Combinatorial algorithms for the generalized circulation problem:
We consider a generalization of the maximum network flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) gamma (e) units arrive at the other end. For instance, nodes of the graph can correspond to diffe...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
Lab. for Computer Science, Massachusetts Inst. of Technology
1988
|
Schlagworte: | |
Zusammenfassung: | We consider a generalization of the maximum network flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) gamma (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. We require conservation of flow at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. In this paper we present the first polynomial time combinatorial optimization algorithms for this problem. The algorithms are simple and intuitive. (KR). |
Beschreibung: | 36 S. |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021892137 | ||
003 | DE-604 | ||
005 | 20160613 | ||
007 | t | ||
008 | 900726s1988 |||| 00||| eng d | ||
035 | |a (OCoLC)227722997 | ||
035 | |a (DE-599)BVBBV021892137 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
088 | |a MIT/LCS/TM-358 | ||
100 | 1 | |a Goldberg, Andrew V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Combinatorial algorithms for the generalized circulation problem |c Andrew V. Goldberg ; Serge A. Plotkin ; Eva Tardos |
264 | 1 | |a Cambridge, Mass. |b Lab. for Computer Science, Massachusetts Inst. of Technology |c 1988 | |
300 | |a 36 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a We consider a generalization of the maximum network flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) gamma (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. We require conservation of flow at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. In this paper we present the first polynomial time combinatorial optimization algorithms for this problem. The algorithms are simple and intuitive. (KR). | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Circulation |2 dtict | |
650 | 7 | |a Combinatorial analysis |2 dtict | |
650 | 7 | |a Conservation |2 dtict | |
650 | 7 | |a Exchange |2 dtict | |
650 | 7 | |a Graphs |2 dtict | |
650 | 7 | |a Linear programming |2 dtict | |
650 | 7 | |a Network flows |2 dtict | |
650 | 7 | |a Nodes |2 dtict | |
650 | 7 | |a Operations Research |2 scgdst | |
650 | 7 | |a Optimization |2 dtict | |
650 | 7 | |a Polynomials |2 dtict | |
650 | 7 | |a Rates |2 dtict | |
650 | 7 | |a Sources |2 dtict | |
650 | 7 | |a Time |2 dtict | |
650 | 0 | 7 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Netzwerkfluss |0 (DE-588)4126130-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Netzwerk |0 (DE-588)4171529-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graph |0 (DE-588)4021842-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4135952-5 |a Quelle |2 gnd-content | |
689 | 0 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Graph |0 (DE-588)4021842-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Netzwerk |0 (DE-588)4171529-9 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |D s |
689 | 5 | 1 | |a Netzwerkfluss |0 (DE-588)4126130-6 |D s |
689 | 5 | |8 1\p |5 DE-604 | |
700 | 1 | |a Plotkin, Serge A. |e Verfasser |4 aut | |
700 | 1 | |a Tardos, Éva |d 1957- |e Verfasser |0 (DE-588)140445382 |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015107335 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135835684044800 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Goldberg, Andrew V. Plotkin, Serge A. Tardos, Éva 1957- |
author_GND | (DE-588)140445382 |
author_facet | Goldberg, Andrew V. Plotkin, Serge A. Tardos, Éva 1957- |
author_role | aut aut aut |
author_sort | Goldberg, Andrew V. |
author_variant | a v g av avg s a p sa sap é t ét |
building | Verbundindex |
bvnumber | BV021892137 |
ctrlnum | (OCoLC)227722997 (DE-599)BVBBV021892137 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03299nam a2200733zc 4500</leader><controlfield tag="001">BV021892137</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160613 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900726s1988 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227722997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021892137</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">MIT/LCS/TM-358</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goldberg, Andrew V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial algorithms for the generalized circulation problem</subfield><subfield code="c">Andrew V. Goldberg ; Serge A. Plotkin ; Eva Tardos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">Lab. for Computer Science, Massachusetts Inst. of Technology</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">36 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We consider a generalization of the maximum network flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) gamma (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. We require conservation of flow at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. In this paper we present the first polynomial time combinatorial optimization algorithms for this problem. The algorithms are simple and intuitive. (KR).