Physical fluid dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
New York [u.a.]
Van Nostrand Reinhold
1979
|
Ausgabe: | Repr. |
Schriftenreihe: | The modern university physics series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 362 S. |
ISBN: | 0442301316 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021886943 | ||
003 | DE-604 | ||
005 | 20040301000000.0 | ||
007 | t | ||
008 | 891024s1979 |||| 00||| und d | ||
020 | |a 0442301316 |9 0-442-30131-6 | ||
035 | |a (OCoLC)256006841 | ||
035 | |a (DE-599)BVBBV021886943 | ||
040 | |a DE-604 |b ger | ||
041 | |a und | ||
049 | |a DE-706 | ||
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
100 | 1 | |a Tritton, David J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Physical fluid dynamics |c D. J. Tritton |
250 | |a Repr. | ||
264 | 1 | |a New York [u.a.] |b Van Nostrand Reinhold |c 1979 | |
300 | |a 362 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The modern university physics series | |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015102187&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015102187 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135828720451584 |
---|---|
adam_text | ontents
- Jreface
v; ACKNOWLEDGEMENTS
1111
, •’ %
INTRODUCTION 1
1 1 Preamble 1
1 2 Scope of book 2
1 3 Notation and definitions 4
PIPE AND CHANNEL FLOW 6
2 1 Introduction 6
2 2 Laminar flow theory: channel 7
2 3 Laminar flow theory: pipe 9
2 4 The Reynolds number 11
2 5 The entry length 12
2 6 Transition to turbulent flow 13
2 7 Relationship between flow rate and pressure gradient 16
FLOW PAST A CIRCULAR CYLINDER 18
3 1 Introduction 18
3 2 The Reynolds number 19
3 3 Flow patterns 19
3 4 Drag 27
CONVECTION IN HORIZONTAL LAYERS 30
4 1 The configuration 30
4 2 Onset of motion 31
4 3 Flow regimes 33
EQUATIONS OF MOTION 42
5 1 Introduction 42
5 2 Fluid particles and continuum mechanics 42
5 3 Eulerian and Langrangian co-ordinates 44
5 4 Continuity equation 45
5 5 The substantive derivative 46
Contents
xii
5 6 The Navier—Stokes equation 48
5 7 Boundary conditions 53
5 8 Condition for incompressibility 56
Appendix: Derivation of viscous term of dynamical equation 59
6 FURTHER BASIC IDEAS 61
6 1 Streamlines, streamtubes, particle paths and streaklines 61
6 2 Computations for flow past a circular cylinder 63
6 3 The stream function 67
6 4 Vorticity 67
6 5 Vorticity equation 71
6 6 Circulation 72
7 DYNAMICAL SIMILARITY 74
7 1 Introduction 74
7 2 Condition for dynamical similarity: Reynolds number 75
7 3 Dependent quantities 77
7 4 Other governing non-dimensional parameters 79
8 LOW AND HIGH REYNOLDS NUMBERS 81
8 1 Physical significance of the Reynolds number 81
8 2 Low Reynolds number 82
8 3 High Reynolds number 83
9 SOME SOLUTIONS OF THE VISCOUS FLOW EQUATIONS 88
9 1 Introduction 88
9 2 Poiseuille flow 88
9 3 Rotating Couette flow 89
9 4 Stokes flow past a sphere 90
9 5 Low Reynolds number flow past a cylinder 92
10 INVISCID FLOW 94
10 1 introduction 94
10 2 Kelvin circulation theorem 94
10 3 Irrotational motion 94
10 4 Bernoulli’s equation 96
10 5 Drag in inviscid flow: d’Alembert’s‘paradox’ 97
10 6 Applications of Bernoulli’s equation 98
10 7 Some definitions 100
11 BOUNDARY LAYERS AND RELATED TOPICS 101
11 1 Boundary layer formation 101
11 2 The boundary layer approximation 101
11 3 Zero pressure gradient solution 103
11 4 Boundary layer separation 106
Contents xm
11 5 Drag on bluff bodies 109
11 6 Streamlining 110
11 7 Wakes 111
11 8 Jets 112
11 9 Momentum and energy in viscous flow 116
12 LIFT 119
12 1 Introduction 119
12 2 Two-dimensional aerofoils 120
12 3 Three-dimensional aerofoils 123
12 4 Spinning bodies 124
13 THERMAL FLOWS: BASIC EQUATIONS AND CONCEPTS 127
13 1 Introduction 127
13 2 Equations of convection 127
13 3 Classification of convective flows 130
13 4 Forced convection 130
13 5 Flow with concentration variations (mass transfer) 132
14 FREE CONVECTION 135
14 1 Introduction 135
14 2 The governing non-dimensional parameters 136
14 3 The adiabatic temperature gradient 139
