Moonshine beyond the monster: the bridge connecting algebra, modular forms and physics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2006
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI, 477 S. graph. Darst. |
ISBN: | 9780521835312 0521835313 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021815080 | ||
003 | DE-604 | ||
005 | 20101206 | ||
007 | t | ||
008 | 061116s2006 d||| |||| 00||| eng d | ||
020 | |a 9780521835312 |9 978-0-521-83531-2 | ||
020 | |a 0521835313 |9 0-521-83531-3 | ||
035 | |a (OCoLC)61129363 | ||
035 | |a (DE-599)BVBBV021815080 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-29T |a DE-384 |a DE-19 |a DE-20 |a DE-11 | ||
050 | 0 | |a QA177 | |
082 | 0 | |a 512 |2 22 | |
082 | 0 | |a 510 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 990 |0 (DE-625)143278: |2 rvk | ||
084 | |a PHY 012f |2 stub | ||
100 | 1 | |a Gannon, Terry |e Verfasser |0 (DE-588)132405415 |4 aut | |
245 | 1 | 0 | |a Moonshine beyond the monster |b the bridge connecting algebra, modular forms and physics |c Terry Gannon |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2006 | |
300 | |a XI, 477 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
650 | 4 | |a Algèbres d'opérateurs des sommets | |
650 | 4 | |a Fonctions modulaires | |
650 | 4 | |a Groupes finis | |
650 | 4 | |a Physique mathématique | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Finite groups | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Modular functions | |
650 | 4 | |a Vertex operator algebras | |
650 | 0 | 7 | |a Affine Algebra |0 (DE-588)4348233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulform |0 (DE-588)4128299-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 1 | |a Modulform |0 (DE-588)4128299-1 |D s |
689 | 0 | 2 | |a Affine Algebra |0 (DE-588)4348233-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015027303&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015027303 |
Datensatz im Suchindex
_version_ | 1804135737777455104 |
---|---|
adam_text | MOONSHINE BEYOND THE MONSTER THE BRIDGE CONNECTING ALGEBRA, MODULAR
FORMS AND PHYSICS TERRY GANNON UNIVERSITY OF ALBERTA CAMBRIDGE
UNIVERSITY PRESS CONTENTS ACKNOWLEDGEMENTS PAGE XIII 0 INTRODUCTION:
GLIMPSES OF THE THEORY BENEATH MONSTROUS MOONSHINE 1 0.1 MODULAR
FUNCTIONS 1 0.2 THE MCKAY EQUATIONS 3 0.3 TWISTED #0: THE THOMPSON TRICK
4 0.4 MONSTROUS MOONSHINE 5 0.5 THE MOONSHINE OF E S AND THE LEECH 6 0.6
MOONSHINE BEYOND THE MONSTER 8 0.7 PHYSICS AND MOONSHINE 9 0.8 BRAIDED
#0: THE MEANING OF MOONSHINE 11 0.9 THE BOOK 11 1 CLASSICAL ALGEBRA 14
1.1 DISCRETE GROUPS AND THEIR REPRESENTATIONS 14 1.1.1 BASIC DEFINITIONS
15 1.1.2 FINITE SIMPLE GROUPS 17 1.1.3 REPRESENTATIONS . 20 1.1.4
BRAIDED # 1: THE BRAID GROUPS 26 1.2 ELEMENTARY GEOMETRY 29 1.2.1
LATTICES 29 1.2.2 MANIFOLDS 32 1.2.3 LOOPS 40 1.3 ELEMENTARY FUNCTIONAL
