Computer simulations of dislocations:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Oxford Univ. Press
2006
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Oxford series on materials modelling
3 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 286 S. Ill., graph. Darst. |
ISBN: | 0198526148 9780198526148 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV021805205 | ||
003 | DE-604 | ||
005 | 20130802 | ||
007 | t | ||
008 | 061110s2006 xxuad|| |||| 00||| eng d | ||
010 | |a 2006030681 | ||
020 | |a 0198526148 |c alk. paper |9 0-19-852614-8 | ||
020 | |a 9780198526148 |9 978-0-19-852614-8 | ||
035 | |a (OCoLC)71350556 | ||
035 | |a (DE-599)BVBBV021805205 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T |a DE-703 |a DE-20 | ||
050 | 0 | |a QD921 | |
082 | 0 | |a 548/.842 | |
084 | |a UQ 2400 |0 (DE-625)146493: |2 rvk | ||
100 | 1 | |a Bulatov, Vasily V. |e Verfasser |0 (DE-588)1048417409 |4 aut | |
245 | 1 | 0 | |a Computer simulations of dislocations |c Vasily V. Bulatov ; Wei Cai |
250 | |a 1. publ. | ||
264 | 1 | |a New York |b Oxford Univ. Press |c 2006 | |
300 | |a XVI, 286 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Oxford series on materials modelling |v 3 | |
650 | 4 | |a Dislocations in crystals |x Computer simulation | |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Versetzung |g Kristallographie |0 (DE-588)4187993-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gitterbaufehler |0 (DE-588)4125030-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gitterbaufehler |0 (DE-588)4125030-8 |D s |
689 | 0 | 1 | |a Versetzung |g Kristallographie |0 (DE-588)4187993-4 |D s |
689 | 0 | 2 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cai, Wei |e Verfasser |4 aut | |
830 | 0 | |a Oxford series on materials modelling |v 3 |w (DE-604)BV019397343 |9 3 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015017584 |
Datensatz im Suchindex
_version_ | 1804135722651746304 |
---|---|
adam_text | COMPUTER SIMULATIONS OF DISLOCATIONS VASILY V. BULATOV LAWRENCE
LIVERMORE NATIONAL LABORATORY, UNIVERSITY OF CALIFORNIA WEICAI
DEPARTMENT OFMECHANICAL ENGINEERING, STANFORD UNIVERSITY OXPORD
UNIVERSITY PRESS CONTENTS 1 INTRODUCTION TO CRYSTAL DISLOCATIONS 1 1.1
PERFECT CRYSTAL STRUCTURES 2 1.1.1 LATTICES AND BASES 2 1.1.2 MILLER
INDICES 5 SUMMARY 5 PROBLEMS 6 1.2 THE CONCEPT OF CRYSTAL DISLOCATIONS 6
1.2.1 HOW TO MAKE A DISLOCATION 6 1.2.2 THE BURGERS VECTOR 10 SUMMARY 13
PROBLEMS 14 1.3 MOTION OF A CRYSTAL DISLOCATION 15 1.3.1 DRIVING FORCES
FOR DISLOCATION MOTION 16 1.3.2 CONSERVATIVE VERSUS NON-CONSERVATIVE
MOTION 18 1.3.3 ATOMISTIC MECHAMSMS OF DISLOCATION MOTION 20 SUMMARY 23
I ATOMISTIC MODELS FUNDAMENTALS OF ATOMISTIC SIMULATIONS 2.1 INTERATOMIC