14 4 Free convection as a heat engine 141
14 5 Convection from a heated vertical surface 142
14 6 Thermal plumes 148
14 7 Convection in fluid layers 148
Appendix: The Boussinesq approximation in free convection 155
15 FLOW IN ROTATING FLUIDS 162
15 1 Introduction 162
15 2 Centrifugal and Coriolis forces 162
15 3 Geostrophic flow and the Taylor—Proud man theorem 163
15 4 Taylor columns 165
15 5 Ekman layers 171
15 6 Intrinsic stability and inertial waves 176
15 7 Rossby waves 177
15 8 Convection in a rotating annulus 182
16 STRATIFIED FLOW 184
16 1 Basic concepts 184
16 2 Blocking 187
16 3 Lee waves 191
16 4 Internal waves 192
16 5 Stratification and rotation 199
xiv
Contents
17 INSTABILITY PHENOMENA 201
17 1 Introduction 201
17 2 Surface tension instability of a liquid column 201
17 3 Convection due to internal heat generation 203
17 4 Convection due to surface tension variations 204
17 5 Instability of rotating Couette flow 206
17 6 Shear flow instability 209
18 THE THEORY OF HYDRODYNAMIC STABILITY 213
18 1 The nature of linear stability theory 213
18 2 Onset of Benard convection 214
18 3 Overstability 218
18 4 Rotating Couette flow 218
18 5 Boundary layer stability 220
19 TRANSITION TO TURBULENCE 225
19 1 Boundary layer transition 225
19 2 Transition in jets and other free shear flows 229
19 3 Pipe flow transition 233
20 TURBULENCE 238
20 1 The nature of turbulent motion 238
20 2 Introduction to the statistical description of turbulent motion 239
20 3 Formulation of the statistical description 242
20 4 Turbulence equations 244
20 5 Calculation methods 248
20 6 Interpretation of correlations 248
20 7 Spectra 250
20 8 The concept of eddies 252
21 HOMOGENEOUS ISOTROPIC TURBULENCE 253
21 1 Introduction 253
21 2 Space correlations and the closure problem 254
21 3 Spectra and the energy cascade 255
21 4 Dynamical processes of the energy cascade 259
22 THE STRUCTURE OF TURBULENT FLOWS 261
22 1 Introduction 261
22 2 Reynolds number similarity and self-preservation 261
22 3 Intermittency and entrainment 265
22 4 The structure of a turbulent wake 269
22 5 Turbulent motion near a wall 275
22 6 Large eddies in a boundary layer 281
22 7 The Coanda effect 284
Contents xv
22 8 Stratified shear flows 286
22 9 Reverse transition 290
23 EXPERIMENTAL METHODS 292
23 1 General aspects of experimental fluid dynamics 292
23 2 Velocity measurement 294
23 3 Pressure and temperature measurement 298
23 4 Flow visualization 298
24 PRACTICAL SITUATIONS 301
24 1 Introduction 301
24 2 Cloud patterns 301
24 3 Waves in the atmospheric circulation 303
24 4 Continental drift and convection in the Earth’s mantle 303
24 5 Solar granulation 306
24 6 Effluent dispersal 308
24 7 Wind effects on structures 310
24 8 Boundary layer control: vortex generators 313
24 9 Fluidics 315
24 10 Undulatory swimming 318
24 11 Convection from the human body 320
24 12 The flight of a boomerang 323
NOTATION 324
PROBLEMS 329
BIBLIOGRAPHY AND REFERENCES 346
INDEX
|
adam_txt |
ontents
- 'Jreface
v; 'ACKNOWLEDGEMENTS
1111
, •’ %
INTRODUCTION 1
1 1 Preamble 1
1 2 Scope of book 2
1 3 Notation and definitions 4
PIPE AND CHANNEL FLOW 6
2 1 Introduction 6
2 2 Laminar flow theory: channel 7
2 3 Laminar flow theory: pipe 9
2 4 The Reynolds number 11
2 5 The entry length 12
2 6 Transition to turbulent flow 13
2 7 Relationship between flow rate and pressure gradient 16
FLOW PAST A CIRCULAR CYLINDER 18
3 1 Introduction 18
3 2 The Reynolds number 19
3 3 Flow patterns 19
3 4 Drag 27
CONVECTION IN HORIZONTAL LAYERS 30
4 1 The configuration 30
4 2 Onset of motion 31
4 3 Flow regimes 33
EQUATIONS OF MOTION 42
5 1 Introduction 42
5 2 Fluid particles and continuum mechanics 42
5 3 Eulerian and Langrangian co-ordinates 44
5 4 Continuity equation 45
5 5 The substantive derivative 46
Contents
xii
5 6 The Navier—Stokes equation 48
5 7 Boundary conditions 53
5 8 Condition for incompressibility 56
Appendix: Derivation of viscous term of dynamical equation 59
6 FURTHER BASIC IDEAS 61
