Spectroscopic methods in mineralogy: university texbook
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Budapest
Eötvös Univ. Press
2004
|
Schriftenreihe: | EMU notes in mineralogy
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 661 S. Ill., graph. Darst. |
ISBN: | 9634636624 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021805194 | ||
003 | DE-604 | ||
005 | 20061120 | ||
007 | t | ||
008 | 061110s2004 ad|| |||| 00||| eng d | ||
020 | |a 9634636624 |9 963-463-662-4 | ||
035 | |a (OCoLC)57724740 | ||
035 | |a (DE-599)BVBBV021805194 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-634 | ||
050 | 0 | |a QE369.S65 | |
082 | 0 | |a 549 | |
084 | |a RB 10115 |0 (DE-625)142220:12621 |2 rvk | ||
245 | 1 | 0 | |a Spectroscopic methods in mineralogy |b university texbook |c ed. by Anton Beran ... |
264 | 1 | |a Budapest |b Eötvös Univ. Press |c 2004 | |
300 | |a XIV, 661 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a EMU notes in mineralogy |v 6 | |
650 | 4 | |a Infrared spectroscopy |v Congresses | |
650 | 4 | |a Luminescence spectroscopy |v Congresses | |
650 | 4 | |a Minerals |x Spectra |v Congresses | |
650 | 4 | |a Mössbauer spectroscopy |v Congresses | |
650 | 4 | |a Nuclear magnetic resonance spectroscopy |v Congresses | |
650 | 4 | |a Nuclear spectroscopy |v Congresses | |
650 | 4 | |a Raman spectroscopy |v Congresses | |
650 | 4 | |a Spectrum analysis |v Congresses | |
650 | 4 | |a X-ray spectroscopy |v Congresses | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
700 | 1 | |a Beran, Anton |e Sonstige |4 oth | |
830 | 0 | |a EMU notes in mineralogy |v 6 |w (DE-604)BV014391074 |9 6 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017570&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015017570 |
Datensatz im Suchindex
_version_ | 1804135722636017664 |
---|---|
adam_text | Contents
Chapter 1 An introduction to spectroscopic methods in the mineral sciences and
geochemistry
by Charles A GEIGER 1
Introduction 1
Brief history of spectroscopy with an emphasis on investigations of geomaterials 3
Radiation 8
Electromagnetic radiation: Wave theory, particle-like behaviour, energy and interaction
with matter 9
Short description and review of the “standard” spectroscopies 13
Spectroscopic and transition types 13
IR absorption spectroscopy 15
Optical absorption spectroscopy 17
X-ray absorption spectroscopy 19
Mössbauer spectroscopy 21
Magnetic resonance spectroscopies 23
Nuclear magnetic resonance 24
Electron spin resonance 24
Raman spectroscopy 26
Spectroscopic investigations in the mineral sciences and geochemistry 28
Compositional information 28
Structural and crystal-chemical information 28
Dynamical information 31
Acknowledgements 33
References 33
Appendix I: Some books on general solid-state spectroscopy and those relevant for
investigations in the mineral sciences and geochemistry and also on chemical bonding 34
Appendix II: Two case spectroscopic studies 34
1 Fe in natural cordierite 35
2 H20 in synthetic alkali-free hydrous beryl 40
Chapter 2 Luminescence techniques in Earth Sciences
by Lutz NASDALA, Jens GÖTZE, John M HANCHAR, Michael GAFT
and Matthias R KRBETSCHEK 43
Introduction 43
Basic definitions 44
Theoretical and experimental background 46
Generation of the luminescence emission 46
Factors affecting the luminescence emission 49
Time-resolved luminescence 53
Luminescence-based image generation 56
Luminescence-based age determination 58
Afterglow-type luminescence 58
Use of afterglow-type luminescence for dating 59
Applications of luminescence: General overview 62
Selected examples for the application of luminescence spectroscopy 67
Photoluminescence (steady-state): Quantification of Cr in ruby 67
Photo luminescence (time-resolved): Europium luminescence of apatite 68
Europium luminescence 68
Europium in the apatite structure 69
Cathodoluminescence of REE3+ used for materials identification and characterisation 71
Application of CL REE emission spectra to materials characterisation 71
Dy3+-doped crystalline and non-crystalline synthetic titanite 72
Dy3+ in natural zircon CL spectra 73
VI
Characterisation of point defects in quartz using CL spectroscopy 75
Cathodoluminescence of quartz 75
Band assignment 76
Example: growth generations of Si02 in petrified wood 79
Example: defect-CL of radiation-damaged quartz 79
Acknowledgements 80
References 80
Chapter 3 Optical absorption spectroscopy in geosciences Part I:
Basic concepts of crystal field theory
by Manfred WILDNER, Michael ANDRUT and Czeslaw Z RUDOWICZ 93
0 Scope of the optical absorption spectroscopy chapters (Part I and Part II) 93
1 Introduction 94
1 1 Optical absorption processes 94
1 2 Applications of crystal field theory in geosciences 96
2 Optical spectra 98
2 1 Units used in optical spectroscopy 98
211 Measurement of the optical transition energies 98
212 Measurement of the intensities of the transitions 99
Bouguer-Lambert law 100
Beer-Lambert-Bouguer law 100
2 2 Instrumentation 100
3 Principles of crystal field theory 101
3 1 Recommended textbooks 101
3 2 One-electron systems 101
321 Schrödinger equation and quantum numbers 101
322 Aufbau principle, Pauli exclusion principle and Hund’s rule 104
323 Crystal field splitting - an overview 104
Jahn-Teller effect 109
324 Crystal field stabilisation energy (CFSE) 109
Intra- and inter-crystalline transition ion distribution 110
325 Electronic transitions Ill
3 3 Many-electron concept Ill
331 Many-electron Hamiltonian Ill
332 Russell-Saunders coupling and free-ion terms 113
333 Term splittings in crystal fields of different symmetry 114
334 Tanabe-Sugano diagrams 117