INTERACTIONS 2.1.1 2.1.2 2.1.3 INTERATOMIC POTENTIAL MODELS LOCALITY OF
INTERATOMIC INTERACTIONS COMPUTATIONAL COST OF INTERATOMIC INTERACTION
MODELS SUMMARY PROBLEM 2.2 EQUILIBRIUM DISTRIBUTION SUMMARY PROBLEMS 2.3
ENERGY MINIMIZATION 2.3.1 2.3.2 2.3.3 THE STEEPEST-DESCENT METHOD
CONJUGATE GRADIENT RELAXATION GLOBAL MINIMIZATION SUMMARY 27 27 28 32 33
35 36 36 38 39 39 40 41 42 43 XLL CONTENTS 2.4 MONTE CARLO 44 2.4.1
AVERAGE OVER THE CONFIGURATIONAL SPACE 44 2.4.2 DESIGNING A STOCHASTIC
MONTE CARLO PROCESS 45 2.4.3 METROPOLIS ALGORITHM 46 SUMMARY 47 PROBLEMS
47 2.5 MOLECULAR DYNAMICS 48 2.5.1 THE VERLET ALGORITHM 49 2.5.2 THE
VELOCITY VERLET ALGORITHM 49 2.5.3 ENERGY CONSERVATION 50 SUMMARY 51
PROBLEMS 51 CASE STUDY OF STATTE SIMULATION 53 3.1 SETTING UP AN INITIAL
CONFIGURATION 53 SUMMARY 57 PROBLEM 57 3.2 BOUNDARY CONDITIONS 58 3.2.1
PERIODIC BOUNDARY CONDITIONS 59 SUMMARY 62 PROBLEM 62 3.3 DATA ANALYSIS
AND VISUALIZATION 63 SUMMARY 67 PROBLEMS 68 CASE STUDY OF DYNAMIC
SIMULATION 69 4.1 SETTING UP AN INITIAL CONFIGURATION 69 SUMMARY 71 4.2
INITIALIZING ATOMIC VELOCITIES 71 SUMMARY 74 PROBLEM 74 4.3 STRESS
CONTROL 75 SUMMARY 77 4.4 TEMPERATURE CONTROL 78 4.4.1 ENSEMBLES AND
EXTENDED SYSTEMS . 78 4.4.2 NOSE-HOOVER THERMOSTAT 79 SUMMARY 81 PROBLEM
81 4.5 EXTRACTING DISLOCATION VELOCITY 81 SUMMARY 83 PROBLEM 83 CONTENTS
XM MORE ABOUT PERIODIC BOUNDARY CONDITIONS 84 5.1 SETTING UP AN INITIAL
CONFIGURATION 85 5.1.1 A NAIVE APPROACH 85 5.1.2 CONDITIONAL CONVERGENCE
AND THE LINEAR ERROR FIELD 87 5.1.3 ADJUSTING THE SHAPE OF THE SUPERCELL
89 SUMMARY 91 PROBLEM 92 5.2 DISLOCATION CORE ENERGY 92 SUMMARY 95
PROBLEMS 96 5.3 PEIERLS STRESS 96 SUMMARY 98 PROBLEMS 98 FREE-ENERGY
CALCULATIONS - 101 6.1 INTRODUCTION TO FREE ENERGY 101 6.1.1 FREE
ENERGIES OF CONFIGURATIONAL STATES 102 SUMMARY 104 6.2 HARMONIE
APPROXIMATION 104 6.2.1 FREE ENERGY OF A VACANCY IN THE DISLOCATION CORE
106 6.2.2 BOOKKEEPING OF THE FREE ENERGIES 107 SUMMARY 108 PROBLEMS 109
6.3 BEYOND HARMONIE APPROXIMATION 109 6.3.1 FREE ENERGY OF A CORE
VACANCY REVISITED 113 SUMMARY 116 PROBLEMS 116 FINDING TRANSITION
PATHWAYS 117 7.1 THE RARE EVENT PROBLEM 117 SUMMARY 119 7.2 TRANSITION
STATE THEORY 119 SUMMARY 121 7.3 LOCAL PATH OPTIMIZATION 122 7.3.1
CONSTRAINED MINIMIZATION 122 7.3.2 THE CHAIN OF STATES METHOD 124 7.3.3
CASE STUDY: KINK MIGRATION IN SILICON 126 SUMMARY 128 7.4 GLOBAL PATH
OPTIMIZATION 128 7.4.1 CASE STUDY I: THE TWO-DIMENSIONAL POTENTIAL 130
7.4.2 CASE STUDY II: KINK MIGRATION IN SILICON REVISITED 131 SUMMARY 132
XIV CONTENTS 7.5 TEMPERATURE-ACCELERATED SAMPLING 132 7.5.1 CASE STUDY:
KINK MIGRATION IN SILICON YET AGAIN 134 SUMMARY 136 II CONTINUUM MODELS