6 1 Streamlines, streamtubes, particle paths and streaklines 61
6 2 Computations for flow past a circular cylinder 63
6 3 The stream function 67
6 4 Vorticity 67
6 5 Vorticity equation 71
6 6 Circulation 72
7 DYNAMICAL SIMILARITY 74
7 1 Introduction 74
7 2 Condition for dynamical similarity: Reynolds number 75
7 3 Dependent quantities 77
7 4 Other governing non-dimensional parameters 79
8 LOW AND HIGH REYNOLDS NUMBERS 81
8 1 Physical significance of the Reynolds number 81
8 2 Low Reynolds number 82
8 3 High Reynolds number 83
9 SOME SOLUTIONS OF THE VISCOUS FLOW EQUATIONS 88
9 1 Introduction 88
9 2 Poiseuille flow 88
9 3 Rotating Couette flow 89
9 4 Stokes flow past a sphere 90
9 5 Low Reynolds number flow past a cylinder 92
10 INVISCID FLOW 94
10 1 introduction 94
10 2 Kelvin circulation theorem 94
10 3 Irrotational motion 94
10 4 Bernoulli’s equation 96
10 5 Drag in inviscid flow: d’Alembert’s‘paradox’ 97
10 6 Applications of Bernoulli’s equation 98
10 7 Some definitions 100
11 BOUNDARY LAYERS AND RELATED TOPICS 101
11 1 Boundary layer formation 101
11 2 The boundary layer approximation 101
11 3 Zero pressure gradient solution 103
11 4 Boundary layer separation 106
Contents xm
11 5 Drag on bluff bodies 109
11 6 Streamlining 110
11 7 Wakes 111
11 8 Jets 112
11 9 Momentum and energy in viscous flow 116
12 LIFT 119
12 1 Introduction 119
12 2 Two-dimensional aerofoils 120
12 3 Three-dimensional aerofoils 123
12 4 Spinning bodies 124
13 THERMAL FLOWS: BASIC EQUATIONS AND CONCEPTS 127
13 1 Introduction 127
13 2 Equations of convection 127
13 3 Classification of convective flows 130
13 4 Forced convection 130
13 5 Flow with concentration variations (mass transfer) 132
14 FREE CONVECTION 135
14 1 Introduction 135
14 2 The governing non-dimensional parameters 136
14 3 The adiabatic temperature gradient 139
14 4 Free convection as a heat engine 141
14 5 Convection from a heated vertical surface 142
14 6 Thermal plumes 148
14 7 Convection in fluid layers 148
Appendix: The Boussinesq approximation in free convection 155
15 FLOW IN ROTATING FLUIDS 162
15 1 Introduction 162
15 2 Centrifugal and Coriolis forces 162
15 3 Geostrophic flow and the Taylor—Proud man theorem 163
15 4 Taylor columns 165
15 5 Ekman layers 171
15 6 Intrinsic stability and inertial waves 176
15 7 Rossby waves 177
15 8 Convection in a rotating annulus 182
16 STRATIFIED FLOW 184
16 1 Basic concepts 184
16 2 Blocking 187
16 3 Lee waves 191
16 4 Internal waves 192
16 5 Stratification and rotation 199
xiv
Contents
17 INSTABILITY PHENOMENA 201
17 1 Introduction 201
17 2 Surface tension instability of a liquid column 201
17 3 Convection due to internal heat generation 203
17 4 Convection due to surface tension variations 204
17 5 Instability of rotating Couette flow 206
17 6 Shear flow instability 209
18 THE THEORY OF HYDRODYNAMIC STABILITY 213
18 1 The nature of linear stability theory 213
18 2 Onset of Benard convection 214
18 3 Overstability 218
18 4 Rotating Couette flow 218
18 5 Boundary layer stability 220
19 TRANSITION TO TURBULENCE 225
19 1 Boundary layer transition 225
19 2 Transition in jets and other free shear flows 229
19 3 Pipe flow transition 233
20 TURBULENCE 238
20 1 The nature of turbulent motion 238
20 2 Introduction to the statistical description of turbulent motion 239
20 3 Formulation of the statistical description 242
20 4 Turbulence equations 244
20 5 Calculation methods 248
20 6 Interpretation of correlations 248
20 7 Spectra 250
20 8 The concept of eddies 252
21 HOMOGENEOUS ISOTROPIC TURBULENCE 253
21 1 Introduction 253
21 2 Space correlations and the closure problem 254
21 3 Spectra and the energy cascade 255
21 4 Dynamical processes of the energy cascade 259
22 THE STRUCTURE OF TURBULENT FLOWS 261
22 1 Introduction 261
22 2 Reynolds number similarity and self-preservation 261
22 3 Intermittency and entrainment 265
22 4 The structure of a turbulent wake 269
22 5 Turbulent motion near a wall 275
22 6 Large eddies in a boundary layer 281
22 7 The Coanda effect 284
Contents xv
