Mesoscopic electronics in solid state nanostructures:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2007
|
Ausgabe: | 2., compl. rev. and enlarg. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XV, 395 S. |
ISBN: | 9783527406388 3527406387 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021838158 | ||
003 | DE-604 | ||
005 | 20070110 | ||
007 | t | ||
008 | 061204s2007 gw |||| 00||| eng d | ||
016 | 7 | |a 98082608X |2 DE-101 | |
020 | |a 9783527406388 |c Pb. : ca. EUR 89.00 (freier Pr.), ca. sfr 142.00 (freier Pr.) |9 978-3-527-40638-8 | ||
020 | |a 3527406387 |c Pb. : ca. EUR 89.00 (freier Pr.), ca. sfr 142.00 (freier Pr.) |9 3-527-40638-7 | ||
035 | |a (OCoLC)71348110 | ||
035 | |a (DE-599)BVBBV021838158 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-20 |a DE-19 |a DE-29T |a DE-355 |a DE-11 | ||
050 | 0 | |a QC176.8.M46 | |
082 | 0 | |a 530.41 |2 22 | |
084 | |a UP 3150 |0 (DE-625)146377: |2 rvk | ||
084 | |a UP 3200 |0 (DE-625)146379: |2 rvk | ||
084 | |a UP 5050 |0 (DE-625)146409: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Heinzel, Thomas |e Verfasser |0 (DE-588)114501815 |4 aut | |
245 | 1 | 0 | |a Mesoscopic electronics in solid state nanostructures |c Thomas Heinzel |
250 | |a 2., compl. rev. and enlarg. ed. | ||
264 | 1 | |a Weinheim |b WILEY-VCH |c 2007 | |
300 | |a XV, 395 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Nanostructures | |
650 | 4 | |a Systèmes mésoscopiques | |
650 | 4 | |a Mesoscopic phenomena (Physics) | |
650 | 4 | |a Nanostructures | |
650 | 0 | 7 | |a Elektronischer Transport |0 (DE-588)4210733-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostruktur |0 (DE-588)4204530-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostruktur |0 (DE-588)4204530-7 |D s |
689 | 0 | 1 | |a Elektronischer Transport |0 (DE-588)4210733-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2843900&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015050049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015050049 |
Datensatz im Suchindex
_version_ | 1805088542540431360 |
---|---|
adam_text |
VII
Contents
Preface
XIII
1
Introduction
1
1.1
Preliminary remarks
1
1.2
Mesoscopic transport
2
1.2.1
Ballistic transport
3
1.2.2
The quantum Hall effect and Shubnikov-de Haas oscillations
5
1.2.3
Size quantization
7
1.2.4
Phase coherence
8
1.2.5
Single-electron tunneling and quantum dots
9
1.2.6
Superlattices
10
1.2.7
Spintronics
11
1.2.8
Samples, experimental techniques, and technological relevance
11
2
An update of solid state physics
15
2.1
Crystal structures
16
2.2
Electronic energy bands
18
2.3
Occupation of energy bands
27
2.3.1
The electronic density of states
27
2.3.2
Occupation probability and chemical potential
29
2.3.3
Intrinsic carrier concentration
29
2.3.4
Bloch waves and localized electrons
31
2.4
Envelope wave functions
32
2.5
Doping
36
2.6
Diffusive transport and the Boltzmann equation
40
2.6.1
The Boltzmann equation
41
2.6.2
The conductance predicted by the simplified Boltzmann
equation
44
2.6.3
The magneto-resistivity tensor
46
2.6.4
Diffusion currents
47
viul
Contents
2.7
Scattering mechanisms
48
2.8
Screening
50
3
Surfaces, interfaces, and layered devices
57
3.1
Electronic surface states
59
3.1.1
Surface states in one dimension
59
3.1.2
Surfaces of three-dimensional crystals
65
3.1.3
Band bending and Fermi level pinning
67
3.2
Semiconductor-metal interfaces
68
3.2.1
Band alignment and Schottky barriers
69
3.2.1.1
The Schottky model
72
3.2.1.2
The Schottky diode
73
3.2.2
Ohmic contacts
73
3.3
Semiconductor
heterointerfaces
74
3.4
Field effect transistors and quantum wells
77
3.4.1
The silicon metal-oxide-semiconductor field effect transistor
