Logic, computers, and sets:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
New York
Chelsea
1970
|
Ausgabe: | Repr. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Früher u.d.T.: Wang, Hao: A survey of mathematical logic |
Beschreibung: | X, 651 S. |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021895881 | ||
003 | DE-604 | ||
005 | 20040301000000.0 | ||
007 | t | ||
008 | 910219s1970 |||| 00||| und d | ||
035 | |a (OCoLC)256625417 | ||
035 | |a (DE-599)BVBBV021895881 | ||
040 | |a DE-604 |b ger | ||
041 | |a und | ||
049 | |a DE-706 | ||
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
100 | 1 | |a Wang, Hao |e Verfasser |4 aut | |
245 | 1 | 0 | |a Logic, computers, and sets |c Hao Wang |
250 | |a Repr. | ||
264 | 1 | |a New York |b Chelsea |c 1970 | |
300 | |a X, 651 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Früher u.d.T.: Wang, Hao: A survey of mathematical logic | ||
650 | 0 | 7 | |a Menge |0 (DE-588)4038613-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Menge |0 (DE-588)4038613-2 |D s |
689 | 0 | 1 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | 2 | |a Wang, Hao |4 aut |t Survey of mathematical logic |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015111066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015111066 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135840509591552 |
---|---|
adam_text | CONTENTS
Preface Hi
PART ONE GENERAL SKETCHES
CHAPTER I. The Axiomatic Method 1
§ 1. Geometry and axiomatic systems 1
§ 2. The problem of adequacy 5
§ 3. The problem of evidence 8
§ 4. A very elementary system L 14
§ 5. The theory of non negative integers 19
§ 6. Godel s theorems 23
§ 7. Formal theories as applied elementary logics 28
CHAPTER II. Eighty Years of Foundational Studies 34
§ 1. Analysis, reduction and formalization 34
§ 2. Anthropologism 39
§ 3. Finitism 41
§ 4. Intuitionism 43
§ 5. Predicativism: standard results on number as being 44
§6. Predicativism: predicative analysis and beyond 46
§7. Platonism 48
§ 8. Logic in the narrower sense 53
§ 9. Applications 56
CHAPTER III. On Formalization 57
§ 1. Systematization 57
§ 2. Communication 58
§ 3. Clarity and consolidation 59
§4. Rigour 60
§ 5. Approximation to intuition 61
§ 6. Application to philosophy 63
§ 7. Too many digits 64
§ 8. Ideal language 65
§ 9. How artificial a language? 66
§ 10. The paradoxes 67
v
CHAPTER IV. The Axiomatization of Arithmetic 68
§ 1. Introduction 68
§ 2. Grassmann s calculus 69
§3. Dedekind s letter 73
§ 4. Dedekind s essay 74
§ 5. Adequacy of Dedekind s characterization 77
§6. Dedekind and Frege 79
CHAPTER V. Computation 82
§ 1. The concept of computability 82
§ 2. General recursive functions 89
§ 3. The Friedberg Mucnik theorem 93
§ 4. Metamathematics 97
§ 5. Symbolic logic and calculating machines 100
§ 6. The control of errors in calculating machines 107
PART TWO CALCULATING MACHINES
CHAPTER VI. A Variant to Turing s Theory of Calculating
Machines 127
§ 1. Introduction 127
§ 2. The basic machine B 128
§ 3. All recursive functions are 5 computable 133
§ 4. Basic instructions 144
§ 5. Universal Turing machines 150
§ 6. Theorem proving machines 154
CHAPTER VII. Universal Turing Machines: An Exercise in Coding 160
CHAPTER VIII. The Logic of Automata (with A. W. Burks) .... 175
§ 1. Introduction 175
§ 2. Automata and nets 175
§ 3. Transition matrices and matrix form nets 202
§ 4. Cycles, nets, and quantifiers 214
CHAPTER IX. Toward Mechanical Mathematics 224
§ 1. Introduction 224
§ 2. The propositional calculus (system P) 229
§ 3. Program /: the propositional calculus P 231
vi
§ 4. Program //: selecting theorems in the prepositional calculus .. 234
§ 5. Completeness and consistency of the system P and P, 236
§ 6. The system Pe: the propositional calculus with equality 237
§ 7. Preliminaries to the predicate calculus 238
