Planar embedding of planar graphs:
Planar embedding with minimal area of graphs on an integer grid is an interesting problem in VLSI (Very Large Scale Integrated) theory. Valiant gave an algorithm to construct a planar embeddding for trees in linear area; he also proved that there are planar graphs that require quadratic area. We fil...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
Lab. for Computer Science, Massachusetts Inst. of Technology
1983
|
Schlagworte: | |
Zusammenfassung: | Planar embedding with minimal area of graphs on an integer grid is an interesting problem in VLSI (Very Large Scale Integrated) theory. Valiant gave an algorithm to construct a planar embeddding for trees in linear area; he also proved that there are planar graphs that require quadratic area. We fill in a spectrum between Valiant's results by showing that an N-node planar graphs has a planar embedding with area 0(NF), where F is a bound on the path length from any node to the exterior face. In particular, an outerplanar graph can be embedded without crossovers in linear area. This bound is tight, up to constant factors: for any N and F, there exist graphs requiring omega(NF) area for planar embedding. Also, finding a minimal embedding area is shown to be Nu-complete for forests, and hence for more general types of graphs. (author). |
Beschreibung: | 8 S. |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021875881 | ||
003 | DE-604 | ||
005 | 20040229000000.0 | ||
007 | t | ||
008 | 880222s1983 |||| 00||| eng d | ||
035 | |a (OCoLC)227593154 | ||
035 | |a (DE-599)BVBBV021875881 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
088 | |a MIT/LCS/TM-237 | ||
100 | 1 | |a Dolev, Danny |e Verfasser |4 aut | |
245 | 1 | 0 | |a Planar embedding of planar graphs |c Danny Dolev ; Frank Thomson Leighton ; Howard Trickey |
264 | 1 | |a Cambridge, Mass. |b Lab. for Computer Science, Massachusetts Inst. of Technology |c 1983 | |
300 | |a 8 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Planar embedding with minimal area of graphs on an integer grid is an interesting problem in VLSI (Very Large Scale Integrated) theory. Valiant gave an algorithm to construct a planar embeddding for trees in linear area; he also proved that there are planar graphs that require quadratic area. We fill in a spectrum between Valiant's results by showing that an N-node planar graphs has a planar embedding with area 0(NF), where F is a bound on the path length from any node to the exterior face. In particular, an outerplanar graph can be embedded without crossovers in linear area. This bound is tight, up to constant factors: for any N and F, there exist graphs requiring omega(NF) area for planar embedding. Also, finding a minimal embedding area is shown to be Nu-complete for forests, and hence for more general types of graphs. (author). | |
650 | 7 | |a Algorithms |2 dtict | |
650 | 7 | |a Computer graphics |2 dtict | |
650 | 7 | |a Control theory |2 dtict | |
650 | 7 | |a Graphs |2 dtict | |
650 | 7 | |a Planar structures |2 dtict | |
650 | 7 | |a Problem solving |2 dtict | |
650 | 7 | |a Theorems |2 dtict | |
650 | 7 | |a Theoretical Mathematics |2 scgdst | |
650 | 0 | 7 | |a Graph |0 (DE-588)4021842-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Einbettung |g Mathematik |0 (DE-588)4151233-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Internetworking |0 (DE-588)4225115-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graph |0 (DE-588)4021842-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Einbettung |g Mathematik |0 (DE-588)4151233-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Internetworking |0 (DE-588)4225115-1 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Leighton, Frank T. |e Verfasser |4 aut | |
700 | 1 | |a Trickey, Howard |e Verfasser |4 aut | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015091524 |
Datensatz im Suchindex
_version_ | 1804135815267221504 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dolev, Danny Leighton, Frank T. Trickey, Howard |
author_facet | Dolev, Danny Leighton, Frank T. Trickey, Howard |
author_role | aut aut aut |
author_sort | Dolev, Danny |
author_variant | d d dd f t l ft ftl h t ht |
building | Verbundindex |
bvnumber | BV021875881 |
ctrlnum | (OCoLC)227593154 (DE-599)BVBBV021875881 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02440nam a2200493zc 4500</leader><controlfield tag="001">BV021875881</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040229000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">880222s1983 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227593154</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021875881</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">MIT/LCS/TM-237</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dolev, Danny</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Planar embedding of planar graphs</subfield><subfield code="c">Danny Dolev ; Frank Thomson Leighton ; Howard Trickey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">Lab. for Computer Science, Massachusetts Inst. of Technology</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Planar embedding with minimal area of graphs on an integer grid is an interesting problem in VLSI (Very Large Scale Integrated) theory. Valiant gave an algorithm to construct a planar embeddding for trees in linear area; he also proved that there are planar graphs that require quadratic area. We fill in a spectrum between Valiant's results by showing that an N-node planar graphs has a planar embedding with area 0(NF), where F is a bound on the path length from any node to the exterior face. In particular, an outerplanar graph can be embedded without crossovers in linear area. This bound is tight, up to constant factors: for any N and F, there exist graphs requiring omega(NF) area for planar embedding. Also, finding a minimal embedding area is shown to be Nu-complete for forests, and hence for more general types of graphs. (author).