUMBERED EXERCISES 939
INDEX 977
|
adam_txt |
contents
Preface vii
Chapter 1: NUMBERS
1.1 Introduction to real numbers 1
1.2 Sets 4
1.3 Fields 7
1.4 Ordered fields. Inequalities 11
1.5 Bounded sets. The completeness axiom 16
1.6 The coordinate line. Intervals 18
1.7 Absolute values 23
1.8 Natural numbers and induction 28
Chapter 2: THE CARTESIAN PLANE
2.1 Rectangular Cartesian coordinates 32
2.2 Slope and midpoint of a line segment 36
2.3 Subsets of the Cartesian plane. Graphs of equations 40
2.4 The straight line 44
2.5 Parallel and perpendicular lines. Distance between a point and a line 48
2.6 Angle from one line to another 54
2.7 The circle 58
2.8 The parabola 62
2.9 Sketching graphs of equations 68
2.10 Translation of coordinate axes 73
2.11 Graphs of inequalities 80
Chapter: 3 FUNCTIONS AND THEIR GRAPHS
3.1 Functions 86
3.2 Operations on functions 91
3.3 Special functions 93
Chapter 4: LIMITS AND CONTINUITY
4.1 Introduction to limits 98
4.2 Refinement of the concept of limit 101
ix
x CONTENTS
4.3 Definition of the limit of a function 108
4.4 Theorems on limits 115
4.5 One sided limits 120
4.6 Continuity 122
4.7 Increments 127
Chapter 5: THE DERIVATIVE
5.1 Tangent to a curve 131
5.2 Instantaneous velocity 134
5.3 The derivative 137
5.4 Rate of change 141
5.5 The derivative and continuity 144
Chapter 6: FORMULAS FOR DIFFERENTIATION OF
ALGEBRAIC FUNCTIONS
6.1 Derivative of a polynomial function 149
6.2 Derivative of a product or quotient of functions 152
6.3 Chain rule for differentiating composite functions 155
6.4 Derivative of any rational power of a function 159
6.5 Derivatives of higher order 162
6.6 Implicit differentiation 165
6.7 Tangents and normals 168
6.8 Related rates 171
Chapter 7: THE MEAN VALUE THEOREM AND
APPLICATIONS
7.1 Rolle's theorem 176
7.2 The mean value theorem 181
7.3 Increasing functions and decreasing functions 184
7.4 Velocity and acceleration in rectilinear motion 187
7.5 Differentials 190
7.6 An extension of the mean value theorem 194
7.7 Differentials as linear approximations 194
Chapter 8: FURTHER APPLICATIONS OF DERIVATIVES
8.1 Relative extrema 199
8.2 Second derivative test for relative extrema 203
8.3 Finding the extrema 204
8.4 Applied problems in maxima and minima 205
8.5 Applications to economics 212
8.6 Concavity. Points of inflection 215
8.7 Limits as x— oo. Asymptotes 219
8.8 Graph sketching 225
8.9 Newton's method for determining the roots of f(x) = 0 228
CONTENTS xi
Chapter 9: ANTIDERIVATIVES
9.1 Introduction 234
9.2 Finding antiderivatives 236
9.3 Generalized power formula for antiderivatives 238
9.4 Some applications of antiderivatives 241
Chapter 10: THE DEFINITE INTEGRAL
10.1 Introduction to area 245
10.2 Summation notation 251
10.3 The definite integral 254
10.4 Lower sums and upper sums 260
10.5 Existence of £ f(x)dx 264
10.6 Approximate integration by the trapezoidal rule 267
10.7 Properties of definite integrals 270
10.8 The mean value theorem for integrals 274
10.9 Integrals with variable upper limits 275
10.10 The fundamental theorem of integral calculus 278
10.11 Finding the value of a definite integral 279
Chapter 11: APPLICATIONS OF DEFINITE INTEGRALS
11.1 Plane areas 282
11.2 Volume of a solid of revolution 289
11.3 Volume by cylindrical shells 295
11.4 Centroid of a plane region 300
11.5 Centroid of a solid of revolution 312
11.6 Arc length in rectangular coordinates 317
11.7 Area of a surface of revolution 321
11.8 Liquid pressure 324
11.9 Work 328
11.10 Gravitational attraction 332
11.11 Work and gravitational attraction. Kinetic energy 335
11.12 Rockets 340
Chapter 12: TRANSCENDENTAL FUNCTIONS
12.1 The natural logarithmic function 346
12.2 Graph of the natural logarithmic function 350
12.3 Logarithmic differentiation 353
12.4 Inverse of a function 354
12.5 The exponential function 361
12.6 Exponential and logarithmic functions with bases other than e 366
12.7 Trigonometric functions 370
12.8 Some trigonometric limits 375
12.9 Derivatives of the trigonometric functions 377
12.10 Inverse trigonometric functions 380
xii CONTENTS
12.11 Hyperbolic functions 387
12.12 Inverse hyperbolic functions 391
Chapter 13: TECHNIQUES OF INTEGRATION
13.1 Introduction 394
13.2 The basic integration formulas 395
13.3 Integration by substitution 397
13.4 The first four basic formulas of integration 399
13.5 The basic trigonometric formulas 401
13.6 The basic inverse trigonometric forms 402
13.7 Integration by parts 405
13.8 Integrals involving *V ax + b 408
13.9 Definite integrals. Change of limits 409
13.10 Some trigonometric integrals 412
13.11 Integrands involving Va2 u2, Va2 + u2 or V«2 a2 416
13.12 Integrals of the form f . {fX +. B)dx.n 420