22 8 Stratified shear flows 286
22 9 Reverse transition 290
23 EXPERIMENTAL METHODS 292
23 1 General aspects of experimental fluid dynamics 292
23 2 Velocity measurement 294
23 3 Pressure and temperature measurement 298
23 4 Flow visualization 298
24 PRACTICAL SITUATIONS 301
24 1 Introduction 301
24 2 Cloud patterns 301
24 3 Waves in the atmospheric circulation 303
24 4 Continental drift and convection in the Earth’s mantle 303
24 5 Solar granulation 306
24 6 Effluent dispersal 308
24 7 Wind effects on structures 310
24 8 Boundary layer control: vortex generators 313
24 9 Fluidics 315
24 10 Undulatory swimming 318
24 11 Convection from the human body 320
24 12 The flight of a boomerang 323
NOTATION 324
PROBLEMS 329
BIBLIOGRAPHY AND REFERENCES 346
INDEX |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tritton, David J. |
author_facet | Tritton, David J. |
author_role | aut |
author_sort | Tritton, David J. |
author_variant | d j t dj djt |
building | Verbundindex |
bvnumber | BV021886943 |
classification_rvk | UF 4000 |
ctrlnum | (OCoLC)256006841 (DE-599)BVBBV021886943 |
discipline | Physik |
discipline_str_mv | Physik |
edition | Repr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01428nam a2200385zc 4500</leader><controlfield tag="001">BV021886943</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040301000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">891024s1979 |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0442301316</subfield><subfield code="9">0-442-30131-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)256006841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021886943</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tritton, David J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical fluid dynamics</subfield><subfield code="c">D. J. Tritton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Van Nostrand Reinhold</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">362 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The modern university physics series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015102187&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015102187</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021886943 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:04:00Z |
indexdate | 2024-07-09T20:46:43Z |
institution | BVB |
isbn | 0442301316 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015102187 |
oclc_num | 256006841 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 362 S. |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Van Nostrand Reinhold |
record_format | marc |
series2 | The modern university physics series |
spelling | Tritton, David J. Verfasser aut Physical fluid dynamics D. J. Tritton Repr. New York [u.a.] Van Nostrand Reinhold 1979 362 S. txt rdacontent n rdamedia nc rdacarrier The modern university physics series Hydrodynamik (DE-588)4026302-2 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 s DE-604 Hydrodynamik (DE-588)4026302-2 s 1\p DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015102187&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tritton, David J. Physical fluid dynamics Hydrodynamik (DE-588)4026302-2 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
subject_GND | (DE-588)4026302-2 (DE-588)4077970-1 |
title | Physical fluid dynamics |
title_auth | Physical fluid dynamics |
title_exact_search | Physical fluid dynamics |
title_exact_search_txtP | Physical fluid dynamics |
title_full | Physical fluid dynamics D. J. Tritton |
title_fullStr | Physical fluid dynamics D. J. Tritton |
title_full_unstemmed | Physical fluid dynamics D. J. Tritton |
title_short | Physical fluid dynamics |
title_sort | physical fluid dynamics |
topic | Hydrodynamik (DE-588)4026302-2 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
topic_facet | Hydrodynamik Strömungsmechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015102187&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT trittondavidj physicalfluiddynamics |