335 Descent in symmetry and crystal field distortion parameters 118
3 4 Selection rules 121
341 Laporte (or parity) selection rule: A/ = ± 1 (A/ * 0) 122
342 Spin selection rule: A(25 + 1) = 0 125
Spin-orbit coupling and “intensity stealing” 126
343 Electronic selection rule: Ae^ =1 127
344 Selection rules arising from symmetry considerations 127
345A worked example: Al203:Cr3+ (ruby) 129
3 5 d-d absorption bands 132
351 Band widths - general aspects 132
352 Influence of temperature and pressure 133
353 Franck-Condon principle and vibrational structure 133
3 6 Qualitative appraisal of the parameters Dq, B and C 136
Acknowledgements 140
References 140
VII
Chapter 4 Optical absorption spectroscopy in geosciences Part II:
Quantitative aspects of crystal fields
by Michael ANDRUT, Manfred WILDNER and Czeslaw Z RUDOWICZ 145
1 Introduction 145
2 The relationship between lODq and the interatomic distance R for a regular octahedron 146
2 1 Applications and consequences 147
211 Pressure dependence 147
212 Temperature dependence 148
213 Compositional dependence 149
3 Vegard’s rule (and its relationship to local interatomic distances) 149
4 Local interatomic distances in coordination polyhedra 150
4 1 Concept of the virtual crystal approximation 150
4 2 Hard sphere model 151
5 Superposition model of crystal fields (SPM) 151
5 1 The regular octahedron 156
5 2 The distorted octahedron - one selected example 158
5 3 Strategy for the determination of crystal field parameters using SPM 160
6 Applications of the superposition model in geosciences 162
6 1 Superposition model parameters for Co2+ in oxygen-based crystal fields 163
6 2 Extraction of crystal field parameters for Cr3+ from the binary solid solution
uvarovite-grossular 166
621 Introduction 166
622 Birefringent garnets 167
623 Sample material 167
624 Crystal structures 167
Crystal structures of natural birefringent uvarovite-grossular solid solutions 167
Crystal structure of synthetic uvarovite 168
625 Individual octahedral size and Cr3+ occupation 169
626 Single-crystal absorption spectra 171
626 Single-crystal absorption spectra 173
628 Conclusions 177
6 3 Local interatomic bond lengths and angles derived from optical absorption spectra:
The Cr06 polyhedron in ruby, Al203:Cr3+ 177
631 Introduction 177
632 Brief description of the crystal structures of corundum and eskolaite 177
633 Absorption spectroscopic investigations 179
634 Crystal field SPM calculations 180
635 Conclusions 183
Acknowledgements 183
References 183
Chapter 5 IR spectroscopy as a tool for the characterisation of
ceramic precursor phases
by Anton BERAN, Dietmar VOLL and Hartmut SCHNEIDER 189
Introduction i : 189
Theoretical background 189
Bohr’s frequency condition 189
Group theoretical basis 190
Harmonic oscillator model 190
Vibrational modes 191
Group frequencies 193
Characterisation of cordierite and mullite ceramic precursors 195
Preparation of the precursors 195
Cordierite precursor 195
Mullite precursor 196
Dehydration behaviour 196
VIII
Absorption features assigned to the hydrous components 197
Cordierite precursors 199
Mullite precursors 201
Specification of the hydrous component 202
Absorption features assigned to lattice vibrations 203
Cordierite precursors 203
Mullite precursors 204
Assignment of absorption bands 206
Structural behaviour of the hydrous component 207
Structural ordering phenomena 208
Cordierite precursors 208
Mullite precursors 210
Conclusion 211
IR band assignment of mullite 211
FTIR powder spectroscopy 213
FTIR single-crystal spectroscopy 215
Interpretation of the FTIR spectra 218
Conclusion 221
The FTIR spectrum of sillimanite 221
Appendix 222
Acknowledgements 224
References 224
Chapter 6 IR spectroscopic characterisation of hydrous species in minerals
by Eugen LIBOWITZKY and Anton BERAN 227
Thematic introduction 227
Technical introduction 228
IR spectroscopic methodology 229
Polarised IR measurements - a key to the orientation and total absorbance of
vibrating molecules in a crystal 229
Background 229
Technical aspects 231
The band position - a sensitive tool to local structure 231
Background 231
The distance-frequency correlation for hydrogen bonds 233
Phase transitions pursued by IR spectroscopy 234
The band intensity - a simple measure of concentration? 235
Background 235
Calibration of IR band intensities to quantify hydrogen (OH, H20) in minerals 236
Problems and limitations 237
Selected examples from recent research 238
Amphibole group 238
Mica group 239
Vesuvianite 242
Lawsonite 243
Hemimorphite 245
MOOH minerals 246
Examples of very strong hydrogen bonds 248
Beryl 250
Feldspar 251
Garnet group 252
Zircon 254
Olivine group 257
Pyroxene group 260
Kyanite and sillimanite 265
Perovskite-type structures 266
IX
Rutile-type structures 267
Corundum and spinel 268
Further IR spectroscopic studies of hydrous species in minerals 270
References 270
Chapter 7 Raman spectroscopy: Analytical perspectives in mineralogical research
by Lutz NASD ALA, David C SMITH, Reinhard KAINDL and
Martin A ZIEMANN 281
Introduction 281
Theoretical background and practical aspects 282
The Raman Effect 282
Electrodynamical model 282
Quantum-mechanical model 284
Interpretation of spectra 285
The Raman spectrum 285
Vibrations of molecules and crystal lattices 286
Directional dependence of Raman scattering 290
Potential analytical artefacts 294
Instrumentation for Raman analysis 297
Generalities on Raman systems 297
Confocality and the Raman microprobe 299
Mobile Raman microscopy for truly in situ analysis 301
Images based on Raman scattered light 303
Raman imaging 303
Raman mapping 305
Applications of Raman spectroscopy 305
