An introduction to stochastic processes: with special reference to methods and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
1966
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 363 S. |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021922404 | ||
003 | DE-604 | ||
005 | 20040301000000.0 | ||
007 | t | ||
008 | 941229s1966 |||| 00||| eng d | ||
035 | |a (OCoLC)527235 | ||
035 | |a (DE-599)BVBBV021922404 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a QA273 | |
082 | 0 | |a 519 | |
084 | |a CM 3000 |0 (DE-625)18945: |2 rvk | ||
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Bartlett, Maurice S. |d 1910-2002 |e Verfasser |0 (DE-588)123228247 |4 aut | |
245 | 1 | 0 | |a An introduction to stochastic processes |b with special reference to methods and applications |
250 | |a 2. ed. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 1966 | |
300 | |a XVI, 363 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Probabilidade (Estatistica) |2 larpcal | |
650 | 7 | |a Processos Estocasticos |2 larpcal | |
650 | 7 | |a Stochastische processen |2 gtt | |
650 | 4 | |a Stochastic processes | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015137563&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015137563 |
Datensatz im Suchindex
_version_ | 1804135876154884096 |
---|---|
adam_text | CONTENTS
Preface to the First Edition page xi
Preface to the Second Edition page xv
Chapter 1. general introduction
§1 1 Preliminary remarks 1
1 2 Elements of probability theory 2
1 21 Distribution functions and their properties 4
1*3 Theoretical classification and specification of
stochastic processes ¦ 9
1 31 The characteristic functional 13
Chapter 2. random sequences
2 1 The random walk 15
2 11 Renewals 20
2 2 Markov chains 24
2 21 Classification by asymptotic behaviour 30
2 22 Nearest neighbour systems 34
2 • 23 Wald s identity for Markov chains 39
2 3 Multiplicative chains ^
Chapter 3. processes in continuous time
3 1 The additive process 47
3 2 Markov chains 52
3 3 Recurrence and passage times for renewal processes 58
3 31 Ergodic properties 68
3 32 Alternative method for Markov chains 71
3 4 Multiplicative chains 73
3*41 The effect of immigration SO
3 42 Point processes 82
3 5 General equations for Markov processes 87
viii CONTENTS
Chapter 4. miscellaneous statistical applications
§4 1 Some applications of the random walk or additive
process Pa^e 95
4 2 Simple renewal as a Markov process 102
4 21 Queues 104
4 • 22 Theory of storage 113
4 3 Population growth as a multiplicative process 117
4 31 Growth and mutation in bacterial popula¬
tions 124
4 32 Population genetics 131
4 4 Epidemic models „ 135
Chapter 5. limiting stochastic operations
5 1 Stochastic convergence 147
5 11 Stochastic differentiation and integration 151
5 2 Stochastic linear difference and differential equa¬
tions 156
5 21 Relations between direct stochastic equa¬
tions and distribution equations 164
5 22 Equations for stochastic path integrals 170
Chapter 6. stationaby processes
6 1 Processes stationary to the second order 174
6 11 The spectral function 176
6 12 Stationary point processes and covariance
densities 181
6 13 The spectra of stationary point processes 183
8 2 Generalized harmonic analysis 186
6 21 The ergodic property 189
6 3 Processes with continuous spectra 191
6 31 Further examples of stationary processes 195
6 4 Complete stationarity 197
6 41 Recurrence times for completely stationary
processes 200
6 5 Multivariate and multidimensional stationary
processes 207
6 51 Isotropy and other special conditions 210
6 52 Two dimensional point and line processes 215
6 53 Stationary processes on the circle and sphere 221
CONTENTS IX
Chapter 7. prediction and communication theoby
§7 1 Linear prediction for stationary processes page 224:
7 11 Further associated problems 229
7 12 Regulation and control 234
7 • 2 Theory of information and communication 236
7 21 Communication systems 238
Chapter 8. the statistical analysis of
STOCHASTIC PBOCESSES
8 1 Principles of statistical inference 251
8 11 Application to stochastic processes 256
8 2 The analysis of probability chains 258
8 21 Goodness of fit of marginal frequency dis¬
tributions 268
8 3 Estimation problems 270
Chapter 9. cobbelation analysis of time sebies
9 1 Correlation and regression analysis of stationary
sequences 283
9 11 Goodness of fit tests 289