77
3.4.1.1
The MOSFET and digital electronics
81
3.4.2
The Ga[Al]As high electron mobility transistor
84
3.4.3
Other types of layered devices
87
3.4.3.1
The AlSb-InAs-AlSb quantum well
87
3.4.3.2
Hole gas in Si-Sii^Ge^-Si quantum wells
89
3.4.3.3
Organic FETs
89
3.4.4
Quantum confined carriers in comparison to bulk carriers
91
4
Experimental techniques
97
4.1
Sample preparation
97
4.1.1
Single crystal growth
98
4.1.2
Growth of layered structures
100
4.1.2.1
Metal organic chemical vapor deposition (MOCVD)
101
4.1.2.2
Molecular beam epitaxy (MBE)
101
4.1.3
Lateral patterning
107
4.1.3.1
Defining patterns in resists
107
4.1.3.2
Direct writing methods
110
4.1.3.3
Etching
322
4.1.4
Metallization
113
4.1.5
Bonding
115
4.2
Elements of cryogenics
116
4.2.1
Properties of liquid helium
227
4.2.1.1
Some properties of pure 4He
217
4.2.1.2
Some properties of pure 3He
120
4.2.1.3
The 3He/4He mixture
222
4.2.2
Helium
cryostats
122
Contents
IX
4.2.2.1
4Не
cryostats
122
4.2.2.2
3Не
cryostats
225
4.2.2.3
3Не/4Не
dilution
refrigerators
125
4.3
Electronic
measurements
on nanostructures
127
4.3.1
Sample holders
128
4.3.2
Application
and detection of electronic signals
128
4.3.2.1
General considerations
128
4.3.2.2
Voltage and current sources
129
4.3.2.3
Signal detectors
130
4.3.2.4
Some important measurement setups
233
5
Important quantities in mesoscopic transport
139
5.1
Fermi wavelength
139
5.2
Elastic scattering times and lengths
139
5.3
Diffusion constant
240
5.4
Dephasing time and phase coherence length
143
5.5
Electron-electron scattering time
244
5.6
Thermal length
144
5.7
Localization length
245
5.8
Interaction parameter (or gas parameter)
245
5.9
Magnetic length and magnetic time
245
6
Magneto-transport properties of quantum films
147
6.1
Landau quantization 24S
6.1.1
Two-dimensional electron gases in perpendicular magnetic
fields
248
6.1.2
The chemical potential in strong magnetic fields
252
6.2
The quantum Hall effect
254
6.2.1
Phenomenology
154
6.2.2
Toward an explanation of the integer quantum Hall effect
156
6.2.3
The quantum Hall effect and three dimensions
161
6.3
Elementary analysis of Shubnikov-de Haas oscillations
262
6.4
Some examples of magneto-transport experiments
165
6
A.I Quasi-two-dimensional electron gases
165
6.4.2
Mapping of the probability density
267
6.4.3
Displacement of the quantum Hall plateaux
167
6.5
Parallel magnetic fields
269
7
Quantum wires and quantum point contacts
177
7.1
Diffusive quantum wires
279
7.1.1
Basic properties
179
7.1.2
Boundary scattering
181
XI Contents
7.2
Ballistic quantum wires
182
7.2.1
Phenomenology
282
7.2.2
Conductance quantization in QPCs
184
7.2.3
Magnetic field effects
191
7.2.4
The
"0.7
structure"
195
7.2.5
Four-probe measurements on ballistic quantum wires
195
7.3
The
Landauer-Büttiker
formalism
198
7.3.1
Edge states
199
7.3.2
Edge channels
202
7.4
Further examples of quantum wires
204
7
A.I Conductance quantization in conventional metals
204
7.4.2
Molecular wires
206
7.4.2.1
Carbon nanotubes
206
7.5
Quantum point contact circuits
210
7.5.1
Non-Ohmic behavior of QPCs in series
210
7.5.2
QPCs in parallel
212
7.6
Semiclassical limit: conductance of ballistic 2D systems
214
7.7
Concluding remarks
218
8
Electronic phase coherence
223
8.1
The Aharonov-Bohm effect in mesoscopic conductors
223
8.2
Weak localization
226
8.3
Universal conductance fluctuations
229
8.4
Phase coherence in ballistic 2DEGs
234
8.5
Resonant tunneling and s-matrices
236
9
Single-electron tunneling
247
9.1
The principle of Coulomb blockade
247
9.2
Basic single-electron tunneling circuits
250
9.2.1
Coulomb blockade at the double barrier