Generalities on applications in mineralogy and geology 305
Applications to the study of inclusions in minerals 307
Applications in high-pressure and high-temperature studies 308
Applications in archaeometry: The Raman Microscope (RM) 309
Selected examples of Raman applications in the Geosciences 311
Semi-quantitative micro-Raman spectroscopy of a gas inclusion 311
Semi-quantitative chemical analysis by Raman spectroscopy 313
Characterisation of the real structure of natural carbon 316
Internal heterogeneities of diamond crystals 316
Estimation of the order/disorder of graphitic carbon 318
Gemstone identification by Raman spectroscopy analysis through glass 321
In situ Raman spectroscopy of quartz: A new pressure sensor 324
Summary: Advantages and disadvantages 326
Acknowledgements 329
References 329
Chapter 8 Mössbauer spectroscopy: Basic principles
by Georg AMTHAUER, Michael GRODZICKI,
Werner LOTTERMOSER and Günther REDHAMMER 345
1 Introduction 345
2 The Mössbauer effect 346
3 Experimental 348
4 Evaluation 350
5 Hyperfine interactions 351
5 1 Electric monopole interaction (isomer shift 5) 351
5 2 The electric quadrupole interaction (quadrupole splitting AEQ) 354
5 3 Magnetic hyperfine interaction (magnetic hyperfine splitting A£M) 362
5 4 Combined electric and magnetic hyperfine interactions 364
6 Conclusions 366
References 366
X
Chapter 9 Mössbauer spectroscopy: Applications
by Catherine A McCAMMON 369
Introduction 369
Methodology 369
Experimental aspects 369
Analytical aspects 371
Rock-forming minerals 372
Case study: Accurate site populations of Fe2+ and Fe3+ in majorite garnet 375
Glasses and other amorphous materials 380
Case study: Determination of Fe3+/EFe in a basaltic glass 384
Microscopic absorbers 387
Applications 391
Concluding remarks 394
Acknowledgements 395
References 395
Chapter 10 NMR studies of silicate glasses
by Simon C KOHN 399
Introduction 399
The effect of composition on the structure of glasses 400
Si02 400
Aluminium-free alkali and alkaline earth silicate glasses 402
29Si NMR data 402
l70 NMR data 405
Other nuclei 406
Aluminosilicates 409
NMR studies of the dissolution mechanisms of volatiles in silicate melts 410
Water 410
Carbon dioxide 413
Fluorine 414
Sulphur 414
NMR studies of silicate melts, and the relationship between melt and glass structure 415
Acknowledgements 415
References 416
Chapter 11 Solid state NMR spectroscopy as supporting method in Rietveld
structure refinements of rock-forming minerals: New developments and examples
by Michael FECHTELKORD 421
Introduction 421
Common magnetic and electric interactions in nuclear magnetic resonance 423
Zeeman interaction 423
Chemical shift interaction 424
Dipolar interaction 425
Quadrupolar interaction 428
Routine techniques in solid state nuclear magnetic resonance 430
Magic angle spinning (MAS) 430
Pulse sequences 432
Relaxation times 434
Cross-polarisation (CP) 436
Latest methodical developments in solid state nuclear magnetic resonance 438
Rotational echo double resonance (REDOR) 438
Satellite transition spectroscopy (SATRAS) 441
Dynamic angle spinning (DAS), double rotation (DOR),
and multiple quantum magic angle spinning (MQMAS) 443
XI
Combined structure determination by Rietveld powder refinements and
solid state NMR spectroscopy 448
Information from the 207Pb chemical shift interaction about the lead phosphate structure 448
Sodium cation dynamics in the high- and room temperature structure of nitrate cancrinite 450
Order and disorder of anions in carbonate and formate mixed sodalites 455
Concluding remarks 460
Acknowledgements 460
References 460
Chapter 12 X-ray absorption spectroscopy in mineralogy: Theory and
experiment in the XANES region
by Annibale MOTTANA 465
1 Introduction 465
1 1 The historical development of XAS spectroscopy 468
111 Basic knowledge 469
112 Mineral studies 473
2 The XANES region: Definition and limits 475
3 Theory of XANES spectroscopy 479
3 1 General theory 480
3 2 Theoretical calculations 485
321 The CONTINUUM and MXAN computer codes 485
322 The FEFF and FEFFIT codes 488
323 Other codes 489
4 Experimental methods 489
4 1 Beam line apparatus 491
411 Insertion devices 491
412 Collimation devices 493
413 Monochromatisation devices 494
414 Detection modes 497
4141 Transmission mode 497
4142 Fluorescence mode 499
4143 Electron yield mode 500
4144 Dispersive mode 501
4 2 Sample preparation 502
421 Powders 503
4211 Purity 504
4212 Grain size 504
4213 Particle orientation 504
422 Single crystals 505
4 3 Spectrum optimisation 508
431 Energy calibration 509
432 Spectrum fitting 510
5 Information contained in XANES spectra 510
5 1 Edge and pre-edge (PE) sub-region 511
511 Causes of PE features 512
5111 Transition elements 512
5112 Non-transition elements 514
512 Applications 515
5 2 Full multiple-scattering (FMS) sub-region 517
521 Spectral shape 518
522 Energy shift 519
523 Bond length determination 520
524 Applications 521
5 3 Intermediate multiple scattering (IMS) sub-region 522
531 Applications 524
XII
Addendum: A short manual on how to practically record, treat and interpret XANES spectra 526
A1A note of introduction, with some preliminary information 526
A 2 Raw XANES data treatment 527
A21 Energy calibration 527
A22 Background subtraction 527
A23 “Fingerprinting” 529
A24 Pre-edge analysis 529
A 3 Simulation of XANES spectra 531
Acknowledgements 538
References 538
Chapter 13 X-ray absorption spectroscopy in geosciences:
Information from the EXAFS region
by Laurence GALOISY 553
Introduction 553
Fundamentals of EXAFS 554
Synchrotron radiation 554
The X-ray absorption phenomenon 555
Origin of EXAFS 555
EXAFS theory 556
