Lambda-calculus models of programming languages:
Two aspects of programming languages, recursive definitions and type declarations are analyzed in detail, using Church's lambda-calculus as the programming language model. The main result on recursion is an analogue to Kleene's first recursion theorem: If A = FA for any lambda-expressions...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
Project MAC, Mass. Inst. of Technology
1968
|
Schlagworte: | |
Zusammenfassung: | Two aspects of programming languages, recursive definitions and type declarations are analyzed in detail, using Church's lambda-calculus as the programming language model. The main result on recursion is an analogue to Kleene's first recursion theorem: If A = FA for any lambda-expressions A and F, then A is an extension of YF in the sense that if E(YF), any expression containing YF, has a normal form then E(YF) = E(A). Y is Curry's paradoxical combinator. The result is shown to be invariant for many different versions of Y. A system of types and type declarations is developed for the lambda-calculus and its semantic assumptions are identified. The system is shown to be adequate in the sense that it permits a preprocessor to check formulae prior to evaluation to prevent type errors. It is shown that any formula with a valid assignment of types to all its subexpressions must have a normal form. (Author). |
Beschreibung: | Zugl.: Diss., 1968. - Kopie, erschienen bei National Techn. Information Service, Springfield, Va. |
Beschreibung: | 131 Bl. |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021879333 | ||
003 | DE-604 | ||
005 | 20040229000000.0 | ||
007 | t | ||
008 | 880721s1968 |||| 00||| eng d | ||
035 | |a (OCoLC)227525322 | ||
035 | |a (DE-599)BVBBV021879333 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
088 | |a MAC-TR-57 | ||
100 | 1 | |a Morris, James H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lambda-calculus models of programming languages |
264 | 1 | |a Cambridge, Mass. |b Project MAC, Mass. Inst. of Technology |c 1968 | |
300 | |a 131 Bl. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Zugl.: Diss., 1968. - Kopie, erschienen bei National Techn. Information Service, Springfield, Va. | ||
520 | 3 | |a Two aspects of programming languages, recursive definitions and type declarations are analyzed in detail, using Church's lambda-calculus as the programming language model. The main result on recursion is an analogue to Kleene's first recursion theorem: If A = FA for any lambda-expressions A and F, then A is an extension of YF in the sense that if E(YF), any expression containing YF, has a normal form then E(YF) = E(A). Y is Curry's paradoxical combinator. The result is shown to be invariant for many different versions of Y. A system of types and type declarations is developed for the lambda-calculus and its semantic assumptions are identified. The system is shown to be adequate in the sense that it permits a preprocessor to check formulae prior to evaluation to prevent type errors. It is shown that any formula with a valid assignment of types to all its subexpressions must have a normal form. (Author). | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Classification |2 dtict | |
650 | 7 | |a Computer Programming and Software |2 scgdst | |
650 | 7 | |a Computer Systems |2 scgdst | |
650 | 7 | |a Mathematical logic |2 dtict | |
650 | 7 | |a Programming languages |2 dtict | |
650 | 7 | |a Real time |2 dtict | |
650 | 7 | |a Recursive functions |2 dtict | |
650 | 7 | |a Semantics |2 dtict | |
650 | 7 | |a Theses |2 dtict | |
650 | 7 | |a Time sharing |2 dtict | |
650 | 0 | 7 | |a Programmiersprache |0 (DE-588)4047409-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lambda-Kalkül |0 (DE-588)4166495-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Programmiersprache |0 (DE-588)4047409-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lambda-Kalkül |0 (DE-588)4166495-4 |D s |
689 | 1 | |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015094815 |
Datensatz im Suchindex
_version_ | 1804135819380785152 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Morris, James H. |
author_facet | Morris, James H. |
author_role | aut |
author_sort | Morris, James H. |
author_variant | j h m jh jhm |
building | Verbundindex |
bvnumber | BV021879333 |
ctrlnum | (OCoLC)227525322 (DE-599)BVBBV021879333 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02463nam a2200481zc 4500</leader><controlfield tag="001">BV021879333</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040229000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880721s1968 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227525322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021879333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">MAC-TR-57</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morris, James H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lambda-calculus models of programming languages</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">Project MAC, Mass. Inst. of Technology</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">131 Bl.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Zugl.: Diss., 1968. - Kopie, erschienen bei National Techn. Information Service, Springfield, Va.