9 12 Time series specified for continuous time 295
9 13 Numerical examples 299
9 2 Harmonic (periodogram) analysis 304
9 21 Smoothing techniques in relation to the
mean square error 314
9 22 Further notes and problems related to the
spectrum 318
9 • 23 The spectral analysis of point processes 324
9 3 Multivariate autoregressive series 331
9 • 4 Multidimensional series 338
9 41 The analysis of multidimensional point pro¬
cesses 340
Bibliography 342
Glossary of stochastic processes 356
Index 357
|
adam_txt |
CONTENTS
Preface to the First Edition page xi
Preface to the Second Edition page xv
Chapter 1. general introduction
§1 1 Preliminary remarks 1
1 2 Elements of probability theory 2
1 21 Distribution functions and their properties 4
1*3 Theoretical classification and specification of
stochastic processes ¦ 9
1 31 The characteristic functional 13
Chapter 2. random sequences
2 1 The random walk 15
2 11 Renewals 20
2 2 Markov chains 24
2 21 Classification by asymptotic behaviour 30
2 22 Nearest neighbour systems 34
2 • 23 Wald's identity for Markov chains 39
2 3 Multiplicative chains ^
Chapter 3. processes in continuous time
3 1 The additive process 47
3 2 Markov chains 52
3 3 Recurrence and passage times for renewal processes 58
3 31 Ergodic properties 68
3 32 Alternative method for Markov chains 71
3 4 Multiplicative chains 73
3*41 The effect of immigration SO
3 42 Point processes 82
3 5 General equations for Markov processes 87
viii CONTENTS
Chapter 4. miscellaneous statistical applications
§4 1 Some applications of the random walk or additive
process Pa^e 95
4 2 Simple renewal as a Markov process 102
4 21 Queues 104
4 • 22 Theory of storage 113
4 3 Population growth as a multiplicative process 117
4 31 Growth and mutation in bacterial popula¬
tions 124
4 32 Population genetics 131
4 4 Epidemic models „ 135
Chapter 5. limiting stochastic operations
5 1 Stochastic convergence 147
5 11 Stochastic differentiation and integration 151
5 2 Stochastic linear difference and differential equa¬
tions 156
5 21 Relations between direct stochastic equa¬
tions and distribution equations 164
5 22 Equations for stochastic path integrals 170
Chapter 6. stationaby processes
6 1 Processes stationary to the second order 174
6 11 The spectral function 176
6 12 Stationary point processes and covariance
densities 181
6 13 The spectra of stationary point processes 183
8 2 Generalized harmonic analysis 186
6 21 The ergodic property 189
6 3 Processes with continuous spectra 191
6 31 Further examples of stationary processes 195
6 4 Complete stationarity 197
6 41 Recurrence times for completely stationary
processes 200
6 5 Multivariate and multidimensional stationary
processes 207
6 51 Isotropy and other special conditions 210
6 52 Two dimensional point and line processes 215
6 53 Stationary processes on the circle and sphere 221
CONTENTS IX
Chapter 7. prediction and communication theoby
§7 1 Linear prediction for stationary processes page 224:
7 11 Further associated problems 229
7 12 Regulation and control 234
7 • 2 Theory of information and communication 236
7 21 Communication systems 238
Chapter 8. the statistical analysis of
STOCHASTIC PBOCESSES
8 1 Principles of statistical inference 251
8 11 Application to stochastic processes 256
8 2 The analysis of probability chains 258
8 21 Goodness of fit of marginal frequency dis¬
tributions 268
8 3 Estimation problems 270
Chapter 9. cobbelation analysis of time sebies
9 1 Correlation and regression analysis of stationary
sequences 283
9 11 Goodness of fit tests 289
9 12 Time series specified for continuous time 295
9 13 Numerical examples 299
9 2 Harmonic (periodogram) analysis 304
9 21 Smoothing techniques in relation to the
mean square error 314
9 22 Further notes and problems related to the
spectrum 318
9 • 23 The spectral analysis of point processes 324
9 3 Multivariate autoregressive series 331
9 • 4 Multidimensional series 338
9 41 The analysis of multidimensional point pro¬
cesses 340
Bibliography 342
Glossary of stochastic processes 356
Index 357 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bartlett, Maurice S. 1910-2002 |
author_GND | (DE-588)123228247 |
author_facet | Bartlett, Maurice S. 1910-2002 |
author_role | aut |
author_sort | Bartlett, Maurice S. 1910-2002 |
author_variant | m s b ms msb |
building | Verbundindex |
bvnumber | BV021922404 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273 |