Data collection 558
Monochromator 558
Detection 559
Transmission mode 559
Fluorescence detection 559
Electron yield detection 560
ReflEXAFS 560
Energy dispersive EXAFS 561
Micro-EXAFS 561
Polarised EXAFS studies 561
Sample environment 562
EXAFS data reduction 562
Extraction of structural information from the EXAFS signal 562
Subtraction of the pre-edge background 564
Identification of the threshold energy E0 564
Normalisation to m0 564
Removal of a smooth post-edge background approximating m0(k) 564
Extraction of the EXAFS signal 564
Fourier transform of the weighted c(k) EXAFS signal 564
Fourier filtering 565
Recent programs for EXAFS data reduction 566
FEFFIT 566
EXCURVE 567
SixPACK 567
Recent progress in data reduction 568
Continuous Cauchy wavelet transform (CCWT) analysis of EXAFS 568
EXAFS data reduction through principal components analysis 569
Anharmonicity effects 570
Multiple scattering interferences 571
EXAFS studies in geosciences 571
Structural environment and chemical bonding of trace elements in minerals 572
Environments of trace elements in disordered mineralogical systems 575
Environmental mineralogy 581
References 583
XIII
Chapter 14 Spectroscopic investigations relating to the structural,
crystal-chemical and lattice-dynamic properties of
(Fe2+,Mn2+,Mg,Ca)3Al2Si3012 garnet: A review and analysis
by Charles A GEIGER 589
Introduction and philosophical approach 589
The structure, crystal chemistry and lattice dynamic properties of garnet
as determined from diffraction experiments 592
Garnet end members - almandine, spessartine, pyrope and grossular 592
Garnet solid solutions 597
The structure, crystal chemistry and lattice-dynamic properties of garnet
as determined from spectroscopic experiments 598
Vibrational (Raman and IR) spectroscopy 599
Raman spectra of garnet end members at ambient conditions
and at low temperatures 600
Raman spectra of pyrope and grossular at high pressure and high temperature 602
Raman spectra of binary almandine-spessartine and pyrope-grossular
solid solutions 604
Infrared spectra of garnet end members at ambient conditions 605
Infrared spectra at elevated pressures and temperatures 606
Infrared spectra of binary solid solutions 607
MAS NMR spectroscopy 610
29Si NMR spectra of pyrope and grossular 611
29Si NMR spectra of pyrope-grossular solid solutions 612
Optical absorption spectroscopy 614
Optical absorption spectra of almandine, almandine-rich garnet and spessartine 614
High-pressure optical absorption spectra of almandine and spessartine 617
Optical absorption spectra of almandine-pyrope/spessartine solid solutions 619
Optical absorption spectra of pyrope containing minor concentrations
of transition metals 620
Mössbauer spectroscopy 621
57Fe Mössbauer spectrum of almandine at 1 atm and as a function of temperature 622
High-pressure 57Fe Mössbauer spectrum of almandine 625
57Fe Mössbauer spectra of binary almandine-pyrope/spessartine/grossular
solid solutions 625
Electron spin resonance spectroscopy 627
Electron spin resonance spectrum of Ti3+ in pyrope 627
X-ray absorption spectroscopy 628
X-ray absorption spectra of almandine, pyrope, spessartine and grossular
and their solid solutions: The major elements Fe, Mn, Ca and A1 629
X-ray absorption spectra of pyrope and grossular: The minor element Yb3+ 633
Discussion and analysis 633
X-site cation order/disorder in solid solutions 634
Lattice dynamic properties 636
Microscopic energetic properties and microscopic-macroscopic relationships 638
Trace element substitution and behaviour 640
General outlook 640
Acknowledgements 642
References 642
Name index 647
|
adam_txt |
Contents
Chapter 1 An introduction to spectroscopic methods in the mineral sciences and
geochemistry
by Charles A GEIGER 1
Introduction 1
Brief history of spectroscopy with an emphasis on investigations of geomaterials 3
Radiation 8
Electromagnetic radiation: Wave theory, particle-like behaviour, energy and interaction
with matter 9
Short description and review of the “standard” spectroscopies 13
Spectroscopic and transition types 13
IR absorption spectroscopy 15
Optical absorption spectroscopy 17
X-ray absorption spectroscopy 19
Mössbauer spectroscopy 21
Magnetic resonance spectroscopies 23
Nuclear magnetic resonance 24
Electron spin resonance 24
Raman spectroscopy 26
Spectroscopic investigations in the mineral sciences and geochemistry 28
Compositional information 28
Structural and crystal-chemical information 28
Dynamical information 31
Acknowledgements 33
References 33
Appendix I: Some books on general solid-state spectroscopy and those relevant for
investigations in the mineral sciences and geochemistry and also on chemical bonding 34
Appendix II: Two case spectroscopic studies 34
1 Fe in natural cordierite 35
2 H20 in synthetic alkali-free hydrous beryl 40
Chapter 2 Luminescence techniques in Earth Sciences
by Lutz NASDALA, Jens GÖTZE, John M HANCHAR, Michael GAFT
and Matthias R KRBETSCHEK 43
Introduction 43
Basic definitions 44
Theoretical and experimental background 46
Generation of the luminescence emission 46
Factors affecting the luminescence emission 49
Time-resolved luminescence 53
Luminescence-based image generation 56
Luminescence-based age determination 58
Afterglow-type luminescence 58
Use of afterglow-type luminescence for dating 59
Applications of luminescence: General overview 62
Selected examples for the application of luminescence spectroscopy 67
Photoluminescence (steady-state): Quantification of Cr in ruby 67
Photo luminescence (time-resolved): Europium luminescence of apatite 68
Europium luminescence 68
Europium in the apatite structure 69