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Two aspects of programming languages, recursive definitions and type declarations are analyzed in detail, using Church's lambda-calculus as the programming language model. The main result on recursion is an analogue to Kleene's first recursion theorem: If A = FA for any lambda-expressions A and F, then A is an extension of YF in the sense that if E(YF), any expression containing YF, has a normal form then E(YF) = E(A). Y is Curry's paradoxical combinator. The result is shown to be invariant for many different versions of Y. A system of types and type declarations is developed for the lambda-calculus and its semantic assumptions are identified. The system is shown to be adequate in the sense that it permits a preprocessor to check formulae prior to evaluation to prevent type errors. It is shown that any formula with a valid assignment of types to all its subexpressions must have a normal form. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Classification</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer Programming and Software</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer Systems</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical logic</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programming languages</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Real time</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Recursive functions</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semantics</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theses</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Time sharing</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Programmiersprache</subfield><subfield code="0">(DE-588)4047409-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lambda-Kalkül</subfield><subfield code="0">(DE-588)4166495-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Programmiersprache</subfield><subfield code="0">(DE-588)4047409-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lambda-Kalkül</subfield><subfield code="0">(DE-588)4166495-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015094815</subfield></datafield></record></collection> |
id | DE-604.BV021879333 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:03:42Z |
indexdate | 2024-07-09T20:46:34Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015094815 |
oclc_num | 227525322 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 131 Bl. |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
publisher | Project MAC, Mass. Inst. of Technology |
record_format | marc |
spelling | Morris, James H. Verfasser aut Lambda-calculus models of programming languages Cambridge, Mass. Project MAC, Mass. Inst. of Technology 1968 131 Bl. txt rdacontent n rdamedia nc rdacarrier Zugl.: Diss., 1968. - Kopie, erschienen bei National Techn. Information Service, Springfield, Va. Two aspects of programming languages, recursive definitions and type declarations are analyzed in detail, using Church's lambda-calculus as the programming language model. The main result on recursion is an analogue to Kleene's first recursion theorem: If A = FA for any lambda-expressions A and F, then A is an extension of YF in the sense that if E(YF), any expression containing YF, has a normal form then E(YF) = E(A). Y is Curry's paradoxical combinator. The result is shown to be invariant for many different versions of Y. A system of types and type declarations is developed for the lambda-calculus and its semantic assumptions are identified. The system is shown to be adequate in the sense that it permits a preprocessor to check formulae prior to evaluation to prevent type errors. It is shown that any formula with a valid assignment of types to all its subexpressions must have a normal form. (Author). Algorithms dtict Classification dtict Computer Programming and Software scgdst Computer Systems scgdst Mathematical logic dtict Programming languages dtict Real time dtict Recursive functions dtict Semantics dtict Theses dtict Time sharing dtict Programmiersprache (DE-588)4047409-4 gnd rswk-swf Lambda-Kalkül (DE-588)4166495-4 gnd rswk-swf Programmiersprache (DE-588)4047409-4 s DE-604 Lambda-Kalkül (DE-588)4166495-4 s |
spellingShingle | Morris, James H. Lambda-calculus models of programming languages Algorithms dtict Classification dtict Computer Programming and Software scgdst Computer Systems scgdst Mathematical logic dtict Programming languages dtict Real time dtict Recursive functions dtict Semantics dtict Theses dtict Time sharing dtict Programmiersprache (DE-588)4047409-4 gnd Lambda-Kalkül (DE-588)4166495-4 gnd |
subject_GND | (DE-588)4047409-4 (DE-588)4166495-4 |
title | Lambda-calculus models of programming languages |
title_auth | Lambda-calculus models of programming languages |
title_exact_search | Lambda-calculus models of programming languages |
title_exact_search_txtP | Lambda-calculus models of programming languages |
title_full | Lambda-calculus models of programming languages |
title_fullStr | Lambda-calculus models of programming languages |
title_full_unstemmed | Lambda-calculus models of programming languages |
title_short | Lambda-calculus models of programming languages |
title_sort | lambda calculus models of programming languages |
topic | Algorithms dtict Classification dtict Computer Programming and Software scgdst Computer Systems scgdst Mathematical logic dtict Programming languages dtict Real time dtict Recursive functions dtict Semantics dtict Theses dtict Time sharing dtict Programmiersprache (DE-588)4047409-4 gnd Lambda-Kalkül (DE-588)4166495-4 gnd |
topic_facet | Algorithms Classification Computer Programming and Software Computer Systems Mathematical logic Programming languages Real time Recursive functions Semantics Theses Time sharing Programmiersprache Lambda-Kalkül |
work_keys_str_mv | AT morrisjamesh lambdacalculusmodelsofprogramminglanguages |