§ 8. The system Qp and the AE predicate calculus 240
§ 9. Program /// 243
§ 10. Systems Qq and Qr alternative formulations of the AE
predicate calculus 245
§ 11. System Q: the whole predicate calculus with equality 248
§ 12. Conclusions 253
Appendices I—VII
CHAPTER X. Circuit Synthesis by Solving Sequential Boolean
Equations 269
§ 1. Summary of problems and results 269
§ 2. Sequential Boolean functional and equations 270
§ 3. The method of sequential tables 272
§ 4. Deterministic solutions 274
§5. Related problems 279
§ 6. An effective criterion of general solvability 281
§ 7. A sufficient condition for effective solvability 286
§ 8. An effective criterion of effective solvability 290
§ 9. The normal form (5) of sequential Boolean equations 294
§ 10. Apparently richer languages 299
§ 11. Turing machines and growing automata 301
PART THREE FORMAL NUMBER THEORY
CHAPTER XI. The Predicate Calculus 307
§ 1. The propositional calculus 307
§ 2. Formulations of the predicate calculus 309
§ 3. Completeness of the predicate calculus 317
CHAPTER XII. Many Sorted Predicate Calculi 322
§ 1. One sorted and many sorted theories 322
§ 2. The many sorted elementary logics Ln 326
§ 3. The theorem (I) and the completeness of L» 328
§ 4. Proof of the theorem (IV) 329
vii
CHAPTER XIII. The Arithmetization of Metamathematics 334
§ 1. Godel numbering 334
§ 2. Recursive functions and the system Z 342
§ 3. Bernays lemma 345
§ 4. Arithmetic translations of axiom systems 352
CHAPTER XIV. Ackeemann s Consistency Proof 362
§ 1. The system Za 362
§ 2. Proof of finiteness 366
§ 3. Estimates of the substituents 370
§ 4. Interpretation of nonfinitist proofs 372
CHAPTER XV. Partial Systems of Number Theory 376
§ 1. Skolem s non standard model for number theory 376
§ 2. Some applications of formalized consistency proofs 379
PART FOUR IMPREDICATIVE SET THEORY
CHAPTER XVI. Different Axiom Systems 383
§ 1. The paradoxes 383
§ 2. Zerrnelo s set theory 388
§ 3. The Bernays set theory 394
§ 4. The theory of types, negative types, and new foundations .. 402
§ 5. A formal system of logic 415
§ 6. The systems of Ackermann and Frege 423
CHAPTER XVII. Relative Strength and Reducibility 432
§ 1. Relation between P and Q 432
§ 2. Finite axiomatization 436
§ 3. Finite sets and natural numbers 439
CHAPTER XVIII. Truth Definitions and Consistency Proofs 443
§ 1. Introduction 443
§ 2. A truth definition for Zermelo set theory 445
§ 3. Remarks on the construction of truth definitions in general .. 455
§ 4. Consistency proofs via truth definitions 459
§5. Relativity of number theory and in particular of induction .... 466
§ 6. Explanatory remarks 473
viii
CHAPTER XIX. Between Number Theory and Set Theory 478
§ 1. General set theory 480
§ 2. Predicative set theory 489
§ 3. Impredicative collections and ^ consistency 497
CHAPTER XX. Some Partial Systems 507
§ 1. Some formal details on class axioms 507
§ 2. A new tlieory of element and number 515
§ 3. Set theoretical basis for real numbers 525
§ 4. Functions of real variables 532
PART FIVE PREDICATIVE SET THEORY
CHAPTER XXI. Certain Predicates Defined by Induction Schemata 535
CHAPTER XXII. Undecidable Sentences Suggested by Semantic
Paradoxes 546
§ 1. Introduction 546
§ 2. Preliminaries 547
§ 3. Conditions which the set theory is to satisfy 549
§ 4. The Epimenides paradox 552
§ 5. The Richard paradox 554
§ 6. Final remarks 557
CHAPTER XXIII. The Formalization of Mathematics 559
§ 1. Original sin of the formal logician 559
§ 2. Historical perspective 559
§3. What is a set? 561
§ 4. The indenumerable and the impredicative 562
§ 5. The limitations upon formalization 564
§ 6. A constructive theory 565
§ 7. The denumerability of all sets 567
§8. Consistency and adequacy 569
§ 9. The axiom of reducibility 574
§ 10. The vicious circle principle 576
§ 11. Predicative sets and constructive ordinals 578
§ 12. Concluding remarks 581