Cathodoluminescence of REE3+ used for materials identification and characterisation 71
Application of CL REE emission spectra to materials characterisation 71
Dy3+-doped crystalline and non-crystalline synthetic titanite 72
Dy3+ in natural zircon CL spectra 73
VI
Characterisation of point defects in quartz using CL spectroscopy 75
Cathodoluminescence of quartz 75
Band assignment 76
Example: growth generations of Si02 in petrified wood 79
Example: defect-CL of radiation-damaged quartz 79
Acknowledgements 80
References 80
Chapter 3 Optical absorption spectroscopy in geosciences Part I:
Basic concepts of crystal field theory
by Manfred WILDNER, Michael ANDRUT and Czeslaw Z RUDOWICZ 93
0 Scope of the optical absorption spectroscopy chapters (Part I and Part II) 93
1 Introduction 94
1 1 Optical absorption processes 94
1 2 Applications of crystal field theory in geosciences 96
2 Optical spectra 98
2 1 Units used in optical spectroscopy 98
211 Measurement of the optical transition energies 98
212 Measurement of the intensities of the transitions 99
Bouguer-Lambert law 100
Beer-Lambert-Bouguer law 100
2 2 Instrumentation 100
3 Principles of crystal field theory 101
3 1 Recommended textbooks 101
3 2 One-electron systems 101
321 Schrödinger equation and quantum numbers 101
322 Aufbau principle, Pauli exclusion principle and Hund’s rule 104
323 Crystal field splitting - an overview 104
Jahn-Teller effect 109
324 Crystal field stabilisation energy (CFSE) 109
Intra- and inter-crystalline transition ion distribution 110
325 Electronic transitions Ill
3 3 Many-electron concept Ill
331 Many-electron Hamiltonian Ill
332 Russell-Saunders coupling and free-ion terms 113
333 Term splittings in crystal fields of different symmetry 114
334 Tanabe-Sugano diagrams 117
335 Descent in symmetry and crystal field distortion parameters 118
3 4 Selection rules 121
341 Laporte (or parity) selection rule: A/ = ± 1 (A/ * 0) 122
342 Spin selection rule: A(25' + 1) = 0 125
Spin-orbit coupling and “intensity stealing” 126
343 Electronic selection rule: Ae^ =1 127
344 Selection rules arising from symmetry considerations 127
345A worked example: Al203:Cr3+ (ruby) 129
3 5 d-d absorption bands 132
351 Band widths - general aspects 132
352 Influence of temperature and pressure 133
353 Franck-Condon principle and vibrational structure 133
3 6 Qualitative appraisal of the parameters Dq, B and C 136
Acknowledgements 140
References 140
VII
Chapter 4 Optical absorption spectroscopy in geosciences Part II:
Quantitative aspects of crystal fields
by Michael ANDRUT, Manfred WILDNER and Czeslaw Z RUDOWICZ 145
1 Introduction 145
2 The relationship between lODq and the interatomic distance R for a regular octahedron 146
2 1 Applications and consequences 147
211 Pressure dependence 147
212 Temperature dependence 148
213 Compositional dependence 149
3 Vegard’s rule (and its relationship to local interatomic distances) 149
4 Local interatomic distances in coordination polyhedra 150
4 1 Concept of the virtual crystal approximation 150
4 2 Hard sphere model 151
5 Superposition model of crystal fields (SPM) 151
5 1 The regular octahedron 156
5 2 The distorted octahedron - one selected example 158
5 3 Strategy for the determination of crystal field parameters using SPM 160
6 Applications of the superposition model in geosciences 162
6 1 Superposition model parameters for Co2+ in oxygen-based crystal fields 163
6 2 Extraction of crystal field parameters for Cr3+ from the binary solid solution
uvarovite-grossular 166
621 Introduction 166
622 Birefringent garnets 167
623 Sample material 167
624 Crystal structures 167
Crystal structures of natural birefringent uvarovite-grossular solid solutions 167
Crystal structure of synthetic uvarovite 168
625 Individual octahedral size and Cr3+ occupation 169
626 Single-crystal absorption spectra 171
626 Single-crystal absorption spectra 173
628 Conclusions 177
6 3 Local interatomic bond lengths and angles derived from optical absorption spectra:
The Cr06 polyhedron in ruby, Al203:Cr3+ 177
631 Introduction 177
632 Brief description of the crystal structures of corundum and eskolaite 177
633 Absorption spectroscopic investigations 179
634 Crystal field SPM calculations 180
635 Conclusions 183
Acknowledgements 183
References 183
Chapter 5 IR spectroscopy as a tool for the characterisation of
ceramic precursor phases
by Anton BERAN, Dietmar VOLL and Hartmut SCHNEIDER 189
Introduction i : 189
Theoretical background 189
Bohr’s frequency condition 189
Group theoretical basis 190
Harmonic oscillator model 190
Vibrational modes 191
Group frequencies 193
Characterisation of cordierite and mullite ceramic precursors 195
Preparation of the precursors 195
Cordierite precursor 195
Mullite precursor 196
Dehydration behaviour 196
VIII
Absorption features assigned to the hydrous components 197
Cordierite precursors 199
Mullite precursors 201
Specification of the hydrous component 202
Absorption features assigned to lattice vibrations 203
Cordierite precursors 203
Mullite precursors 204
Assignment of absorption bands 206
Structural behaviour of the hydrous component 207
Structural ordering phenomena 208
Cordierite precursors 208
Mullite precursors 210
Conclusion 211
IR band assignment of mullite 211
FTIR powder spectroscopy 213
FTIR single-crystal spectroscopy 215
Interpretation of the FTIR spectra 218
Conclusion 221
The FTIR spectrum of sillimanite 221
Appendix 222
Acknowledgements 224
References 224
Chapter 6 IR spectroscopic characterisation of hydrous species in minerals
by Eugen LIBOWITZKY and Anton BERAN 227
Thematic introduction 227
Technical introduction 228