PEIERLS-NABARRO MODEL OF DISLOCATIONS 8.1 8.2 8.3 8.4 MODEL FORMULATION
8.1.1 VOLTERRA MODEL VERSUS PEIERLS-NABARRO MODEL OF DISLOCATIONS 8.1.2
ELASTIC ENERGY OF THE PN DISLOCATION 8.1.3 THE MISFIT ENERGY 8.1.4 THE
ANALYTIC SOLUTION SUMMARY PROBLEMS NUMERICAL SOLUTIONS 8.2.1 THE
SINUSOID MISFIT POTENTIAL 8.2.2 MISFIT POTENTIAL WITH INTERMEDIATE
MINIMA SUMMARY EXTENSION TO TWO DISPLACEMENT COMPONENTS 8.3.1 NUMERICAL
SOLUTIONS 8.3.2 STRESS EFFECTS SUMMARY PROBLEMS FURTHER EXTENSIONS 8.4.1
LATTICE RESISTANCE TO DISLOCATION MOTION 8.4.2 NON-LOCALITY OF
DISLOCATION ENERGY 8.4.3 MORE COMPLEX DISLOCATION GEOMETRIES SUMMARY
PROBLEMS KINETIC MONTE CARLO METHOD 9.1 9.2 NON-INTERACTING MODEL 9.1.1
MODEL FORMULATION 9.1.2 MARKOVCHAINS 9.1.3 KINETIC MONTE CARLO ALGORITHM
» SUMMARY PROBLEMS DEALING WITH ELASTIC INTERACTIONS 9.2.1 MODEL
FORMULATION 139 140 140 142 143 145 146 146 147 148 149 152 152 156 158
160 160 162 162 163 163 163 164 166 167 169 171 171 174 174 176 176
9.2.2 EXPRESSIONS FOR THE ELASTIC ENERGY OF A KINKED DISLOCATION 176
CONTENTS XV 10 9.3 9.2.3 ENERGY OF A KINK PAIR 9.2.4 COMPUTING ENERGY
CHANGES DUE TO SEGMENT MOTION 9.2.5 KINETIC MONTE CARLO SIMULATION
RESULTS SUMMARY KINK PAIR NUCLEATION AS A RARE EVENT 9.3.1 SUSTAINABLE
KINK PAIR NUCLEATION 9.3.2 SURVIVAL PROBABILITY 9.3.3 AVERAGE TIME OF
FIRST ARRIVAL 9.3.4 PROBABILITY DISTRIBUTION FOR THE FIRST ARRIVAL TIME
9.3.5 AN ENHANCED KMC SIMULATION SUMMARY PROBLEMS LINE DISLOCATION
DYNAMICS 10.1 10.2 10.3 10.4 10.5 NODAL REPRESENTATION AND FORCES 10.1.1
NODAL REPRESENTATION OF DISLOCATION NETWORKS 10.1.2 ENERGY AND FORCES
10.1.3 ELASTIC ENERGY AND FORCE CONTRIBUTIONS 10.1.4 CORE ENERGY AND
FORCE CONTRIBUTIONS 10.1.5 PERIODIC BOUNDARY CONDITIONS SUMMARY PROBLEMS
NODAL MOBILITY FUNCTIONS 10.2.1 A LINEAR MOBILITY MODEL 10.2.2 A
MOBILITY MODEL FOR FCC METALS 10.2.3 A MOBILITY MODEL FOR BCC METALS
SUMMARY PROBLEMS TIME INTEGRATORS 10.3.1 AN EXAMPLE: FRANK-READ SOURCE
SUMMARY TOPOLOGICAL CHANGES 10.4.1 REMESHING 10.4.2 SPLIT AND MERGE
OPERATORS 10.4.3 WHEN AND HOW TO USE MERGE 10.4.4 WHEN AND HOW TO SPLIT
A NODE ,10.4.5 A COMPLETE LINE DD ALGORITHM 10.4.6 FRANK-READ SOURCE
REVISITED SUMMARY PROBLEMS PARALLEL SIMULATIONS 10.5.1 SCALABILITY 179
180 182 183 183 184 185 188 189 192 194 195 196 197 197 199 199 203 204
205 205 208 209 211 213 214 214 214 216 218 218 219 221 223 224 226 226
227 228 229 230 XVI CONTENTS 10.6 10.5.2 SPATIAL DOMAIN DECOMPOSITION
10.5.3 DYNAMIC LOAD BALANCE 10.5.4 SINGLE-PROCESSOR PERFORMANCE SUMMARY
PROBLEM A VIRTUAL STRAINING TEST 10.6.1 MOBILITY FUNCTION 10.6.2
BOUNDARY AND INITIAL CONDITIONS 10.6.3 LOADING CONDITION 10.6.4 RESULTS
SUMMARY 11 PHASE FIELD METHOD 11.1 11.2 11.3 11.4 11.5 11.6 GENERAL