CHAPTER XXIV. Some Formal Details on Predicative Set Theories 585
§ 1. The underlying logic 585
ix
§ 2. The axioms of the theory 2 589
§ 3. Preliminary considerations 593
§ 4. The theory of non negative integers 597
§ 5. The enumerability of all sets 601
§ 6. Consequences of the enumerations 606
§ 7. The theory of real numbers 608
§ 8. Intuitive models 611
§ 9. Proofs of consistency 614
§ 10. The system R 619
CHAPTER XXV. Ordinal Numbers and Predicative Set Theory .... 624
§ 1. Systems of notation for ordinal numbers 625
§ 2. Strongly effective systems 627
§ 3. The Church Kleene class B and a new class C 632
§ 4. Partial Herbrand recursive functions 637
§ 5. Predicative set theory 639
§ 6. Two tentative definitions of predicative sets 646
§ 7. System H: the hyperarithmetic set theory 648
x
|
adam_txt |
CONTENTS
Preface Hi
PART ONE GENERAL SKETCHES
CHAPTER I. The Axiomatic Method 1
§ 1. Geometry and axiomatic systems 1
§ 2. The problem of adequacy 5
§ 3. The problem of evidence 8
§ 4. A very elementary system L 14
§ 5. The theory of non negative integers 19
§ 6. Godel's theorems 23
§ 7. Formal theories as applied elementary logics 28
CHAPTER II. Eighty Years of Foundational Studies 34
§ 1. Analysis, reduction and formalization 34
§ 2. Anthropologism 39
§ 3. Finitism 41
§ 4. Intuitionism 43
§ 5. Predicativism: standard results on number as being 44
§6. Predicativism: predicative analysis and beyond 46
§7. Platonism 48
§ 8. Logic in the narrower sense 53
§ 9. Applications 56
CHAPTER III. On Formalization 57
§ 1. Systematization 57
§ 2. Communication 58
§ 3. Clarity and consolidation 59
§4. Rigour 60
§ 5. Approximation to intuition 61
§ 6. Application to philosophy 63
§ 7. Too many digits 64
§ 8. Ideal language 65
§ 9. How artificial a language? 66
§ 10. The paradoxes 67
v
CHAPTER IV. The Axiomatization of Arithmetic 68
§ 1. Introduction 68
§ 2. Grassmann's calculus 69
§3. Dedekind's letter 73
§ 4. Dedekind's essay 74
§ 5. Adequacy of Dedekind's characterization 77
§6. Dedekind and Frege 79
CHAPTER V. Computation 82
§ 1. The concept of computability 82
§ 2. General recursive functions 89
§ 3. The Friedberg Mucnik theorem 93
§ 4. Metamathematics 97
§ 5. Symbolic logic and calculating machines 100
§ 6. The control of errors in calculating machines 107
PART TWO CALCULATING MACHINES
CHAPTER VI. A Variant to Turing's Theory of Calculating
Machines 127
§ 1. Introduction 127
§ 2. The basic machine B 128
§ 3. All recursive functions are 5 computable 133
§ 4. Basic instructions 144
§ 5. Universal Turing machines 150
§ 6. Theorem proving machines 154
CHAPTER VII. Universal Turing Machines: An Exercise in Coding 160
CHAPTER VIII. The Logic of Automata (with A. W. Burks) . 175
§ 1. Introduction 175
§ 2. Automata and nets 175
§ 3. Transition matrices and matrix form nets 202
§ 4. Cycles, nets, and quantifiers 214
CHAPTER IX. Toward Mechanical Mathematics 224
§ 1. Introduction 224
§ 2. The propositional calculus (system P) 229
§ 3. Program /: the propositional calculus P 231
vi
§ 4. Program //: selecting theorems in the prepositional calculus . 234
§ 5. Completeness and consistency of the system P and P, 236
§ 6. The system Pe: the propositional calculus with equality 237
§ 7. Preliminaries to the predicate calculus 238
§ 8. The system Qp and the AE predicate calculus 240
§ 9. Program /// 243
§ 10. Systems Qq and Qr\ alternative formulations of the AE
predicate calculus 245
§ 11. System Q: the whole predicate calculus with equality 248
§ 12. Conclusions 253
Appendices I—VII
CHAPTER X. Circuit Synthesis by Solving Sequential Boolean
Equations 269
§ 1. Summary of problems and results 269
§ 2. Sequential Boolean functional and equations 270
§ 3. The method of sequential tables 272
§ 4. Deterministic solutions 274
§5. Related problems 279
§ 6. An effective criterion of general solvability 281