252
9.2.2
Current-voltage characteristics: The Coulomb staircase
255
9.2.3
The SET transistor
259
9.3
SET circuits with many islands: The single-electron pump
265
10
Quantum dots
273
10.1
Phenomenology of quantum dots
274
10.2
The constant interaction model
279
10.2.1
Quantum dots in intermediate magnetic fields
283
10.2.2
Quantum rings
285
10.3
Beyond the constant interaction model
287
10.3.1
Hund's rules in quantum dots
287
10.3.2
Quantum dots in strong magnetic fields
287
Contents
XI
10.3.3 The
distribution
of nearest-neighbor spacings
290
10.4
Shape of conductance resonances and I-V characteristics
294
10.5
Other types of quantum dots
297
10.5.1
Metal grains
298
10.5.2
Molecular quantum dots
299
10.6
Quantum dots and quantum computation
302
11
Mesoscopic superlattices
309
11.1
One-dimensional superlattices
310
11.2
Two-dimensional superlattices
312
11.2.1
Semiclassical effects
312
11.2.2
Quantum effects
318
12
Spintronics
323
12.1
Ferromagnetic sandwich structures
324
12.1.1
Tunneling magneto-resistance (TMR) and giant magneto-resistance
(GMR)
324
12.1.2
Spin injection into a non-magnetic conductor
328
12.2
The Datta-Das spin field effect transistor
332
12.2.1
Concept of the Datta-Das transistor
332
12.2.2
Spin injection in semiconductors
333
12.2.2.1
Interface tunnel barriers
333
12.2.2.2
Ferromagnetic semiconductors
335
12.2.3
Gate-induced spin rotation: The Rashba effect
336
12.2.4
Spin relaxation and spin dephasing
339
A SI and cgs units
343
В
Correlation and convolution
345
B.I Fourier transformation
345
B.2 Convolutions
345
B.3 Correlation functions
347
С
Capacitance matrix and electrostatic energy
349
D
The transfer Hamiltonian
353
E
Solutions to selected exercises
355
References
383
Index
393 |
adam_txt |
VII
Contents
Preface
XIII
1
Introduction
1
1.1
Preliminary remarks
1
1.2
Mesoscopic transport
2
1.2.1
Ballistic transport
3
1.2.2
The quantum Hall effect and Shubnikov-de Haas oscillations
5
1.2.3
Size quantization
7
1.2.4
Phase coherence
8
1.2.5
Single-electron tunneling and quantum dots
9
1.2.6
Superlattices
10
1.2.7
Spintronics
11
1.2.8
Samples, experimental techniques, and technological relevance
11
2
An update of solid state physics
15
2.1
Crystal structures
16
2.2
Electronic energy bands
18
2.3
Occupation of energy bands
27
2.3.1
The electronic density of states
27
2.3.2
Occupation probability and chemical potential
29
2.3.3
Intrinsic carrier concentration
29
2.3.4
Bloch waves and localized electrons
31
2.4
Envelope wave functions
32
2.5
Doping
36
2.6
Diffusive transport and the Boltzmann equation
40
2.6.1
The Boltzmann equation
41
2.6.2
The conductance predicted by the simplified Boltzmann
equation
44
2.6.3
The magneto-resistivity tensor
46
2.6.4
Diffusion currents
47
viul
Contents
2.7
Scattering mechanisms
48
2.8
Screening
50
3
Surfaces, interfaces, and layered devices
57
3.1
Electronic surface states
59
3.1.1
Surface states in one dimension
59
3.1.2
Surfaces of three-dimensional crystals
65
3.1.3
Band bending and Fermi level pinning
67
3.2
Semiconductor-metal interfaces
68
3.2.1
Band alignment and Schottky barriers
69
3.2.1.1
The Schottky model
72
3.2.1.2
The Schottky diode
73
3.2.2
Ohmic contacts
73
3.3
Semiconductor
heterointerfaces
74
3.4
Field effect transistors and quantum wells
77
3.4.1
The silicon metal-oxide-semiconductor field effect transistor
77
3.4.1.1
The MOSFET and digital electronics
81
3.4.2
The Ga[Al]As high electron mobility transistor
84
3.4.3
Other types of layered devices
87
3.4.3.1
The AlSb-InAs-AlSb quantum well
87
3.4.3.2
Hole gas in Si-Sii^Ge^-Si quantum wells
89
3.4.3.3
Organic FETs
89
3.4.4
Quantum confined carriers in comparison to bulk carriers