ANALYSIS 44 1.3.1 HILBERT SPACES 45 1.3.2 FACTORS 49 1.4 LIE GROUPS AND
LIE ALGEBRAS . 52 1.4.1 DEFINITION AND EXAMPLES OF LIE ALGEBRAS 53 1.4.2
THEIR MOTIVATION: LIE GROUPS 55 1.4.3 SIMPLE LIE ALGEBRAS 59 1.5
REPRESENTATIONS OF SIMPLE LIE ALGEBRAS 65 1.5.1 DEFINITIONS AND EXAMPLES
65 1.5.2 THE STRUCTURE OF SIMPLE LIE ALGEBRAS 68 1.5.3 WEYL CHARACTERS
73 VIII CONTENTS 1.5.4 TWISTED #1: AUTOMORPHISMS AND CHARACTERS 78 1.5.5
REPRESENTATIONS OF LIE GROUPS 82 1.6 CATEGORY THEORY 87 1.6.1 GENERAL
PHILOSOPHY 87 1.6.2 BRAIDED MONOIDAL CATEGORIES 88 1.7 ELEMENTARY
ALGEBRAIC NUMBER THEORY 95 1.7.1 ALGEBRAIC NUMBERS 95 1.7.2 GALOIS 98
1.7.3 CYCLOTOMIC FIELDS 101 2 MODULAR STUFF 104 2.1 THE UNDERLYING
GEOMETRY 104 2.1.1 THE HYPERBOLIC PLANE 104 2.1.2 RIEMANN SURFACES 110
2.1.3 FUNCTIONS AND DIFFERENTIAL FORMS 116 2.1.4 MODULI 119 2.2 MODULAR
FORMS AND FUNCTIONS 126 2.2.1 DEFINITION AND MOTIVATION 126 2.2.2
THETAANDETA 131 2.2.3 POISSON SUMMATION 135 2.2.4 HAUPTMODULS 138 2.3
FURTHER DEVELOPMENTS . 140 2.3.1 DIRICHLET SERIES 140 2.3.2 JACOBI FORMS
142 2.3.3 TWISTED #2: SHIFTS AND TWISTS 144 2.3.4 THE REMARKABLE HEAT
KERNEL 147 2.3.5 SIEGEL FORMS . 150 2.4 REPRESENTATIONS AND MODULAR
FORMS 154 2.4.1 AUTOMORPHIC FORMS 154 2.4.2 THETA FUNCTIONS AS MATRIX
ENTRIES 159 2.4.3 BRAIDED #2: FROM THE TREFOIL TO DEDEKIND 164 2.5
META-PATTERNS IN MATHEMATICS 168 2.5.1 TWENTY-FOUR , 168 2.5.2 A-D-E 169
3 GOLD AND BRASS: AFFINE ALGEBRAS AND GENERALISATIONS 3.1 MODULARITY
FROM THE CIRCLE 3.1.1 CENTRAL EXTENSIONS 3.1.2 THE VIRASORO ALGEBRA 3.2
AFFINE ALGEBRAS AND THEIR REPRESENTATIONS 3.2.1 MOTIVATION 3.2.2
CONSTRUCTION AND STRUCTURE 3.2.3 REPRESENTATIONS CONTENTS IX 3.2.4
BRAIDED #3: BRAIDS AND AFFINE ALGEBRAS 200 3.2.5 SINGULARITIES AND LIE
ALGEBRAS 204 3.2.6 LOOP GROUPS 206 3.3 GENERALISATIONS OF THE AFFINE
ALGEBRAS 208 3.3.1 KAC-MOODY ALGEBRAS 209 3.3.2 BORCHERDS ALGEBRAS
212 3.3.3 TOROIDAL ALGEBRAS 215 3.3.4 LIE ALGEBRAS AND RIEMANN SURFACES
216 3.4 VARIATIONS ON A THEME OF CHARACTER 218 3.4.1 TWISTED #3: TWISTED
REPRESENTATIONS 218 3.4.2 DENOMINATOR IDENTITIES 220 3.4.3 AUTOMORPHIC
PRODUCTS 223 4 CONFORMAL FIELD THEORY: THE PHYSICS OF MOONSHINE 226 4.1
CLASSICAL PHYSICS 227 4.1.1 NONRELATIVISTIC CLASSICAL MECHANICS 227
4.1.2 SPECIAL RELATIVITY 233 4.1.3 CLASSICAL FIELD THEORY 237 4.2
QUANTUM PHYSICS 240 4.2.1 NONRELATIVISTIC QUANTUM MECHANICS 241 4.2.2
INFORMAL QUANTUM FIELD THEORY 252 4.2.3 THE MEANING OF REGULARISATION
270 4.2.4 MATHEMATICAL FORMULATIONS OF QUANTUM FIELD THEORY 271 4.3 FROM
STRINGS TO CONFORMAL FIELD THEORY 276 4.3.1 STRING THEORY 277 4.3.2
INFORMAL CONFORMAL FIELD THEORY 280 4.3.3 MONODROMY IN CFT 290 4.3.4
TWISTED #4: THE ORBIFOLD CONSTRUCTION 292 4.3.5 BRAIDED #4: THE BRAID
GROUP IN QUANTUM FIELD THEORY 295 4.4 MATHEMATICAL FORMULATIONS OF
CONFORMAL FIELD THEORY 298 4.4.1 CATEGORIES 298 4.4.2 GROUPS ARE