§ 7. A sufficient condition for effective solvability 286
§ 8. An effective criterion of effective solvability 290
§ 9. The normal form (5) of sequential Boolean equations 294
§ 10. Apparently richer languages 299
§ 11. Turing machines and growing automata 301
PART THREE FORMAL NUMBER THEORY
CHAPTER XI. The Predicate Calculus 307
§ 1. The propositional calculus 307
§ 2. Formulations of the predicate calculus 309
§ 3. Completeness of the predicate calculus 317
CHAPTER XII. Many Sorted Predicate Calculi 322
§ 1. One sorted and many sorted theories 322
§ 2. The many sorted elementary logics Ln 326
§ 3. The theorem (I) and the completeness of L» 328
§ 4. Proof of the theorem (IV) 329
vii
CHAPTER XIII. The Arithmetization of Metamathematics 334
§ 1. Godel numbering 334
§ 2. Recursive functions and the system Z 342
§ 3. Bernays' lemma 345
§ 4. Arithmetic translations of axiom systems 352
CHAPTER XIV. Ackeemann's Consistency Proof 362
§ 1. The system Za 362
§ 2. Proof of finiteness 366
§ 3. Estimates of the substituents 370
§ 4. Interpretation of nonfinitist proofs 372
CHAPTER XV. Partial Systems of Number Theory 376
§ 1. Skolem's non standard model for number theory 376
§ 2. Some applications of formalized consistency proofs 379
PART FOUR IMPREDICATIVE SET THEORY
CHAPTER XVI. Different Axiom Systems 383
§ 1. The paradoxes 383
§ 2. Zerrnelo's set theory 388
§ 3. The Bernays set theory 394
§ 4. The theory of types, negative types, and "new foundations" . 402
§ 5. A formal system of logic 415
§ 6. The systems of Ackermann and Frege 423
CHAPTER XVII. Relative Strength and Reducibility 432
§ 1. Relation between P and Q 432
§ 2. Finite axiomatization 436
§ 3. Finite sets and natural numbers 439
CHAPTER XVIII. Truth Definitions and Consistency Proofs 443
§ 1. Introduction 443
§ 2. A truth definition for Zermelo set theory 445
§ 3. Remarks on the construction of truth definitions in general . 455
§ 4. Consistency proofs via truth definitions 459
§5. Relativity of number theory and in particular of induction . 466
§ 6. Explanatory remarks 473
viii
CHAPTER XIX. Between Number Theory and Set Theory 478
§ 1. General set theory 480
§ 2. Predicative set theory 489
§ 3. Impredicative collections and ^ consistency 497
CHAPTER XX. Some Partial Systems 507
§ 1. Some formal details on class axioms 507
§ 2. A new tlieory of element and number 515
§ 3. Set theoretical basis for real numbers 525
§ 4. Functions of real variables 532
PART FIVE PREDICATIVE SET THEORY
CHAPTER XXI. Certain Predicates Defined by Induction Schemata 535
CHAPTER XXII. Undecidable Sentences Suggested by Semantic
Paradoxes 546
§ 1. Introduction 546
§ 2. Preliminaries 547
§ 3. Conditions which the set theory is to satisfy 549
§ 4. The Epimenides paradox 552
§ 5. The Richard paradox 554
§ 6. Final remarks 557
CHAPTER XXIII. The Formalization of Mathematics 559
§ 1. Original sin of the formal logician 559
§ 2. Historical perspective 559
§3. What is a set? 561
§ 4. The indenumerable and the impredicative 562
§ 5. The limitations upon formalization 564
§ 6. A constructive theory 565
§ 7. The denumerability of all sets 567
§8. Consistency and adequacy 569
§ 9. The axiom of reducibility 574
§ 10. The vicious circle principle 576
§ 11. Predicative sets and constructive ordinals 578
§ 12. Concluding remarks 581
CHAPTER XXIV. Some Formal Details on Predicative Set Theories 585
§ 1. The underlying logic 585
ix
§ 2. The axioms of the theory 2 589
§ 3. Preliminary considerations 593
§ 4. The theory of non negative integers 597
§ 5. The enumerability of all sets 601
§ 6. Consequences of the enumerations 606
§ 7. The theory of real numbers 608
§ 8. Intuitive models 611
§ 9. Proofs of consistency 614
§ 10. The system R 619
CHAPTER XXV. Ordinal Numbers and Predicative Set Theory . 624
§ 1. Systems of notation for ordinal numbers 625
§ 2. Strongly effective systems 627