PHASE FIELD APPROACH 11.1.1 CASE A (RELAXATIONAL OR GINZBURG-LANDAU)
11.1.2 CASE B (DIFFUSIONAL OR CAHN-HILLIARD) SUMMARY PROBLEMS
DISLOCATIONS AS PHASE-FIELD OBJECTS 11.2.1 THE ELASTIC ENERGY 11.2.2 THE
LATTICE ENERGY 11.2.3 THE GRADIENT ENERGY SUMMARY ELASTIC ENERGY OF
EIGENSTRAIN FIELDS 11.3.1 USEFUL EXPRESSIONS IN THE FOURIER SPACE 11.3.2
STRESS EXPRESSIONS IN TWO DIMENSIONS SUMMARY PROBLEM A TWO-DIMENSIONAL
EXAMPLE SUMMARY PROBLEMS DISLOCATION-ALLOY INTERACTION SUMMARY PROBLEMS
PFM OR LINE DD? SUMMARY » BIBLIOGRAPHY SUBJECT INDEX 231 233 235 236 236
236 237 237 237 239 240 241 242 243 248 250 251 251 254 254 255 256 256
259 260 261 261 262 264 265 266 269 269 271 274 275 281
|
adam_txt |
COMPUTER SIMULATIONS OF DISLOCATIONS VASILY V. BULATOV LAWRENCE
LIVERMORE NATIONAL LABORATORY, UNIVERSITY OF CALIFORNIA WEICAI
DEPARTMENT OFMECHANICAL ENGINEERING, STANFORD UNIVERSITY OXPORD
UNIVERSITY PRESS CONTENTS 1 INTRODUCTION TO CRYSTAL DISLOCATIONS 1 1.1
PERFECT CRYSTAL STRUCTURES 2 1.1.1 LATTICES AND BASES 2 1.1.2 MILLER
INDICES 5 SUMMARY 5 PROBLEMS 6 1.2 THE CONCEPT OF CRYSTAL DISLOCATIONS 6
1.2.1 HOW TO MAKE A DISLOCATION 6 1.2.2 THE BURGERS VECTOR 10 SUMMARY 13
PROBLEMS 14 1.3 MOTION OF A CRYSTAL DISLOCATION 15 1.3.1 DRIVING FORCES
FOR DISLOCATION MOTION 16 1.3.2 CONSERVATIVE VERSUS NON-CONSERVATIVE
MOTION 18 1.3.3 ATOMISTIC MECHAMSMS OF DISLOCATION MOTION 20 SUMMARY 23
I ATOMISTIC MODELS FUNDAMENTALS OF ATOMISTIC SIMULATIONS 2.1 INTERATOMIC
INTERACTIONS 2.1.1 2.1.2 2.1.3 INTERATOMIC POTENTIAL MODELS LOCALITY OF
INTERATOMIC INTERACTIONS COMPUTATIONAL COST OF INTERATOMIC INTERACTION
MODELS SUMMARY PROBLEM 2.2 EQUILIBRIUM DISTRIBUTION SUMMARY PROBLEMS 2.3
ENERGY MINIMIZATION 2.3.1 2.3.2 2.3.3 THE STEEPEST-DESCENT METHOD
CONJUGATE GRADIENT RELAXATION GLOBAL MINIMIZATION SUMMARY 27 27 28 32 33
35 36 36 38 39 39 40 41 42 43 XLL CONTENTS 2.4 MONTE CARLO 44 2.4.1
AVERAGE OVER THE CONFIGURATIONAL SPACE 44 2.4.2 DESIGNING A STOCHASTIC
MONTE CARLO PROCESS 45 2.4.3 METROPOLIS ALGORITHM 46 SUMMARY 47 PROBLEMS
47 2.5 MOLECULAR DYNAMICS 48 2.5.1 THE VERLET ALGORITHM 49 2.5.2 THE
VELOCITY VERLET ALGORITHM 49 2.5.3 ENERGY CONSERVATION 50 SUMMARY 51
PROBLEMS 51 CASE STUDY OF STATTE SIMULATION 53 3.1 SETTING UP AN INITIAL
CONFIGURATION 53 SUMMARY 57 PROBLEM 57 3.2 BOUNDARY CONDITIONS 58 3.2.1
PERIODIC BOUNDARY CONDITIONS 59 SUMMARY 62 PROBLEM 62 3.3 DATA ANALYSIS
AND VISUALIZATION 63 SUMMARY 67 PROBLEMS 68 CASE STUDY OF DYNAMIC
SIMULATION 69 4.1 SETTING UP AN INITIAL CONFIGURATION 69 SUMMARY 71 4.2
INITIALIZING ATOMIC VELOCITIES 71 SUMMARY 74 PROBLEM 74 4.3 STRESS
CONTROL 75 SUMMARY 77 4.4 TEMPERATURE CONTROL 78 4.4.1 ENSEMBLES AND