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer graphics</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control theory</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphs</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Planar structures</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problem solving</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theorems</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Theoretical Mathematics</subfield><subfield code="2">scgdst</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einbettung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4151233-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Internetworking</subfield><subfield code="0">(DE-588)4225115-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Einbettung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4151233-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Internetworking</subfield><subfield code="0">(DE-588)4225115-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leighton, Frank T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trickey, Howard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015091524</subfield></datafield></record></collection> |
id | DE-604.BV021875881 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:03:35Z |
indexdate | 2024-07-09T20:46:30Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015091524 |
oclc_num | 227593154 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 8 S. |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Lab. for Computer Science, Massachusetts Inst. of Technology |
record_format | marc |
spelling | Dolev, Danny Verfasser aut Planar embedding of planar graphs Danny Dolev ; Frank Thomson Leighton ; Howard Trickey Cambridge, Mass. Lab. for Computer Science, Massachusetts Inst. of Technology 1983 8 S. txt rdacontent n rdamedia nc rdacarrier Planar embedding with minimal area of graphs on an integer grid is an interesting problem in VLSI (Very Large Scale Integrated) theory. Valiant gave an algorithm to construct a planar embeddding for trees in linear area; he also proved that there are planar graphs that require quadratic area. We fill in a spectrum between Valiant's results by showing that an N-node planar graphs has a planar embedding with area 0(NF), where F is a bound on the path length from any node to the exterior face. In particular, an outerplanar graph can be embedded without crossovers in linear area. This bound is tight, up to constant factors: for any N and F, there exist graphs requiring omega(NF) area for planar embedding. Also, finding a minimal embedding area is shown to be Nu-complete for forests, and hence for more general types of graphs. (author). Algorithms dtict Computer graphics dtict Control theory dtict Graphs dtict Planar structures dtict Problem solving dtict Theorems dtict Theoretical Mathematics scgdst Graph (DE-588)4021842-9 gnd rswk-swf Einbettung Mathematik (DE-588)4151233-9 gnd rswk-swf Internetworking (DE-588)4225115-1 gnd rswk-swf Graph (DE-588)4021842-9 s DE-604 Einbettung Mathematik (DE-588)4151233-9 s Internetworking (DE-588)4225115-1 s Leighton, Frank T. Verfasser aut Trickey, Howard Verfasser aut |
spellingShingle | Dolev, Danny Leighton, Frank T. Trickey, Howard Planar embedding of planar graphs Algorithms dtict Computer graphics dtict Control theory dtict Graphs dtict Planar structures dtict Problem solving dtict Theorems dtict Theoretical Mathematics scgdst Graph (DE-588)4021842-9 gnd Einbettung Mathematik (DE-588)4151233-9 gnd Internetworking (DE-588)4225115-1 gnd |
subject_GND | (DE-588)4021842-9 (DE-588)4151233-9 (DE-588)4225115-1 |
title | Planar embedding of planar graphs |
title_auth | Planar embedding of planar graphs |
title_exact_search | Planar embedding of planar graphs |
title_exact_search_txtP | Planar embedding of planar graphs |
title_full | Planar embedding of planar graphs Danny Dolev ; Frank Thomson Leighton ; Howard Trickey |
title_fullStr | Planar embedding of planar graphs Danny Dolev ; Frank Thomson Leighton ; Howard Trickey |
title_full_unstemmed | Planar embedding of planar graphs Danny Dolev ; Frank Thomson Leighton ; Howard Trickey |
title_short | Planar embedding of planar graphs |
title_sort | planar embedding of planar graphs |
topic | Algorithms dtict Computer graphics dtict Control theory dtict Graphs dtict Planar structures dtict Problem solving dtict Theorems dtict Theoretical Mathematics scgdst Graph (DE-588)4021842-9 gnd Einbettung Mathematik (DE-588)4151233-9 gnd Internetworking (DE-588)4225115-1 gnd |
topic_facet | Algorithms Computer graphics Control theory Graphs Planar structures Problem solving Theorems Theoretical Mathematics Graph Einbettung Mathematik Internetworking |
work_keys_str_mv | AT dolevdanny planarembeddingofplanargraphs AT leightonfrankt planarembeddingofplanargraphs AT trickeyhoward planarembeddingofplanargraphs |