callnumber-search | QA273 |
callnumber-sort | QA 3273 |
callnumber-subject | QA - Mathematics |
classification_rvk | CM 3000 QH 237 SK 820 |
ctrlnum | (OCoLC)527235 (DE-599)BVBBV021922404 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Psychologie Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Psychologie Mathematik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01572nam a2200421zc 4500</leader><controlfield tag="001">BV021922404</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040301000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">941229s1966 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)527235</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021922404</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 3000</subfield><subfield code="0">(DE-625)18945:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bartlett, Maurice S.</subfield><subfield code="d">1910-2002</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123228247</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to stochastic processes</subfield><subfield code="b">with special reference to methods and applications</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 363 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilidade (Estatistica)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processos Estocasticos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische processen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015137563&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015137563</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV021922404 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:05:48Z |
indexdate | 2024-07-09T20:47:28Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015137563 |
oclc_num | 527235 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XVI, 363 S. |
publishDate | 1966 |
publishDateSearch | 1966 |
publishDateSort | 1966 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Bartlett, Maurice S. 1910-2002 Verfasser (DE-588)123228247 aut An introduction to stochastic processes with special reference to methods and applications 2. ed. Cambridge Cambridge Univ. Press 1966 XVI, 363 S. txt rdacontent n rdamedia nc rdacarrier Probabilidade (Estatistica) larpcal Processos Estocasticos larpcal Stochastische processen gtt Stochastic processes Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Stochastischer Prozess (DE-588)4057630-9 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015137563&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bartlett, Maurice S. 1910-2002 An introduction to stochastic processes with special reference to methods and applications Probabilidade (Estatistica) larpcal Processos Estocasticos larpcal Stochastische processen gtt Stochastic processes Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4151278-9 |
title | An introduction to stochastic processes with special reference to methods and applications |
title_auth | An introduction to stochastic processes with special reference to methods and applications |
title_exact_search | An introduction to stochastic processes with special reference to methods and applications |
title_exact_search_txtP | An introduction to stochastic processes with special reference to methods and applications |
title_full | An introduction to stochastic processes with special reference to methods and applications |
title_fullStr | An introduction to stochastic processes with special reference to methods and applications |
title_full_unstemmed | An introduction to stochastic processes with special reference to methods and applications |
title_short | An introduction to stochastic processes |
title_sort | an introduction to stochastic processes with special reference to methods and applications |
title_sub | with special reference to methods and applications |
topic | Probabilidade (Estatistica) larpcal Processos Estocasticos larpcal Stochastische processen gtt Stochastic processes Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Probabilidade (Estatistica) Processos Estocasticos Stochastische processen Stochastic processes Stochastischer Prozess Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015137563&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bartlettmaurices anintroductiontostochasticprocesseswithspecialreferencetomethodsandapplications |