91
4
Experimental techniques
97
4.1
Sample preparation
97
4.1.1
Single crystal growth
98
4.1.2
Growth of layered structures
100
4.1.2.1
Metal organic chemical vapor deposition (MOCVD)
101
4.1.2.2
Molecular beam epitaxy (MBE)
101
4.1.3
Lateral patterning
107
4.1.3.1
Defining patterns in resists
107
4.1.3.2
Direct writing methods
110
4.1.3.3
Etching
322
4.1.4
Metallization
113
4.1.5
Bonding
115
4.2
Elements of cryogenics
116
4.2.1
Properties of liquid helium
227
4.2.1.1
Some properties of pure 4He
217
4.2.1.2
Some properties of pure 3He
120
4.2.1.3
The 3He/4He mixture
222
4.2.2
Helium
cryostats
122
Contents
IX
4.2.2.1
4Не
cryostats
122
4.2.2.2
3Не
cryostats
225
4.2.2.3
3Не/4Не
dilution
refrigerators
125
4.3
Electronic
measurements
on nanostructures
127
4.3.1
Sample holders
128
4.3.2
Application
and detection of electronic signals
128
4.3.2.1
General considerations
128
4.3.2.2
Voltage and current sources
129
4.3.2.3
Signal detectors
130
4.3.2.4
Some important measurement setups
233
5
Important quantities in mesoscopic transport
139
5.1
Fermi wavelength
139
5.2
Elastic scattering times and lengths
139
5.3
Diffusion constant
240
5.4
Dephasing time and phase coherence length
143
5.5
Electron-electron scattering time
244
5.6
Thermal length
144
5.7
Localization length
245
5.8
Interaction parameter (or gas parameter)
245
5.9
Magnetic length and magnetic time
245
6
Magneto-transport properties of quantum films
147
6.1
Landau quantization 24S
6.1.1
Two-dimensional electron gases in perpendicular magnetic
fields
248
6.1.2
The chemical potential in strong magnetic fields
252
6.2
The quantum Hall effect
254
6.2.1
Phenomenology
154
6.2.2
Toward an explanation of the integer quantum Hall effect
156
6.2.3
The quantum Hall effect and three dimensions
161
6.3
Elementary analysis of Shubnikov-de Haas oscillations
262
6.4
Some examples of magneto-transport experiments
165
6
A.I Quasi-two-dimensional electron gases
165
6.4.2
Mapping of the probability density
267
6.4.3
Displacement of the quantum Hall plateaux
167
6.5
Parallel magnetic fields
269
7
Quantum wires and quantum point contacts
177
7.1
Diffusive quantum wires
279
7.1.1
Basic properties
179
7.1.2
Boundary scattering
181
XI Contents
7.2
Ballistic quantum wires
182
7.2.1
Phenomenology
282
7.2.2
Conductance quantization in QPCs
184
7.2.3
Magnetic field effects
191
7.2.4
The
"0.7
structure"
195
7.2.5
Four-probe measurements on ballistic quantum wires
195
7.3
The
Landauer-Büttiker
formalism
198
7.3.1
Edge states
199
7.3.2
Edge channels
202
7.4
Further examples of quantum wires
204
7
A.I Conductance quantization in conventional metals
204
7.4.2
Molecular wires
206
7.4.2.1
Carbon nanotubes
206
7.5
Quantum point contact circuits
210
7.5.1
Non-Ohmic behavior of QPCs in series
210
7.5.2
QPCs in parallel
212
7.6
Semiclassical limit: conductance of ballistic 2D systems
214
7.7
Concluding remarks
218
8
Electronic phase coherence
223
8.1
The Aharonov-Bohm effect in mesoscopic conductors
223
8.2
Weak localization
226
8.3
Universal conductance fluctuations
229
8.4
Phase coherence in ballistic 2DEGs
234
8.5
Resonant tunneling and s-matrices
236
9
Single-electron tunneling
247
9.1
The principle of Coulomb blockade
247
9.2
Basic single-electron tunneling circuits
250
9.2.1
Coulomb blockade at the double barrier
252
9.2.2
Current-voltage characteristics: The Coulomb staircase
255
9.2.3
The SET transistor
259
9.3
SET circuits with many islands: The single-electron pump
265
10
Quantum dots
273
10.1
Phenomenology of quantum dots
274
10.2
The constant interaction model
279
10.2.1
Quantum dots in intermediate magnetic fields
283
10.2.2
Quantum rings
285
10.3