J (x2 + bx + c)n
13.13 Integration of rational functions by partial fractions 423
13.14 Integration by partial fractions (continued) 427
13.15 Rational functions of sin x and cos x 429
13.16 Miscellaneous review exercises 430
13.17 Tables of integrals 432
13.18 Simpson's rule 433
Chapter 14: CONICS
14.1 Introduction 439
14.2 Definition of a conic 441
14.3 Central conies (e # 1) 444
14.4 The ellipse (e 1) 447
14.5 Reflection properties 451
14.6 The hyperbola (e 1) 454
14.7 Other definitions of central conies 460
14.8 The rotation transformation 463
14.9 The graph of any second degree equation 469
14.10 The discriminant 473
14.11 Some problems related to conies 475
Chapter 15: POLAR COORDINATES
15.1 Polar coordinates of a point 479
15.2 The graph of a polar equation 486
15.3 Lines, circles, and conies 493
15.4 Angle from the radius vector to the tangent line 501
15.5 Intersection of curves in polar coordinates 504
15.6 Plane areas in polar coordinates 507
CONTENTS xiii
Chapter 16: PARAMETRIC EQUATIONS AND VECTORS IN
THE PLANE
16.1 Plane curves 512
16.2 The cycloid 518
16.3 Functions defined by parametric equations 521
16.4 Length of a plane arc 524
16.5 Vectors in the plane 530
16.6 Scalars, dot product, and basis vectors 535
16.7 Vector functions 546
16.8 Curvilinear motion 544
16.9 Vector components. Curvature 547
16.10 Motion of a particle sliding on a plane curve. A property of the cycloid 553
Chapter 17: INDETERMINATE FORMS. IMPROPER INTEGRALS
17.1 Cauchy's mean value theorem 559
17.2 Indeterminate forms 561
17.3 l'H6pital's rules 562
17.4 Other indeterminate forms 566
17.5 Infinite limits of integration 568
17.6 Comparison test for convergence 572
17.7 Infinite integrands 575
Chapter 18: THREE DIMENSIONAL SPACES
18.1 Cartesian coordinates in three space 581
18.2 Three dimensional vectors 588
18.3 The cross product 596
18.4 Planes in three dimensional space 600
18.5 Lines in three space 608
18.6 Surfaces 615
18.7 Cylinders 616
18.8 Cylindrical and spherical coordinates 620
18.9 Surfaces of revolution 625
18.10 Symmetry, traces, and plane sections of a surface 627
18.11 Quadric surfaces 631
18.12 Procedure for sketching a surface 637
18.13 Supplementary exercises 638
Chapter 19: VECTOR FUNCTIONS IN THREE DIMENSIONAL
SPACE
19.1 Vector functions 641
19.2 Velocity, acceleration, and arc length 646
19.3 Curvature. Vector components 650
19.4 The laws of planetary motion 656
xiv CONTENTS
Chapter 20: LINEAR ALGEBRA
20.1 Groups 661
20.2 Vector spaces 665
20.3 M Dimensional vectors 670
20.4 Introduction to matrices 674
20.5 Algebra of matrices 682
20.6 Determinants 689
20.7 Properties of determinants 696
20.8 Rank of a matrix. General linear systems 701
Chapter 21: PARTIAL DIFFERENTIATION
21.1 Functions of two or more variables 711
21.2 Partial derivatives 714
21.3 Limits and continuity 718
21.4 Increments and differentials of functions of several variables 724
21.5 Chain rule 727
21.6 The directional derivative and the gradient 732
21.7 Tangent planes and normal lines to a surface 740
21.8 Extrema of a function of two variables 743
21.9 Exact differentials 747
21.10 Line integrals 751
21.11 Work 759
21.12 Supplementary exercises 764
Chapter 22: MULTIPLE INTEGRALS
22.1 Double integrals 768
22.2 Iterated integrals 774
22.3 Evaluation of double integrals by means of iterated integrals 777
22.4 Other applications of double integrals 781
22.5 Green's theorem 787
22.6 Double integrals in polar coordinates 791
22.7 Triple integrals 798
22.8 Applications in rectangular coordinates 802
22.9 Cylindrical and spherical coordinates 805
Chapter 23: INFINITE SERIES
23.1 Sequences 812
23.2 Infinite series 816
23.3 Tests for convergence of series of positive terms 822
23.4 Alternating series. Absolute convergence 830
23.5 Power series 834
23.6 Functions denned by power series 839
23.7 Taylor's formula 843
23.8 Other forms of the remainder in Taylor's theorem 848
23.9 Complex variable 856
CONTENTS xv
Chapter 24: DIFFERENTIAL EQUATIONS
24.1 Ordinary differential equations 862
24.2 Equations of first order and first degree 864
24.3 Homogeneous equations of the first order and first degree 869
24.4 Exact equations of the first order and first degree 870
24.5 Linear equations of first order 873
24.6 Second order equations solvable by first order methods 875
24.7 Linear equations of any order 880
24.8 Homogeneous linear equations with constant coefficients 881
24.9 Solution of second order homogeneous linear equations with constant
coefficients 882
24.10 Nonhomogeneous linear equations of order two 886
24.11 A vibrating spring 890
24.12 Electric circuits 895