IR spectroscopic methodology 229
Polarised IR measurements - a key to the orientation and total absorbance of
vibrating molecules in a crystal 229
Background 229
Technical aspects 231
The band position - a sensitive tool to local structure 231
Background 231
The distance-frequency correlation for hydrogen bonds 233
Phase transitions pursued by IR spectroscopy 234
The band intensity - a simple measure of concentration? 235
Background 235
Calibration of IR band intensities to quantify hydrogen (OH, H20) in minerals 236
Problems and limitations 237
Selected examples from recent research 238
Amphibole group 238
Mica group 239
Vesuvianite 242
Lawsonite 243
Hemimorphite 245
MOOH minerals 246
Examples of very strong hydrogen bonds 248
Beryl 250
Feldspar 251
Garnet group 252
Zircon 254
Olivine group 257
Pyroxene group 260
Kyanite and sillimanite 265
Perovskite-type structures 266
IX
Rutile-type structures 267
Corundum and spinel 268
Further IR spectroscopic studies of hydrous species in minerals 270
References 270
Chapter 7 Raman spectroscopy: Analytical perspectives in mineralogical research
by Lutz NASD ALA, David C SMITH, Reinhard KAINDL and
Martin A ZIEMANN 281
Introduction 281
Theoretical background and practical aspects 282
The Raman Effect 282
Electrodynamical model 282
Quantum-mechanical model 284
Interpretation of spectra 285
The Raman spectrum 285
Vibrations of molecules and crystal lattices 286
Directional dependence of Raman scattering 290
Potential analytical artefacts 294
Instrumentation for Raman analysis 297
Generalities on Raman systems 297
Confocality and the Raman microprobe 299
Mobile Raman microscopy for truly in situ analysis 301
Images based on Raman scattered light 303
Raman imaging 303
Raman mapping 305
Applications of Raman spectroscopy 305
Generalities on applications in mineralogy and geology 305
Applications to the study of inclusions in minerals 307
Applications in high-pressure and high-temperature studies 308
Applications in archaeometry: The Raman Microscope (RM) 309
Selected examples of Raman applications in the Geosciences 311
Semi-quantitative micro-Raman spectroscopy of a gas inclusion 311
Semi-quantitative chemical analysis by Raman spectroscopy 313
Characterisation of the real structure of natural carbon 316
Internal heterogeneities of diamond crystals 316
Estimation of the order/disorder of graphitic carbon 318
Gemstone identification by Raman spectroscopy analysis through glass 321
In situ Raman spectroscopy of quartz: A new pressure sensor 324
Summary: Advantages and disadvantages 326
Acknowledgements 329
References 329
Chapter 8 Mössbauer spectroscopy: Basic principles
by Georg AMTHAUER, Michael GRODZICKI,
Werner LOTTERMOSER and Günther REDHAMMER 345
1 Introduction 345
2 The Mössbauer effect 346
3 Experimental 348
4 Evaluation 350
5 Hyperfine interactions 351
5 1 Electric monopole interaction (isomer shift 5) 351
5 2 The electric quadrupole interaction (quadrupole splitting AEQ) 354
5 3 Magnetic hyperfine interaction (magnetic hyperfine splitting A£M) 362
5 4 Combined electric and magnetic hyperfine interactions 364
6 Conclusions 366
References 366
X
Chapter 9 Mössbauer spectroscopy: Applications
by Catherine A McCAMMON 369
Introduction 369
Methodology 369
Experimental aspects 369
Analytical aspects 371
Rock-forming minerals 372
Case study: Accurate site populations of Fe2+ and Fe3+ in majorite garnet 375
Glasses and other amorphous materials 380
Case study: Determination of Fe3+/EFe in a basaltic glass 384
Microscopic absorbers 387
Applications 391
Concluding remarks 394
Acknowledgements 395
References 395
Chapter 10 NMR studies of silicate glasses
by Simon C KOHN 399
Introduction 399
The effect of composition on the structure of glasses 400
Si02 400
Aluminium-free alkali and alkaline earth silicate glasses 402
29Si NMR data 402
l70 NMR data 405
Other nuclei 406
Aluminosilicates 409
NMR studies of the dissolution mechanisms of volatiles in silicate melts 410
Water 410
Carbon dioxide 413
Fluorine 414
Sulphur 414
NMR studies of silicate melts, and the relationship between melt and glass structure 415
Acknowledgements 415
References 416
Chapter 11 Solid state NMR spectroscopy as supporting method in Rietveld
structure refinements of rock-forming minerals: New developments and examples
by Michael FECHTELKORD 421
Introduction 421
Common magnetic and electric interactions in nuclear magnetic resonance 423
Zeeman interaction 423
Chemical shift interaction 424
Dipolar interaction 425
Quadrupolar interaction 428
Routine techniques in solid state nuclear magnetic resonance 430
Magic angle spinning (MAS) 430
Pulse sequences 432
Relaxation times 434
Cross-polarisation (CP) 436
Latest methodical developments in solid state nuclear magnetic resonance 438
Rotational echo double resonance (REDOR) 438
Satellite transition spectroscopy (SATRAS) 441
Dynamic angle spinning (DAS), double rotation (DOR),
and multiple quantum magic angle spinning (MQMAS) 443
XI
Combined structure determination by Rietveld powder refinements and
solid state NMR spectroscopy 448
Information from the 207Pb chemical shift interaction about the lead phosphate structure 448
Sodium cation dynamics in the high- and room temperature structure of nitrate cancrinite 450
Order and disorder of anions in carbonate and formate mixed sodalites 455
Concluding remarks 460
Acknowledgements 460
References 460
Chapter 12 X-ray absorption spectroscopy in mineralogy: Theory and
experiment in the XANES region
by Annibale MOTTANA 465
1 Introduction 465
1 1 The historical development of XAS spectroscopy 468
111 Basic knowledge 469
112 Mineral studies 473