EXTENDED SYSTEMS . 78 4.4.2 NOSE-HOOVER THERMOSTAT 79 SUMMARY 81 PROBLEM
81 4.5 EXTRACTING DISLOCATION VELOCITY 81 SUMMARY 83 PROBLEM 83 CONTENTS
XM MORE ABOUT PERIODIC BOUNDARY CONDITIONS 84 5.1 SETTING UP AN INITIAL
CONFIGURATION 85 5.1.1 A NAIVE APPROACH 85 5.1.2 CONDITIONAL CONVERGENCE
AND THE LINEAR ERROR FIELD 87 5.1.3 ADJUSTING THE SHAPE OF THE SUPERCELL
89 SUMMARY 91 PROBLEM 92 5.2 DISLOCATION CORE ENERGY 92 SUMMARY 95
PROBLEMS 96 5.3 PEIERLS STRESS 96 SUMMARY 98 PROBLEMS 98 FREE-ENERGY
CALCULATIONS - 101 6.1 INTRODUCTION TO FREE ENERGY 101 6.1.1 FREE
ENERGIES OF CONFIGURATIONAL STATES 102 SUMMARY 104 6.2 HARMONIE
APPROXIMATION 104 6.2.1 FREE ENERGY OF A VACANCY IN THE DISLOCATION CORE
106 6.2.2 BOOKKEEPING OF THE FREE ENERGIES 107 SUMMARY 108 PROBLEMS 109
6.3 BEYOND HARMONIE APPROXIMATION 109 6.3.1 FREE ENERGY OF A CORE
VACANCY REVISITED 113 SUMMARY 116 PROBLEMS 116 FINDING TRANSITION
PATHWAYS 117 7.1 THE RARE EVENT PROBLEM 117 SUMMARY 119 7.2 TRANSITION
STATE THEORY 119 SUMMARY 121 7.3 LOCAL PATH OPTIMIZATION 122 7.3.1
CONSTRAINED MINIMIZATION 122 7.3.2 THE CHAIN OF STATES METHOD 124 7.3.3
CASE STUDY: KINK MIGRATION IN SILICON 126 SUMMARY 128 7.4 GLOBAL PATH
OPTIMIZATION 128 7.4.1 CASE STUDY I: THE TWO-DIMENSIONAL POTENTIAL 130
7.4.2 CASE STUDY II: KINK MIGRATION IN SILICON REVISITED 131 SUMMARY 132
XIV CONTENTS 7.5 TEMPERATURE-ACCELERATED SAMPLING 132 7.5.1 CASE STUDY:
KINK MIGRATION IN SILICON YET AGAIN 134 SUMMARY 136 II CONTINUUM MODELS
PEIERLS-NABARRO MODEL OF DISLOCATIONS 8.1 8.2 8.3 8.4 MODEL FORMULATION
8.1.1 VOLTERRA MODEL VERSUS PEIERLS-NABARRO MODEL OF DISLOCATIONS 8.1.2
ELASTIC ENERGY OF THE PN DISLOCATION 8.1.3 THE MISFIT ENERGY 8.1.4 THE
ANALYTIC SOLUTION SUMMARY PROBLEMS NUMERICAL SOLUTIONS 8.2.1 THE
SINUSOID MISFIT POTENTIAL 8.2.2 MISFIT POTENTIAL WITH INTERMEDIATE
MINIMA SUMMARY EXTENSION TO TWO DISPLACEMENT COMPONENTS 8.3.1 NUMERICAL
SOLUTIONS 8.3.2 STRESS EFFECTS SUMMARY PROBLEMS FURTHER EXTENSIONS 8.4.1
LATTICE RESISTANCE TO DISLOCATION MOTION 8.4.2 NON-LOCALITY OF
DISLOCATION ENERGY 8.4.3 MORE COMPLEX DISLOCATION GEOMETRIES SUMMARY
PROBLEMS KINETIC MONTE CARLO METHOD 9.1 9.2 NON-INTERACTING MODEL 9.1.1
MODEL FORMULATION 9.1.2 MARKOVCHAINS 9.1.3 KINETIC MONTE CARLO ALGORITHM
» SUMMARY PROBLEMS DEALING WITH ELASTIC INTERACTIONS 9.2.1 MODEL
FORMULATION 139 140 140 142 143 145 146 146 147 148 149 152 152 156 158
160 160 162 162 163 163 163 164 166 167 169 171 171 174 174 176 176
9.2.2 EXPRESSIONS FOR THE ELASTIC ENERGY OF A KINKED DISLOCATION 176
CONTENTS XV 10 9.3 9.2.3 ENERGY OF A KINK PAIR 9.2.4 COMPUTING ENERGY
CHANGES DUE TO SEGMENT MOTION 9.2.5 KINETIC MONTE CARLO SIMULATION
RESULTS SUMMARY KINK PAIR NUCLEATION AS A RARE EVENT 9.3.1 SUSTAINABLE
