Combinatorial algorithms for the generalized circulation problem:

We consider a generalization of the maximum network flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) gamma (e) units arrive at the other end. For instance, nodes of the graph can correspond to diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Goldberg, Andrew V. (VerfasserIn), Plotkin, Serge A. (VerfasserIn), Tardos, Éva 1957- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge, Mass. Lab. for Computer Science, Massachusetts Inst. of Technology 1988
Schlagworte:
Zusammenfassung:We consider a generalization of the maximum network flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) gamma (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. We require conservation of flow at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. In this paper we present the first polynomial time combinatorial optimization algorithms for this problem. The algorithms are simple and intuitive. (KR).
Beschreibung:36 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!