DECORATED SURFACES 303 4.4.3 TOPOLOGICAL FIELD THEORY 305 4.4.4 FROM
AMPLITUDES TO ALGEBRA 308 5 VERTEX OPERATOR ALGEBRAS 311 5.1 THE
DEFINITION AND MOTIVATION 311 5.1.1 VERTEX OPERATORS 311 5.1.2 FORMAL
POWER SERIES 312 5.1.3 AXIOMS 317 5.2 BASIC THEORY 323 5.2.1 BASIC
DEFINITIONS AND PROPERTIES 324 5.2.2 EXAMPLES 325 X CONTENTS 5.3
REPRESENTATION THEORY: THE ALGEBRAIC MEANING OF MOONSHINE 329 5.3.1
FUNDAMENTALS 330 5.3.2 ZHU S ALGEBRA 333 5.3.3 THE CHARACTERS OF VOAS
337 5.3.4 BRAIDED #5: THE PHYSICS OF MODULARITY 339 5.3.5 THE MODULARITY
OF VOA CHARACTERS 342 5.3.6 TWISTED #5: TWISTED MODULES AND ORBIFOLDS
345 5.4 GEOMETRIC INCARNATIONS 348 5.4.1 VERTEX OPERATOR ALGEBRAS AND
RIEMANN SURFACES 348 5.4.2 VERTEX OPERATOR SUPERALGEBRAS AND MANIFOLDS
351 6 MODULAR GROUP REPRESENTATIONS THROUGHOUT THE REALM 354 6.1
COMBINATORIAL RATIONAL CONFORMAL FIELD THEORY 354 6.1.1 FUSION RINGS 354
6.1.2 MODULAR DATA 359 6.1.3 MODULAR INVARIANTS 361 6.1.4 THE GENERATORS
AND RELATIONS OF RCFT 362 6.2 EXAMPLES 368 6.2.1 AFFINE ALGEBRAS 368
6.2.2 VERTEX OPERATOR ALGEBRAS 375 6.2.3 QUANTUM GROUPS - 378 6.2.4
TWISTED #6: FINITE GROUP MODULAR DATA . 381 6.2.5 KNOTS 383 6.2.6
SUBFACTORS 386 6.3 HINTS OF THINGS TO COME 392 6.3.1 HIGHER-GENUS
CONSIDERATIONS 392 6.3.2 COMPLEX MULTIPLICATION AND FERMAT 392 6.3.3
BRAIDED #6: THE ABSOLUTE GALOIS GROUP 395 7 MONSTROUS MOONSHINE 402 7.1
THE MONSTROUS MOONSHINE CONJECTURES 402 7.1.1 THE MONSTER REVISITED 403
7.1.2 CONWAY AND NORTON S FUNDAMENTAL CONJECTURE 407 7.1.3 8 AND THE
LEECH 408 7.1.4 REPLICABLE FUNCTIONS 409 7.2 PROOF OF THE MONSTROUS
MOONSHINE CONJECTURES * 412 7.2.1 THE MOONSHINE MODULE V^ 413 7.2.2 THE
MONSTER LIE ALGEBRA M 415 7.2.3 THE ALGEBRAIC MEANING OF GENUS 0 416
7.2.4 BRAIDED #7: SPECULATIONS ON A SECOND PROOF 419 7.3 MORE MONSTROUS
MOONSHINE 422 7.3.1 MINI-MOONSHINE 422 7.3.2 TWISTED #7: MAXI-MOONSHINE
424 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7 7.3.8 7.3.9 WHY THE MONSTER? GENUS 0
REVISITED MODULAR MOONSHINE MCKAY ON DYNKIN DIAGRAMS HIRZEBRUCH S PRIZE
QUESTION MIRROR MOONSHINE PHYSICS AND MOONSHINE EPILOGUE, OR THE
SQUIRREL WHO GOT AWAY? NOTATION REFERENCES INDEX CONTENTS XI 426 428 428
430 431 432 433 435 436 445 464
|
adam_txt |
MOONSHINE BEYOND THE MONSTER THE BRIDGE CONNECTING ALGEBRA, MODULAR
FORMS AND PHYSICS TERRY GANNON UNIVERSITY OF ALBERTA CAMBRIDGE
UNIVERSITY PRESS CONTENTS ACKNOWLEDGEMENTS PAGE XIII 0 INTRODUCTION:
GLIMPSES OF THE THEORY BENEATH MONSTROUS MOONSHINE 1 0.1 MODULAR
FUNCTIONS 1 0.2 THE MCKAY EQUATIONS 3 0.3 TWISTED #0: THE THOMPSON TRICK
4 0.4 MONSTROUS MOONSHINE 5 0.5 THE MOONSHINE OF E S AND THE LEECH 6 0.6
MOONSHINE BEYOND THE MONSTER 8 0.7 PHYSICS AND MOONSHINE 9 0.8 BRAIDED
#0: THE MEANING OF MOONSHINE 11 0.9 THE BOOK 11 1 CLASSICAL ALGEBRA 14
1.1 DISCRETE GROUPS AND THEIR REPRESENTATIONS 14 1.1.1 BASIC DEFINITIONS