KINK PAIR NUCLEATION 9.3.2 SURVIVAL PROBABILITY 9.3.3 AVERAGE TIME OF
FIRST ARRIVAL 9.3.4 PROBABILITY DISTRIBUTION FOR THE FIRST ARRIVAL TIME
9.3.5 AN ENHANCED KMC SIMULATION SUMMARY PROBLEMS LINE DISLOCATION
DYNAMICS 10.1 10.2 10.3 10.4 10.5 NODAL REPRESENTATION AND FORCES 10.1.1
NODAL REPRESENTATION OF DISLOCATION NETWORKS 10.1.2 ENERGY AND FORCES
10.1.3 ELASTIC ENERGY AND FORCE CONTRIBUTIONS 10.1.4 CORE ENERGY AND
FORCE CONTRIBUTIONS 10.1.5 PERIODIC BOUNDARY CONDITIONS SUMMARY PROBLEMS
NODAL MOBILITY FUNCTIONS 10.2.1 A LINEAR MOBILITY MODEL 10.2.2 A
MOBILITY MODEL FOR FCC METALS 10.2.3 A MOBILITY MODEL FOR BCC METALS
SUMMARY PROBLEMS TIME INTEGRATORS 10.3.1 AN EXAMPLE: FRANK-READ SOURCE
SUMMARY TOPOLOGICAL CHANGES 10.4.1 REMESHING 10.4.2 SPLIT AND MERGE
OPERATORS 10.4.3 WHEN AND HOW TO USE MERGE 10.4.4 WHEN AND HOW TO SPLIT
A NODE ,10.4.5 A COMPLETE LINE DD ALGORITHM 10.4.6 FRANK-READ SOURCE
REVISITED SUMMARY PROBLEMS PARALLEL SIMULATIONS 10.5.1 SCALABILITY 179
180 182 183 183 184 185 188 189 192 194 195 196 197 197 199 199 203 204
205 205 208 209 211 213 214 214 214 216 218 218 219 221 223 224 226 226
227 228 229 230 XVI CONTENTS 10.6 10.5.2 SPATIAL DOMAIN DECOMPOSITION
10.5.3 DYNAMIC LOAD BALANCE 10.5.4 SINGLE-PROCESSOR PERFORMANCE SUMMARY
PROBLEM A VIRTUAL STRAINING TEST 10.6.1 MOBILITY FUNCTION 10.6.2
BOUNDARY AND INITIAL CONDITIONS 10.6.3 LOADING CONDITION 10.6.4 RESULTS
SUMMARY 11 PHASE FIELD METHOD 11.1 11.2 11.3 11.4 11.5 11.6 GENERAL
PHASE FIELD APPROACH 11.1.1 CASE A (RELAXATIONAL OR GINZBURG-LANDAU)
11.1.2 CASE B (DIFFUSIONAL OR CAHN-HILLIARD) SUMMARY PROBLEMS
DISLOCATIONS AS PHASE-FIELD OBJECTS 11.2.1 THE ELASTIC ENERGY 11.2.2 THE
LATTICE ENERGY 11.2.3 THE GRADIENT ENERGY SUMMARY ELASTIC ENERGY OF
EIGENSTRAIN FIELDS 11.3.1 USEFUL EXPRESSIONS IN THE FOURIER SPACE 11.3.2
STRESS EXPRESSIONS IN TWO DIMENSIONS SUMMARY PROBLEM A TWO-DIMENSIONAL
EXAMPLE SUMMARY PROBLEMS DISLOCATION-ALLOY INTERACTION SUMMARY PROBLEMS
PFM OR LINE DD? SUMMARY » BIBLIOGRAPHY SUBJECT INDEX 231 233 235 236 236
236 237 237 237 239 240 241 242 243 248 250 251 251 254 254 255 256 256
259 260 261 261 262 264 265 266 269 269 271 274 275 281 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bulatov, Vasily V. Cai, Wei |
author_GND | (DE-588)1048417409 |
author_facet | Bulatov, Vasily V. Cai, Wei |
author_role | aut aut |
author_sort | Bulatov, Vasily V. |
author_variant | v v b vv vvb w c wc |
building | Verbundindex |
bvnumber | BV021805205 |
callnumber-first | Q - Science |
callnumber-label | QD921 |
callnumber-raw | QD921 |
callnumber-search | QD921 |
callnumber-sort | QD 3921 |
callnumber-subject | QD - Chemistry |
classification_rvk | UQ 2400 |
ctrlnum | (OCoLC)71350556 (DE-599)BVBBV021805205 |