§ 3. The Church Kleene class B and a new class C 632
§ 4. Partial Herbrand recursive functions 637
§ 5. Predicative set theory 639
§ 6. Two tentative definitions of predicative sets 646
§ 7. System H: the hyperarithmetic set theory 648
x |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Wang, Hao Wang, Hao |
author_facet | Wang, Hao Wang, Hao |
author_role | aut aut |
author_sort | Wang, Hao |
author_variant | h w hw h w hw |
building | Verbundindex |
bvnumber | BV021895881 |
classification_rvk | CC 2600 |
ctrlnum | (OCoLC)256625417 (DE-599)BVBBV021895881 |
discipline | Philosophie |
discipline_str_mv | Philosophie |
edition | Repr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01402nam a2200373zc 4500</leader><controlfield tag="001">BV021895881</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040301000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910219s1970 |||| 00||| und d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)256625417</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021895881</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Hao</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Logic, computers, and sets</subfield><subfield code="c">Hao Wang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Chelsea</subfield><subfield code="c">1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 651 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Früher u.d.T.: Wang, Hao: A survey of mathematical logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Menge</subfield><subfield code="0">(DE-588)4038613-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Menge</subfield><subfield code="0">(DE-588)4038613-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2="2"><subfield code="a">Wang, Hao</subfield><subfield code="4">aut</subfield><subfield code="t">Survey of mathematical logic</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015111066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015111066</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021895881 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:04:22Z |
indexdate | 2024-07-09T20:46:54Z |
institution | BVB |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015111066 |
oclc_num | 256625417 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | X, 651 S. |
publishDate | 1970 |
publishDateSearch | 1970 |
publishDateSort | 1970 |
publisher | Chelsea |
record_format | marc |
spelling | Wang, Hao Verfasser aut Logic, computers, and sets Hao Wang Repr. New York Chelsea 1970 X, 651 S. txt rdacontent n rdamedia nc rdacarrier Früher u.d.T.: Wang, Hao: A survey of mathematical logic Menge (DE-588)4038613-2 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Menge (DE-588)4038613-2 s Mathematische Logik (DE-588)4037951-6 s 1\p DE-604 Wang, Hao aut Survey of mathematical logic HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015111066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wang, Hao Wang, Hao Logic, computers, and sets Menge (DE-588)4038613-2 gnd Mathematische Logik (DE-588)4037951-6 gnd |
subject_GND | (DE-588)4038613-2 (DE-588)4037951-6 |
title | Logic, computers, and sets |
title_alt | Survey of mathematical logic |
title_auth | Logic, computers, and sets |
title_exact_search | Logic, computers, and sets |
title_exact_search_txtP | Logic, computers, and sets |
title_full | Logic, computers, and sets Hao Wang |
title_fullStr | Logic, computers, and sets Hao Wang |
title_full_unstemmed | Logic, computers, and sets Hao Wang |
title_short | Logic, computers, and sets |
title_sort | logic computers and sets |
topic | Menge (DE-588)4038613-2 gnd Mathematische Logik (DE-588)4037951-6 gnd |
topic_facet | Menge Mathematische Logik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015111066&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wanghao logiccomputersandsets |