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Circulation</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Conservation</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Exchange</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphs</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear programming</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Network flows</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nodes</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operations Research</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimization</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynomials</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rates</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sources</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Time</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzwerkfluss</subfield><subfield code="0">(DE-588)4126130-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzwerk</subfield><subfield code="0">(DE-588)4171529-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4135952-5</subfield><subfield code="a">Quelle</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Netzwerk</subfield><subfield code="0">(DE-588)4171529-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Netzwerkfluss</subfield><subfield code="0">(DE-588)4126130-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plotkin, Serge A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tardos, Éva</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140445382</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015107335</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4135952-5 Quelle gnd-content |
genre_facet | Quelle |
id | DE-604.BV021892137 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:04:12Z |
indexdate | 2024-07-09T20:46:49Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015107335 |
oclc_num | 227722997 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 36 S. |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Lab. for Computer Science, Massachusetts Inst. of Technology |
record_format | marc |
spelling | Goldberg, Andrew V. Verfasser aut Combinatorial algorithms for the generalized circulation problem Andrew V. Goldberg ; Serge A. Plotkin ; Eva Tardos Cambridge, Mass. Lab. for Computer Science, Massachusetts Inst. of Technology 1988 36 S. txt rdacontent n rdamedia nc rdacarrier We consider a generalization of the maximum network flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) gamma (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. We require conservation of flow at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. In this paper we present the first polynomial time combinatorial optimization algorithms for this problem. The algorithms are simple and intuitive. (KR). Algorithms dtict Circulation dtict Combinatorial analysis dtict Conservation dtict Exchange dtict Graphs dtict Linear programming dtict Network flows dtict Nodes dtict Operations Research scgdst Optimization dtict Polynomials dtict Rates dtict Sources dtict Time dtict Kombinatorische Optimierung (DE-588)4031826-6 gnd rswk-swf Netzwerkfluss (DE-588)4126130-6 gnd rswk-swf Netzwerk (DE-588)4171529-9 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Graph (DE-588)4021842-9 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf (DE-588)4135952-5 Quelle gnd-content Algorithmus (DE-588)4001183-5 s DE-604 Graph (DE-588)4021842-9 s Kombinatorik (DE-588)4031824-2 s Optimierung (DE-588)4043664-0 s Netzwerk (DE-588)4171529-9 s Kombinatorische Optimierung (DE-588)4031826-6 s Netzwerkfluss (DE-588)4126130-6 s 1\p DE-604 Plotkin, Serge A. Verfasser aut Tardos, Éva 1957- Verfasser (DE-588)140445382 aut 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Goldberg, Andrew V. Plotkin, Serge A. Tardos, Éva 1957- Combinatorial algorithms for the generalized circulation problem Algorithms dtict Circulation dtict Combinatorial analysis dtict Conservation dtict Exchange dtict Graphs dtict Linear programming dtict Network flows dtict Nodes dtict Operations Research scgdst Optimization dtict Polynomials dtict Rates dtict Sources dtict Time dtict Kombinatorische Optimierung (DE-588)4031826-6 gnd Netzwerkfluss (DE-588)4126130-6 gnd Netzwerk (DE-588)4171529-9 gnd Optimierung (DE-588)4043664-0 gnd Algorithmus (DE-588)4001183-5 gnd Graph (DE-588)4021842-9 gnd Kombinatorik (DE-588)4031824-2 gnd |
subject_GND | (DE-588)4031826-6 (DE-588)4126130-6 (DE-588)4171529-9 (DE-588)4043664-0 (DE-588)4001183-5 (DE-588)4021842-9 (DE-588)4031824-2 (DE-588)4135952-5 |
title | Combinatorial algorithms for the generalized circulation problem |
title_auth | Combinatorial algorithms for the generalized circulation problem |
title_exact_search | Combinatorial algorithms for the generalized circulation problem |
title_exact_search_txtP | Combinatorial algorithms for the generalized circulation problem |
title_full | Combinatorial algorithms for the generalized circulation problem Andrew V. Goldberg ; Serge A. Plotkin ; Eva Tardos |
title_fullStr | Combinatorial algorithms for the generalized circulation problem Andrew V. Goldberg ; Serge A. Plotkin ; Eva Tardos |
title_full_unstemmed | Combinatorial algorithms for the generalized circulation problem Andrew V. Goldberg ; Serge A. Plotkin ; Eva Tardos |
title_short | Combinatorial algorithms for the generalized circulation problem |
title_sort | combinatorial algorithms for the generalized circulation problem |
topic | Algorithms dtict Circulation dtict Combinatorial analysis dtict Conservation dtict Exchange dtict Graphs dtict Linear programming dtict Network flows dtict Nodes dtict Operations Research scgdst Optimization dtict Polynomials dtict Rates dtict Sources dtict Time dtict Kombinatorische Optimierung (DE-588)4031826-6 gnd Netzwerkfluss (DE-588)4126130-6 gnd Netzwerk (DE-588)4171529-9 gnd Optimierung (DE-588)4043664-0 gnd Algorithmus (DE-588)4001183-5 gnd Graph (DE-588)4021842-9 gnd Kombinatorik (DE-588)4031824-2 gnd |
topic_facet | Algorithms Circulation Combinatorial analysis Conservation Exchange Graphs Linear programming Network flows Nodes Operations Research Optimization Polynomials Rates Sources Time Kombinatorische Optimierung Netzwerkfluss Netzwerk Optimierung Algorithmus Graph Kombinatorik Quelle |
work_keys_str_mv | AT goldbergandrewv combinatorialalgorithmsforthegeneralizedcirculationproblem AT plotkinsergea combinatorialalgorithmsforthegeneralizedcirculationproblem AT tardoseva combinatorialalgorithmsforthegeneralizedcirculationproblem |