dewey-full | 548/.842 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 548 - Crystallography |
dewey-raw | 548/.842 |
dewey-search | 548/.842 |
dewey-sort | 3548 3842 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik |
discipline_str_mv | Chemie / Pharmazie Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01896nam a2200481zcb4500</leader><controlfield tag="001">BV021805205</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130802 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061110s2006 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006030681</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198526148</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-19-852614-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198526148</subfield><subfield code="9">978-0-19-852614-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71350556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021805205</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD921</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">548/.842</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 2400</subfield><subfield code="0">(DE-625)146493:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bulatov, Vasily V.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1048417409</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer simulations of dislocations</subfield><subfield code="c">Vasily V. Bulatov ; Wei Cai</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 286 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford series on materials modelling</subfield><subfield code="v">3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocations in crystals</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Versetzung</subfield><subfield code="g">Kristallographie</subfield><subfield code="0">(DE-588)4187993-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gitterbaufehler</subfield><subfield code="0">(DE-588)4125030-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gitterbaufehler</subfield><subfield code="0">(DE-588)4125030-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Versetzung</subfield><subfield code="g">Kristallographie</subfield><subfield code="0">(DE-588)4187993-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Wei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford series on materials modelling</subfield><subfield code="v">3</subfield><subfield code="w">(DE-604)BV019397343</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015017584</subfield></datafield></record></collection> |
id | DE-604.BV021805205 |
illustrated | Illustrated |
index_date | 2024-07-02T15:49:06Z |
indexdate | 2024-07-09T20:45:01Z |
