Parallel symmetry-breaking in sparse graphs:
This document describes efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. The authors' primary technique allows us to 3-color a rooted tree in 0(1g*n) time on an EREW PRAM using a linear numbe...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
Laboratory for Computer Science, Massachusetts Inst. of Technology
1988
|
Schlagworte: | |
Zusammenfassung: | This document describes efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. The authors' primary technique allows us to 3-color a rooted tree in 0(1g*n) time on an EREW PRAM using a linear number of processors. They use these techniques to construct fast linear processor algorithms for several problems, including the problem of (delta + 1)-coloring constant-degree graphs and 5-coloring planar graphs. They also prove lower bounds for 2-coloring directed lists and for finding maximal independent sets in arbitrary graphs. (kr). |
Beschreibung: | 23 S. |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021891277 | ||
003 | DE-604 | ||
005 | 20040301000000.0 | ||
007 | t | ||
008 | 900620s1988 |||| 00||| eng d | ||
035 | |a (OCoLC)227723944 | ||
035 | |a (DE-599)BVBBV021891277 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
088 | |a MIT/LCS/TM-356 | ||
100 | 1 | |a Goldberg, Andrew V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parallel symmetry-breaking in sparse graphs |c Andrew V. Goldberg ; Serge A. Plotkin ; Gregory E. Shannon |
264 | 1 | |a Cambridge, Mass. |b Laboratory for Computer Science, Massachusetts Inst. of Technology |c 1988 | |
300 | |a 23 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a This document describes efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. The authors' primary technique allows us to 3-color a rooted tree in 0(1g*n) time on an EREW PRAM using a linear number of processors. They use these techniques to construct fast linear processor algorithms for several problems, including the problem of (delta + 1)-coloring constant-degree graphs and 5-coloring planar graphs. They also prove lower bounds for 2-coloring directed lists and for finding maximal independent sets in arbitrary graphs. (kr). | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Computer Programming and Software |2 scgdst | |
650 | 7 | |a Determinants(mathematics) |2 dtict | |
650 | 7 | |a Efficiency |2 dtict | |
650 | 7 | |a Graphs |2 dtict | |
650 | 7 | |a Parallel processors |2 dtict | |
650 | 7 | |a Trees |2 dtict | |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parallelverarbeitung |0 (DE-588)4075860-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graph |0 (DE-588)4021842-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Graph |0 (DE-588)4021842-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Parallelverarbeitung |0 (DE-588)4075860-6 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Plotkin, Serge A. |e Verfasser |4 aut | |
700 | 1 | |a Shannon, Gregory E. |e Verfasser |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015106479 |
Datensatz im Suchindex
_version_ | 1804135834556825600 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Goldberg, Andrew V. Plotkin, Serge A. Shannon, Gregory E. |
author_facet | Goldberg, Andrew V. Plotkin, Serge A. Shannon, Gregory E. |
author_role | aut aut aut |
author_sort | Goldberg, Andrew V. |
author_variant | a v g av avg s a p sa sap g e s ge ges |
building | Verbundindex |
bvnumber | BV021891277 |
ctrlnum | (OCoLC)227723944 (DE-599)BVBBV021891277 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02353nam a2200517zc 4500</leader><controlfield tag="001">BV021891277</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040301000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900620s1988 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227723944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021891277</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">MIT/LCS/TM-356</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goldberg, Andrew V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel symmetry-breaking in sparse graphs</subfield><subfield code="c">Andrew V. Goldberg ; Serge A. Plotkin ; Gregory E. Shannon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">Laboratory for Computer Science, Massachusetts Inst. of Technology</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">23 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This document describes efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. The authors' primary technique allows us to 3-color a rooted tree in 0(1g*n) time on an EREW PRAM using a linear number of processors. They use these techniques to construct fast linear processor algorithms for several problems, including the problem of (delta + 1)-coloring constant-degree graphs and 5-coloring planar graphs. They also prove lower bounds for 2-coloring directed lists and for finding maximal independent sets in arbitrary graphs. (kr).