15 1.1.2 FINITE SIMPLE GROUPS 17 1.1.3 REPRESENTATIONS . 20 1.1.4
BRAIDED # 1: THE BRAID GROUPS \ 26 1.2 ELEMENTARY GEOMETRY 29 1.2.1
LATTICES 29 1.2.2 MANIFOLDS 32 1.2.3 LOOPS 40 1.3 ELEMENTARY FUNCTIONAL
ANALYSIS 44 1.3.1 HILBERT SPACES 45 1.3.2 FACTORS 49 1.4 LIE GROUPS AND
LIE ALGEBRAS . 52 1.4.1 DEFINITION AND EXAMPLES OF LIE ALGEBRAS 53 1.4.2
THEIR MOTIVATION: LIE GROUPS 55 1.4.3 SIMPLE LIE ALGEBRAS 59 1.5
REPRESENTATIONS OF SIMPLE LIE ALGEBRAS 65 1.5.1 DEFINITIONS AND EXAMPLES
65 1.5.2 THE STRUCTURE OF SIMPLE LIE ALGEBRAS 68 1.5.3 WEYL CHARACTERS
73 VIII CONTENTS 1.5.4 TWISTED #1: AUTOMORPHISMS AND CHARACTERS 78 1.5.5
REPRESENTATIONS OF LIE GROUPS 82 1.6 CATEGORY THEORY 87 1.6.1 GENERAL
PHILOSOPHY " " 87 1.6.2 BRAIDED MONOIDAL CATEGORIES 88 1.7 ELEMENTARY
ALGEBRAIC NUMBER THEORY 95 1.7.1 ALGEBRAIC NUMBERS 95 1.7.2 GALOIS 98
1.7.3 CYCLOTOMIC FIELDS 101 2 MODULAR STUFF 104 2.1 THE UNDERLYING
GEOMETRY 104 2.1.1 THE HYPERBOLIC PLANE 104 2.1.2 RIEMANN SURFACES 110
2.1.3 FUNCTIONS AND DIFFERENTIAL FORMS 116 2.1.4 MODULI 119 2.2 MODULAR
FORMS AND FUNCTIONS 126 2.2.1 DEFINITION AND MOTIVATION 126 2.2.2
THETAANDETA 131 2.2.3 POISSON SUMMATION 135 2.2.4 HAUPTMODULS 138 2.3
FURTHER DEVELOPMENTS . 140 2.3.1 DIRICHLET SERIES 140 2.3.2 JACOBI FORMS
142 2.3.3 TWISTED #2: SHIFTS AND TWISTS 144 2.3.4 THE REMARKABLE HEAT
KERNEL 147 2.3.5 SIEGEL FORMS . 150 2.4 REPRESENTATIONS AND MODULAR
FORMS \ 154 2.4.1 AUTOMORPHIC FORMS 154 2.4.2 THETA FUNCTIONS AS MATRIX
ENTRIES 159 2.4.3 BRAIDED #2: FROM THE TREFOIL TO DEDEKIND 164 2.5
META-PATTERNS IN MATHEMATICS 168 2.5.1 TWENTY-FOUR , 168 2.5.2 A-D-E 169
3 GOLD AND BRASS: AFFINE ALGEBRAS AND GENERALISATIONS 3.1 MODULARITY
FROM THE CIRCLE 3.1.1 CENTRAL EXTENSIONS 3.1.2 THE VIRASORO ALGEBRA 3.2
AFFINE ALGEBRAS AND THEIR REPRESENTATIONS 3.2.1 MOTIVATION 3.2.2
CONSTRUCTION AND STRUCTURE 3.2.3 REPRESENTATIONS CONTENTS IX 3.2.4
BRAIDED #3: BRAIDS AND AFFINE ALGEBRAS 200 3.2.5 SINGULARITIES AND LIE
ALGEBRAS 204 3.2.6 LOOP GROUPS 206 3.3 GENERALISATIONS OF THE AFFINE
ALGEBRAS "" 208 3.3.1 KAC-MOODY ALGEBRAS 209 3.3.2 BORCHERDS' ALGEBRAS
212 3.3.3 TOROIDAL ALGEBRAS 215 3.3.4 LIE ALGEBRAS AND RIEMANN SURFACES
216 3.4 VARIATIONS ON A THEME OF CHARACTER 218 3.4.1 TWISTED #3: TWISTED
REPRESENTATIONS 218 3.4.2 DENOMINATOR IDENTITIES 220 3.4.3 AUTOMORPHIC
PRODUCTS 223 4 CONFORMAL FIELD THEORY: THE PHYSICS OF MOONSHINE 226 4.1
CLASSICAL PHYSICS 227 4.1.1 NONRELATIVISTIC CLASSICAL MECHANICS 227
4.1.2 SPECIAL RELATIVITY 233 4.1.3 CLASSICAL FIELD THEORY 237 4.2
QUANTUM PHYSICS 240 4.2.1 NONRELATIVISTIC QUANTUM MECHANICS 241 4.2.2
INFORMAL QUANTUM FIELD THEORY 252 4.2.3 THE MEANING OF REGULARISATION
270 4.2.4 MATHEMATICAL FORMULATIONS OF QUANTUM FIELD THEORY 271 4.3 FROM
STRINGS TO CONFORMAL FIELD THEORY 276 4.3.1 STRING THEORY 277 4.3.2