institution | BVB |
isbn | 0198526148 9780198526148 |
language | English |
lccn | 2006030681 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015017584 |
oclc_num | 71350556 |
open_access_boolean | |
owner | DE-29T DE-703 DE-20 |
owner_facet | DE-29T DE-703 DE-20 |
physical | XVI, 286 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Oxford Univ. Press |
record_format | marc |
series | Oxford series on materials modelling |
series2 | Oxford series on materials modelling |
spelling | Bulatov, Vasily V. Verfasser (DE-588)1048417409 aut Computer simulations of dislocations Vasily V. Bulatov ; Wei Cai 1. publ. New York Oxford Univ. Press 2006 XVI, 286 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxford series on materials modelling 3 Dislocations in crystals Computer simulation Computersimulation (DE-588)4148259-1 gnd rswk-swf Versetzung Kristallographie (DE-588)4187993-4 gnd rswk-swf Gitterbaufehler (DE-588)4125030-8 gnd rswk-swf Gitterbaufehler (DE-588)4125030-8 s Versetzung Kristallographie (DE-588)4187993-4 s Computersimulation (DE-588)4148259-1 s DE-604 Cai, Wei Verfasser aut Oxford series on materials modelling 3 (DE-604)BV019397343 3 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bulatov, Vasily V. Cai, Wei Computer simulations of dislocations Oxford series on materials modelling Dislocations in crystals Computer simulation Computersimulation (DE-588)4148259-1 gnd Versetzung Kristallographie (DE-588)4187993-4 gnd Gitterbaufehler (DE-588)4125030-8 gnd |
subject_GND | (DE-588)4148259-1 (DE-588)4187993-4 (DE-588)4125030-8 |
title | Computer simulations of dislocations |
title_auth | Computer simulations of dislocations |
title_exact_search | Computer simulations of dislocations |
title_exact_search_txtP | Computer simulations of dislocations |
title_full | Computer simulations of dislocations Vasily V. Bulatov ; Wei Cai |
title_fullStr | Computer simulations of dislocations Vasily V. Bulatov ; Wei Cai |
title_full_unstemmed | Computer simulations of dislocations Vasily V. Bulatov ; Wei Cai |
title_short | Computer simulations of dislocations |
title_sort | computer simulations of dislocations |
topic | Dislocations in crystals Computer simulation Computersimulation (DE-588)4148259-1 gnd Versetzung Kristallographie (DE-588)4187993-4 gnd Gitterbaufehler (DE-588)4125030-8 gnd |
topic_facet | Dislocations in crystals Computer simulation Computersimulation Versetzung Kristallographie Gitterbaufehler |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017584&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV019397343 |
work_keys_str_mv | AT bulatovvasilyv computersimulationsofdislocations AT caiwei computersimulationsofdislocations |