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer Programming and Software</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Determinants(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Efficiency</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphs</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parallel processors</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Trees</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parallelverarbeitung</subfield><subfield code="0">(DE-588)4075860-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Parallelverarbeitung</subfield><subfield code="0">(DE-588)4075860-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plotkin, Serge A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shannon, Gregory E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015106479</subfield></datafield></record></collection> |
id | DE-604.BV021891277 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:04:10Z |
indexdate | 2024-07-09T20:46:48Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015106479 |
oclc_num | 227723944 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 23 S. |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Laboratory for Computer Science, Massachusetts Inst. of Technology |
record_format | marc |
spelling | Goldberg, Andrew V. Verfasser aut Parallel symmetry-breaking in sparse graphs Andrew V. Goldberg ; Serge A. Plotkin ; Gregory E. Shannon Cambridge, Mass. Laboratory for Computer Science, Massachusetts Inst. of Technology 1988 23 S. txt rdacontent n rdamedia nc rdacarrier This document describes efficient deterministic techniques for breaking symmetry in parallel. These techniques work well on rooted trees and graphs of constant degree or genus. The authors' primary technique allows us to 3-color a rooted tree in 0(1g*n) time on an EREW PRAM using a linear number of processors. They use these techniques to construct fast linear processor algorithms for several problems, including the problem of (delta + 1)-coloring constant-degree graphs and 5-coloring planar graphs. They also prove lower bounds for 2-coloring directed lists and for finding maximal independent sets in arbitrary graphs. (kr). Algorithms dtict Computer Programming and Software scgdst Determinants(mathematics) dtict Efficiency dtict Graphs dtict Parallel processors dtict Trees dtict Symmetrie (DE-588)4058724-1 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Parallelverarbeitung (DE-588)4075860-6 gnd rswk-swf Graph (DE-588)4021842-9 gnd rswk-swf Algorithmus (DE-588)4001183-5 s DE-604 Graph (DE-588)4021842-9 s Symmetrie (DE-588)4058724-1 s Parallelverarbeitung (DE-588)4075860-6 s Plotkin, Serge A. Verfasser aut Shannon, Gregory E. Verfasser aut |
spellingShingle | Goldberg, Andrew V. Plotkin, Serge A. Shannon, Gregory E. Parallel symmetry-breaking in sparse graphs Algorithms dtict Computer Programming and Software scgdst Determinants(mathematics) dtict Efficiency dtict Graphs dtict Parallel processors dtict Trees dtict Symmetrie (DE-588)4058724-1 gnd Algorithmus (DE-588)4001183-5 gnd Parallelverarbeitung (DE-588)4075860-6 gnd Graph (DE-588)4021842-9 gnd |
subject_GND | (DE-588)4058724-1 (DE-588)4001183-5 (DE-588)4075860-6 (DE-588)4021842-9 |
title | Parallel symmetry-breaking in sparse graphs |
title_auth | Parallel symmetry-breaking in sparse graphs |
title_exact_search | Parallel symmetry-breaking in sparse graphs |
title_exact_search_txtP | Parallel symmetry-breaking in sparse graphs |
title_full | Parallel symmetry-breaking in sparse graphs Andrew V. Goldberg ; Serge A. Plotkin ; Gregory E. Shannon |
title_fullStr | Parallel symmetry-breaking in sparse graphs Andrew V. Goldberg ; Serge A. Plotkin ; Gregory E. Shannon |
title_full_unstemmed | Parallel symmetry-breaking in sparse graphs Andrew V. Goldberg ; Serge A. Plotkin ; Gregory E. Shannon |
title_short | Parallel symmetry-breaking in sparse graphs |
title_sort | parallel symmetry breaking in sparse graphs |
topic | Algorithms dtict Computer Programming and Software scgdst Determinants(mathematics) dtict Efficiency dtict Graphs dtict Parallel processors dtict Trees dtict Symmetrie (DE-588)4058724-1 gnd Algorithmus (DE-588)4001183-5 gnd Parallelverarbeitung (DE-588)4075860-6 gnd Graph (DE-588)4021842-9 gnd |
topic_facet | Algorithms Computer Programming and Software Determinants(mathematics) Efficiency Graphs Parallel processors Trees Symmetrie Algorithmus Parallelverarbeitung Graph |
work_keys_str_mv | AT goldbergandrewv parallelsymmetrybreakinginsparsegraphs AT plotkinsergea parallelsymmetrybreakinginsparsegraphs AT shannongregorye parallelsymmetrybreakinginsparsegraphs |