24.13 Linear differential equations with nonconstant coefficients 901
APPENDIX
A.I Theorems on limits 906
A.2 Theorems on continuous functions 908
A.3 Formulas from geometry and trigonometry 914
A.4 A short table of integrals 916
A.5 Numerical tables 926
ANSWERS TO ODD NUMBERED EXERCISES 939
INDEX 977 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Purcell, Edwin J. |
author_facet | Purcell, Edwin J. |
author_role | aut |
author_sort | Purcell, Edwin J. |
author_variant | e j p ej ejp |
building | Verbundindex |
bvnumber | BV021928980 |
callnumber-first | Q - Science |
callnumber-label | QA303 |
callnumber-raw | QA303 |
callnumber-search | QA303 |
callnumber-sort | QA 3303 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 399 |
ctrlnum | (OCoLC)53715078 (DE-599)BVBBV021928980 |
dewey-full | 515/.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.15 |
dewey-search | 515/.15 |
dewey-sort | 3515 215 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01912nam a2200517zc 4500</leader><controlfield tag="001">BV021928980</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040301000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960311s1972 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)53715078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021928980</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA303</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.15</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 399</subfield><subfield code="0">(DE-625)143236:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Purcell, Edwin J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculus with analytic geometry</subfield><subfield code="c">Edwin J. Purcell</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Englewood Cliffs, NJ</subfield><subfield code="b">Prentice Hall</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 989 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcul infinitésimal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie analytique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Analytic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144137&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015144137</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021928980 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:06:11Z |
indexdate | 2024-07-09T20:47:37Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015144137 |
oclc_num | 53715078 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XV, 989 S. |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Prentice Hall |
record_format | marc |
spelling | Purcell, Edwin J. Verfasser aut Calculus with analytic geometry Edwin J. Purcell 2. ed. Englewood Cliffs, NJ Prentice Hall 1972 XV, 989 S. txt rdacontent n rdamedia nc rdacarrier Calcul infinitésimal Géométrie analytique Calculus Geometry, Analytic Reelle Analysis (DE-588)4627581-2 gnd rswk-swf Infinitesimalrechnung (DE-588)4072798-1 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 s DE-604 Reelle Analysis (DE-588)4627581-2 s Infinitesimalrechnung (DE-588)4072798-1 s 1\p DE-604 Analysis (DE-588)4001865-9 s 2\p DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144137&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Purcell, Edwin J. Calculus with analytic geometry Calcul infinitésimal Géométrie analytique Calculus Geometry, Analytic Reelle Analysis (DE-588)4627581-2 gnd Infinitesimalrechnung (DE-588)4072798-1 gnd Analysis (DE-588)4001865-9 gnd Analytische Geometrie (DE-588)4001867-2 gnd |
subject_GND | (DE-588)4627581-2 (DE-588)4072798-1 (DE-588)4001865-9 (DE-588)4001867-2 |
title | Calculus with analytic geometry |
title_auth | Calculus with analytic geometry |
title_exact_search | Calculus with analytic geometry |
title_exact_search_txtP | Calculus with analytic geometry |
title_full | Calculus with analytic geometry Edwin J. Purcell |
title_fullStr | Calculus with analytic geometry Edwin J. Purcell |
title_full_unstemmed | Calculus with analytic geometry Edwin J. Purcell |
title_short | Calculus with analytic geometry |
title_sort | calculus with analytic geometry |
topic | Calcul infinitésimal Géométrie analytique Calculus Geometry, Analytic Reelle Analysis (DE-588)4627581-2 gnd Infinitesimalrechnung (DE-588)4072798-1 gnd Analysis (DE-588)4001865-9 gnd Analytische Geometrie (DE-588)4001867-2 gnd |
topic_facet | Calcul infinitésimal Géométrie analytique Calculus Geometry, Analytic Reelle Analysis Infinitesimalrechnung Analysis Analytische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015144137&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT purcelledwinj calculuswithanalyticgeometry |