INFORMAL CONFORMAL FIELD THEORY 280 4.3.3 MONODROMY IN CFT 290 4.3.4
TWISTED #4: THE ORBIFOLD CONSTRUCTION \ 292 4.3.5 BRAIDED #4: THE BRAID
GROUP IN QUANTUM FIELD THEORY 295 4.4 MATHEMATICAL FORMULATIONS OF
CONFORMAL FIELD THEORY 298 4.4.1 CATEGORIES 298 4.4.2 GROUPS ARE
DECORATED SURFACES 303 4.4.3 TOPOLOGICAL FIELD THEORY 305 4.4.4 FROM
AMPLITUDES TO ALGEBRA 308 5 VERTEX OPERATOR ALGEBRAS 311 5.1 THE
DEFINITION AND MOTIVATION 311 5.1.1 VERTEX OPERATORS 311 5.1.2 FORMAL
POWER SERIES 312 5.1.3 AXIOMS 317 5.2 BASIC THEORY 323 5.2.1 BASIC
DEFINITIONS AND PROPERTIES 324 5.2.2 EXAMPLES 325 X CONTENTS 5.3
REPRESENTATION THEORY: THE ALGEBRAIC MEANING OF MOONSHINE 329 5.3.1
FUNDAMENTALS 330 5.3.2 ZHU'S ALGEBRA 333 5.3.3 THE CHARACTERS OF VOAS "'
337 5.3.4 BRAIDED #5: THE PHYSICS OF MODULARITY 339 5.3.5 THE MODULARITY
OF VOA CHARACTERS 342 5.3.6 TWISTED #5: TWISTED MODULES AND ORBIFOLDS
345 5.4 GEOMETRIC INCARNATIONS 348 5.4.1 VERTEX OPERATOR ALGEBRAS AND
RIEMANN SURFACES 348 5.4.2 VERTEX OPERATOR SUPERALGEBRAS AND MANIFOLDS
351 6 MODULAR GROUP REPRESENTATIONS THROUGHOUT THE REALM 354 6.1
COMBINATORIAL RATIONAL CONFORMAL FIELD THEORY 354 6.1.1 FUSION RINGS 354
6.1.2 MODULAR DATA 359 6.1.3 MODULAR INVARIANTS 361 6.1.4 THE GENERATORS
AND RELATIONS OF RCFT 362 6.2 EXAMPLES 368 6.2.1 AFFINE ALGEBRAS 368
6.2.2 VERTEX OPERATOR ALGEBRAS 375 6.2.3 QUANTUM GROUPS - 378 6.2.4
TWISTED #6: FINITE GROUP MODULAR DATA . 381 6.2.5 KNOTS 383 6.2.6
SUBFACTORS 386 6.3 HINTS OF THINGS TO COME 392 6.3.1 HIGHER-GENUS
CONSIDERATIONS 392 6.3.2 COMPLEX MULTIPLICATION AND FERMAT 392 6.3.3
BRAIDED #6: THE ABSOLUTE GALOIS GROUP 395 7 MONSTROUS MOONSHINE 402 7.1
THE MONSTROUS MOONSHINE CONJECTURES 402 7.1.1 THE MONSTER REVISITED 403
7.1.2 CONWAY AND NORTON'S FUNDAMENTAL CONJECTURE 407 7.1.3 8 AND THE
LEECH 408 7.1.4 REPLICABLE FUNCTIONS 409 7.2 PROOF OF THE MONSTROUS
MOONSHINE CONJECTURES * 412 7.2.1 THE MOONSHINE MODULE V^ 413 7.2.2 THE
MONSTER LIE ALGEBRA M 415 7.2.3 THE ALGEBRAIC MEANING OF GENUS 0 416
7.2.4 BRAIDED #7: SPECULATIONS ON A SECOND PROOF 419 7.3 MORE MONSTROUS
MOONSHINE 422 7.3.1 MINI-MOONSHINE 422 7.3.2 TWISTED #7: MAXI-MOONSHINE
424 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7 7.3.8 7.3.9 WHY THE MONSTER? GENUS 0
REVISITED MODULAR MOONSHINE MCKAY ON DYNKIN DIAGRAMS HIRZEBRUCH'S PRIZE
QUESTION MIRROR MOONSHINE PHYSICS AND MOONSHINE EPILOGUE, OR THE
SQUIRREL WHO GOT AWAY? NOTATION REFERENCES INDEX CONTENTS XI 426 428 428
430 431 432 433 435 436 445 464 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Gannon, Terry |
author_GND | (DE-588)132405415 |
author_facet | Gannon, Terry |
author_role | aut |
author_sort | Gannon, Terry |
author_variant | t g tg |
building | Verbundindex |
bvnumber | BV021815080 |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 |
callnumber-search | QA177 |