2 The XANES region: Definition and limits 475
3 Theory of XANES spectroscopy 479
3 1 General theory 480
3 2 Theoretical calculations 485
321 The CONTINUUM and MXAN computer codes 485
322 The FEFF and FEFFIT codes 488
323 Other codes 489
4 Experimental methods 489
4 1 Beam line apparatus 491
411 Insertion devices 491
412 Collimation devices 493
413 Monochromatisation devices 494
414 Detection modes 497
4141 Transmission mode 497
4142 Fluorescence mode 499
4143 Electron yield mode 500
4144 Dispersive mode 501
4 2 Sample preparation 502
421 Powders 503
4211 Purity 504
4212 Grain size 504
4213 Particle orientation 504
422 Single crystals 505
4 3 Spectrum optimisation 508
431 Energy calibration 509
432 Spectrum fitting 510
5 Information contained in XANES spectra 510
5 1 Edge and pre-edge (PE) sub-region 511
511 Causes of PE features 512
5111 Transition elements 512
5112 Non-transition elements 514
512 Applications 515
5 2 Full multiple-scattering (FMS) sub-region 517
521 Spectral shape 518
522 Energy shift 519
523 Bond length determination 520
524 Applications 521
5 3 Intermediate multiple scattering (IMS) sub-region 522
531 Applications 524
XII
Addendum: A short manual on how to practically record, treat and interpret XANES spectra 526
A1A note of introduction, with some preliminary information 526
A 2 Raw XANES data treatment 527
A21 Energy calibration 527
A22 Background subtraction 527
A23 “Fingerprinting” 529
A24 Pre-edge analysis 529
A 3 Simulation of XANES spectra 531
Acknowledgements 538
References 538
Chapter 13 X-ray absorption spectroscopy in geosciences:
Information from the EXAFS region
by Laurence GALOISY 553
Introduction 553
Fundamentals of EXAFS 554
Synchrotron radiation 554
The X-ray absorption phenomenon 555
Origin of EXAFS 555
EXAFS theory 556
Data collection 558
Monochromator 558
Detection 559
Transmission mode 559
Fluorescence detection 559
Electron yield detection 560
ReflEXAFS 560
Energy dispersive EXAFS 561
Micro-EXAFS 561
Polarised EXAFS studies 561
Sample environment 562
EXAFS data reduction 562
Extraction of structural information from the EXAFS signal 562
Subtraction of the pre-edge background 564
Identification of the threshold energy E0 564
Normalisation to m0 564
Removal of a smooth post-edge background approximating m0(k) 564
Extraction of the EXAFS signal 564
Fourier transform of the weighted c(k) EXAFS signal 564
Fourier filtering 565
Recent programs for EXAFS data reduction 566
FEFFIT 566
EXCURVE 567
SixPACK 567
Recent progress in data reduction 568
Continuous Cauchy wavelet transform (CCWT) analysis of EXAFS 568
EXAFS data reduction through principal components analysis 569
Anharmonicity effects 570
Multiple scattering interferences 571
EXAFS studies in geosciences 571
Structural environment and chemical bonding of trace elements in minerals 572
Environments of trace elements in disordered mineralogical systems 575
Environmental mineralogy 581
References 583
XIII
Chapter 14 Spectroscopic investigations relating to the structural,
crystal-chemical and lattice-dynamic properties of
(Fe2+,Mn2+,Mg,Ca)3Al2Si3012 garnet: A review and analysis
by Charles A GEIGER 589
Introduction and philosophical approach 589
The structure, crystal chemistry and lattice dynamic properties of garnet
as determined from diffraction experiments 592
Garnet end members - almandine, spessartine, pyrope and grossular 592
Garnet solid solutions 597
The structure, crystal chemistry and lattice-dynamic properties of garnet
as determined from spectroscopic experiments 598
Vibrational (Raman and IR) spectroscopy 599
Raman spectra of garnet end members at ambient conditions
and at low temperatures 600
Raman spectra of pyrope and grossular at high pressure and high temperature 602
Raman spectra of binary almandine-spessartine and pyrope-grossular
solid solutions 604
Infrared spectra of garnet end members at ambient conditions 605
Infrared spectra at elevated pressures and temperatures 606
Infrared spectra of binary solid solutions 607
MAS NMR spectroscopy 610
29Si NMR spectra of pyrope and grossular 611
29Si NMR spectra of pyrope-grossular solid solutions 612
Optical absorption spectroscopy 614
Optical absorption spectra of almandine, almandine-rich garnet and spessartine 614
High-pressure optical absorption spectra of almandine and spessartine 617
Optical absorption spectra of almandine-pyrope/spessartine solid solutions 619
Optical absorption spectra of pyrope containing minor concentrations
of transition metals 620
Mössbauer spectroscopy 621
57Fe Mössbauer spectrum of almandine at 1 atm and as a function of temperature 622
High-pressure 57Fe Mössbauer spectrum of almandine 625
57Fe Mössbauer spectra of binary almandine-pyrope/spessartine/grossular
solid solutions 625
Electron spin resonance spectroscopy 627
Electron spin resonance spectrum of Ti3+ in pyrope 627
X-ray absorption spectroscopy 628
X-ray absorption spectra of almandine, pyrope, spessartine and grossular
and their solid solutions: The major elements Fe, Mn, Ca and A1 629
X-ray absorption spectra of pyrope and grossular: The minor element Yb3+ 633
Discussion and analysis 633
X-site cation order/disorder in solid solutions 634
Lattice dynamic properties 636
Microscopic energetic properties and microscopic-macroscopic relationships 638
Trace element substitution and behaviour 640
General outlook 640
Acknowledgements 642
References 642
Name index 647 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021805194 |
callnumber-first | Q - Science |
callnumber-label | QE369 |
callnumber-raw | QE369.S65 |
callnumber-search | QE369.S65 |
callnumber-sort | QE 3369 S65 |
callnumber-subject | QE - Geology |