Beyond the constant interaction model
287
10.3.1
Hund's rules in quantum dots
287
10.3.2
Quantum dots in strong magnetic fields
287
Contents
XI
10.3.3 The
distribution
of nearest-neighbor spacings
290
10.4
Shape of conductance resonances and I-V characteristics
294
10.5
Other types of quantum dots
297
10.5.1
Metal grains
298
10.5.2
Molecular quantum dots
299
10.6
Quantum dots and quantum computation
302
11
Mesoscopic superlattices
309
11.1
One-dimensional superlattices
310
11.2
Two-dimensional superlattices
312
11.2.1
Semiclassical effects
312
11.2.2
Quantum effects
318
12
Spintronics
323
12.1
Ferromagnetic sandwich structures
324
12.1.1
Tunneling magneto-resistance (TMR) and giant magneto-resistance
(GMR)
324
12.1.2
Spin injection into a non-magnetic conductor
328
12.2
The Datta-Das spin field effect transistor
332
12.2.1
Concept of the Datta-Das transistor
332
12.2.2
Spin injection in semiconductors
333
12.2.2.1
Interface tunnel barriers
333
12.2.2.2
Ferromagnetic semiconductors
335
12.2.3
Gate-induced spin rotation: The Rashba effect
336
12.2.4
Spin relaxation and spin dephasing
339
A SI and cgs units
343
В
Correlation and convolution
345
B.I Fourier transformation
345
B.2 Convolutions
345
B.3 Correlation functions
347
С
Capacitance matrix and electrostatic energy
349
D
The transfer Hamiltonian
353
E
Solutions to selected exercises
355
References
383
Index
393 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Heinzel, Thomas |
author_GND | (DE-588)114501815 |
author_facet | Heinzel, Thomas |
author_role | aut |
author_sort | Heinzel, Thomas |
author_variant | t h th |
building | Verbundindex |
bvnumber | BV021838158 |
callnumber-first | Q - Science |
callnumber-label | QC176 |
callnumber-raw | QC176.8.M46 |
callnumber-search | QC176.8.M46 |
callnumber-sort | QC 3176.8 M46 |
callnumber-subject | QC - Physics |
classification_rvk | UP 3150 UP 3200 UP 5050 |
ctrlnum | (OCoLC)71348110 (DE-599)BVBBV021838158 |
dewey-full | 530.41 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.41 |
dewey-search | 530.41 |
dewey-sort | 3530.41 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 2., compl. rev. and enlarg. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV021838158</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070110</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061204s2007 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98082608X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527406388</subfield><subfield code="c">Pb. : ca. EUR 89.00 (freier Pr.), ca. sfr 142.00 (freier Pr.)</subfield><subfield code="9">978-3-527-40638-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527406387</subfield><subfield code="c">Pb. : ca. EUR 89.00 (freier Pr.), ca. sfr 142.00 (freier Pr.)</subfield><subfield code="9">3-527-40638-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71348110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021838158</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC176.8.M46</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.41</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3150</subfield><subfield code="0">(DE-625)146377:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3200</subfield><subfield code="0">(DE-625)146379:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 5050</subfield><subfield code="0">(DE-625)146409:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heinzel, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114501815</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mesoscopic electronics in solid state nanostructures</subfield><subfield code="c">Thomas Heinzel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., compl. rev. and enlarg. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 395 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systèmes mésoscopiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesoscopic phenomena (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructures</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronischer Transport</subfield><subfield code="0">(DE-588)4210733-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostruktur</subfield><subfield code="0">(DE-588)4204530-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostruktur</subfield><subfield code="0">(DE-588)4204530-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektronischer Transport</subfield><subfield code="0">(DE-588)4210733-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2843900&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015050049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015050049</subfield></datafield></record></collection> |
id | DE-604.BV021838158 |
illustrated | Not Illustrated |
index_date | 2024-07-02T15:59:28Z |
indexdate | 2024-07-20T09:09:41Z |
institution | BVB |
isbn | 9783527406388 3527406387 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015050049 |
oclc_num | 71348110 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM DE-29T DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-20 DE-19 DE-BY-UBM DE-29T DE-355 DE-BY-UBR DE-11 |
physical | XV, 395 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Heinzel, Thomas Verfasser (DE-588)114501815 aut Mesoscopic electronics in solid state nanostructures Thomas Heinzel 2., compl. rev. and enlarg. ed. Weinheim WILEY-VCH 2007 XV, 395 S. txt rdacontent n rdamedia nc rdacarrier Nanostructures Systèmes mésoscopiques Mesoscopic phenomena (Physics) Elektronischer Transport (DE-588)4210733-7 gnd rswk-swf Nanostruktur (DE-588)4204530-7 gnd rswk-swf Nanostruktur (DE-588)4204530-7 s Elektronischer Transport (DE-588)4210733-7 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2843900&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015050049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Heinzel, Thomas Mesoscopic electronics in solid state nanostructures Nanostructures Systèmes mésoscopiques Mesoscopic phenomena (Physics) Elektronischer Transport (DE-588)4210733-7 gnd Nanostruktur (DE-588)4204530-7 gnd |
subject_GND | (DE-588)4210733-7 (DE-588)4204530-7 |
title | Mesoscopic electronics in solid state nanostructures |
title_auth | Mesoscopic electronics in solid state nanostructures |
title_exact_search | Mesoscopic electronics in solid state nanostructures |
title_exact_search_txtP | Mesoscopic electronics in solid state nanostructures |
title_full | Mesoscopic electronics in solid state nanostructures Thomas Heinzel |
title_fullStr | Mesoscopic electronics in solid state nanostructures Thomas Heinzel |
title_full_unstemmed | Mesoscopic electronics in solid state nanostructures Thomas Heinzel |
title_short | Mesoscopic electronics in solid state nanostructures |
title_sort | mesoscopic electronics in solid state nanostructures |
topic | Nanostructures Systèmes mésoscopiques Mesoscopic phenomena (Physics) Elektronischer Transport (DE-588)4210733-7 gnd Nanostruktur (DE-588)4204530-7 gnd |
topic_facet | Nanostructures Systèmes mésoscopiques Mesoscopic phenomena (Physics) Elektronischer Transport Nanostruktur |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2843900&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015050049&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT heinzelthomas mesoscopicelectronicsinsolidstatenanostructures |