callnumber-sort | QA 3177 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 SK 260 SK 990 |
classification_tum | PHY 012f |
ctrlnum | (OCoLC)61129363 (DE-599)BVBBV021815080 |
dewey-full | 512 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512 510 |
dewey-search | 512 510 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02155nam a2200577 c 4500</leader><controlfield tag="001">BV021815080</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061116s2006 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521835312</subfield><subfield code="9">978-0-521-83531-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521835313</subfield><subfield code="9">0-521-83531-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61129363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021815080</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA177</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 990</subfield><subfield code="0">(DE-625)143278:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 012f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gannon, Terry</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132405415</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moonshine beyond the monster</subfield><subfield code="b">the bridge connecting algebra, modular forms and physics</subfield><subfield code="c">Terry Gannon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 477 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbres d'opérateurs des sommets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions modulaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes finis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertex operator algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Affine Algebra</subfield><subfield code="0">(DE-588)4348233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Affine Algebra</subfield><subfield code="0">(DE-588)4348233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015027303&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015027303</subfield></datafield></record></collection> |
id | DE-604.BV021815080 |
illustrated | Illustrated |
index_date | 2024-07-02T15:52:12Z |
indexdate | 2024-07-09T20:45:16Z |
institution | BVB |
isbn | 9780521835312 0521835313 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015027303 |
oclc_num | 61129363 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-29T DE-384 DE-19 DE-BY-UBM DE-20 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-29T DE-384 DE-19 DE-BY-UBM DE-20 DE-11 |