classification_rvk | RB 10115 |
ctrlnum | (OCoLC)57724740 (DE-599)BVBBV021805194 |
dewey-full | 549 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 549 - Mineralogy |
dewey-raw | 549 |
dewey-search | 549 |
dewey-sort | 3549 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Geographie |
discipline_str_mv | Chemie / Pharmazie Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01730nam a2200445 cb4500</leader><controlfield tag="001">BV021805194</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20061120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061110s2004 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9634636624</subfield><subfield code="9">963-463-662-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57724740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021805194</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE369.S65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">549</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10115</subfield><subfield code="0">(DE-625)142220:12621</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectroscopic methods in mineralogy</subfield><subfield code="b">university texbook</subfield><subfield code="c">ed. by Anton Beran ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Budapest</subfield><subfield code="b">Eötvös Univ. Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 661 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">EMU notes in mineralogy</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrared spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Luminescence spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minerals</subfield><subfield code="x">Spectra</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mössbauer spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear magnetic resonance spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectrum analysis</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray spectroscopy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beran, Anton</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">EMU notes in mineralogy</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV014391074</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017570&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015017570</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV021805194 |
illustrated | Illustrated |
index_date | 2024-07-02T15:49:06Z |
indexdate | 2024-07-09T20:45:01Z |
institution | BVB |
isbn | 9634636624 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015017570 |
oclc_num | 57724740 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-634 |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-634 |
physical | XIV, 661 S. Ill., graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Eötvös Univ. Press |
record_format | marc |
series | EMU notes in mineralogy |
series2 | EMU notes in mineralogy |
spelling | Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ... Budapest Eötvös Univ. Press 2004 XIV, 661 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier EMU notes in mineralogy 6 Infrared spectroscopy Congresses Luminescence spectroscopy Congresses Minerals Spectra Congresses Mössbauer spectroscopy Congresses Nuclear magnetic resonance spectroscopy Congresses Nuclear spectroscopy Congresses Raman spectroscopy Congresses Spectrum analysis Congresses X-ray spectroscopy Congresses (DE-588)1071861417 Konferenzschrift gnd-content Beran, Anton Sonstige oth EMU notes in mineralogy 6 (DE-604)BV014391074 6 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017570&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Spectroscopic methods in mineralogy university texbook EMU notes in mineralogy Infrared spectroscopy Congresses Luminescence spectroscopy Congresses Minerals Spectra Congresses Mössbauer spectroscopy Congresses Nuclear magnetic resonance spectroscopy Congresses Nuclear spectroscopy Congresses Raman spectroscopy Congresses Spectrum analysis Congresses X-ray spectroscopy Congresses |
subject_GND | (DE-588)1071861417 |
title | Spectroscopic methods in mineralogy university texbook |
title_auth | Spectroscopic methods in mineralogy university texbook |
title_exact_search | Spectroscopic methods in mineralogy university texbook |
title_exact_search_txtP | Spectroscopic methods in mineralogy university texbook |
title_full | Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ... |
title_fullStr | Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ... |
title_full_unstemmed | Spectroscopic methods in mineralogy university texbook ed. by Anton Beran ... |
title_short | Spectroscopic methods in mineralogy |
title_sort | spectroscopic methods in mineralogy university texbook |
title_sub | university texbook |
topic | Infrared spectroscopy Congresses Luminescence spectroscopy Congresses Minerals Spectra Congresses Mössbauer spectroscopy Congresses Nuclear magnetic resonance spectroscopy Congresses Nuclear spectroscopy Congresses Raman spectroscopy Congresses Spectrum analysis Congresses X-ray spectroscopy Congresses |
topic_facet | Infrared spectroscopy Congresses Luminescence spectroscopy Congresses Minerals Spectra Congresses Mössbauer spectroscopy Congresses Nuclear magnetic resonance spectroscopy Congresses Nuclear spectroscopy Congresses Raman spectroscopy Congresses Spectrum analysis Congresses X-ray spectroscopy Congresses Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015017570&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014391074 |
work_keys_str_mv | AT berananton spectroscopicmethodsinmineralogyuniversitytexbook |