physical | XI, 477 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge Univ. Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Gannon, Terry Verfasser (DE-588)132405415 aut Moonshine beyond the monster the bridge connecting algebra, modular forms and physics Terry Gannon 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2006 XI, 477 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cambridge monographs on mathematical physics Algèbres d'opérateurs des sommets Fonctions modulaires Groupes finis Physique mathématique Mathematische Physik Finite groups Mathematical physics Modular functions Vertex operator algebras Affine Algebra (DE-588)4348233-8 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Modulform (DE-588)4128299-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 s Modulform (DE-588)4128299-1 s Affine Algebra (DE-588)4348233-8 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015027303&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gannon, Terry Moonshine beyond the monster the bridge connecting algebra, modular forms and physics Algèbres d'opérateurs des sommets Fonctions modulaires Groupes finis Physique mathématique Mathematische Physik Finite groups Mathematical physics Modular functions Vertex operator algebras Affine Algebra (DE-588)4348233-8 gnd Mathematische Physik (DE-588)4037952-8 gnd Modulform (DE-588)4128299-1 gnd |
subject_GND | (DE-588)4348233-8 (DE-588)4037952-8 (DE-588)4128299-1 |
title | Moonshine beyond the monster the bridge connecting algebra, modular forms and physics |
title_auth | Moonshine beyond the monster the bridge connecting algebra, modular forms and physics |
title_exact_search | Moonshine beyond the monster the bridge connecting algebra, modular forms and physics |
title_exact_search_txtP | Moonshine beyond the monster the bridge connecting algebra, modular forms and physics |
title_full | Moonshine beyond the monster the bridge connecting algebra, modular forms and physics Terry Gannon |
title_fullStr | Moonshine beyond the monster the bridge connecting algebra, modular forms and physics Terry Gannon |
title_full_unstemmed | Moonshine beyond the monster the bridge connecting algebra, modular forms and physics Terry Gannon |
title_short | Moonshine beyond the monster |
title_sort | moonshine beyond the monster the bridge connecting algebra modular forms and physics |
title_sub | the bridge connecting algebra, modular forms and physics |
topic | Algèbres d'opérateurs des sommets Fonctions modulaires Groupes finis Physique mathématique Mathematische Physik Finite groups Mathematical physics Modular functions Vertex operator algebras Affine Algebra (DE-588)4348233-8 gnd Mathematische Physik (DE-588)4037952-8 gnd Modulform (DE-588)4128299-1 gnd |
topic_facet | Algèbres d'opérateurs des sommets Fonctions modulaires Groupes finis Physique mathématique Mathematische Physik Finite groups Mathematical physics Modular functions Vertex operator algebras Affine Algebra Modulform |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015027303&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gannonterry moonshinebeyondthemonsterthebridgeconnectingalgebramodularformsandphysics |