Quantum gravity: mathematical models and experimental bounds
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Basel u.a.
Birkhäuser
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVI, 336 S. |
ISBN: | 9783764379773 3764379774 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021795483 | ||
003 | DE-604 | ||
005 | 20070118 | ||
007 | t | ||
008 | 061106s2007 |||| 00||| eng d | ||
015 | |a 06,N37,0525 |2 dnb | ||
016 | 7 | |a 980910420 |2 DE-101 | |
020 | |a 9783764379773 |c Gb. (Pr. in Vorb.) |9 978-3-7643-7977-3 | ||
020 | |a 3764379774 |c Gb. (Pr. in Vorb.) |9 3-7643-7977-4 | ||
024 | 3 | |a 9783764379773 | |
028 | 5 | 2 | |a 11825203 |
035 | |a (OCoLC)77482236 | ||
035 | |a (DE-599)BVBBV021795483 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-11 |a DE-20 | ||
050 | 0 | |a QC178 | |
082 | 0 | |a 530.14/3 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UH 8500 |0 (DE-625)145782: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
245 | 1 | 0 | |a Quantum gravity |b mathematical models and experimental bounds |c Bertfried Fauser ..., ed. |
264 | 1 | |a Basel u.a. |b Birkhäuser |c 2007 | |
300 | |a XVI, 336 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Quantum gravity |v Congresses | |
650 | 4 | |a Quantum gravity |x Mathematical models |v Congresses | |
650 | 0 | 7 | |a Quantengravitation |0 (DE-588)4124012-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2005 |z Blaubeuren |2 gnd-content | |
689 | 0 | 0 | |a Quantengravitation |0 (DE-588)4124012-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fauser, Bertfried |e Sonstige |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2845859&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015008067&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015008067 |
Datensatz im Suchindex
_version_ | 1805088492341952512 |
---|---|
adam_text |
CONTENTS
Preface
Bertfried Fauser, Jürgen Tolksdorf and Eberhard
Quantum
Claus Kiefer
1.
2.
2.1.
2.2.
2.2.1.
2.2.2.
3.
4.
5.
6.
References
The Search for Quantum Gravity
Claus Lämmerzahl
1.
2.
3.
3.1.
3.2.
3.3.
3.3.1.
3.3.2.
3.3.3.
3.3.4.
3.3.5.
3.3.6.
3.4.
3.4.1.
3.4.2.
3.4.3.
3.4.4.
3.5.
3.6.
3.6.1.
3.6.2.
vi
4.
5.
6.
7.
Acknowledgements
References
Time Paradox in Quantum Gravity
Alfredo Macias and
Introduction
Time in canonical quantization
Time in general relativity
Canonical quantization in minisuperspace
Canonical quantization in midisuperspace
The problem of time
Conclusions
Acknowledgements
References
Differential Geometry in Non-Commutative Worlds
Louis H. Kauffman
1.
2.
3.
Acknowledgements
References
Algebraic Approach to Quantum Gravity III:
Non-Commutative Riemannian Geometry
Shahn Majid
1.
Reprise of quantum differential calculus
Symplectic connections: a new field in physics
Differential anomalies and the orgin of time
2.
2.1.
2.2.
3.
Cotorsion and weak metric compatibility
Framings and coframings
Quantum bundles and Riemannian structures
Quantum gravity on finite sets
Outlook: Monoidal functors
3.1
3.2
4.
5.
6.
References
Quantum Gravity as a Quantum Field Theory of Simplicial Geometry
Daniele
1.
1.1.
27
29
30
31
32
32
.41
41
43
45
49
51
52
56
57
57
. 61
61
66
69
74
74
. 77
77
79
81
82
85
86
87
89
94
97
98
101
101
102
Contents
1.2.
1.3.
1.4.
Group field theory: What is it? The basic GFT formalism
A discrete superspace
The field and its symmetries
The space of states or a third quantized simplicial space
Quantum histories or a third quantized simplicial spacetime
The third quantized simplicial gravity action
The partition function and its perturbative expansion
GFT definition of the canonical inner product
Summary: GFT as a general framework for quantum gravity
An example:
Assorted questions for the present, but especially for the future
2.
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
3.
4.
Acknowledgements
References
109
109
111
112
112
113
114
115
116
117
120
124
125
An Essay on the Spectral Action and its Relation to Quantum Gravity
Mario Paschke
1.
2.
3.
4.
4.1.
4.2.
4.3.
5.
5.1.
5.2.
5.3.
6.
6.1.
6.2.
References
Towards a Background Independent Formulation of Perturbative Quantum Grav¬
ity
Romeo
1.
2.
3.
4.
151
151
152
155
158
Vlil
Contents
References
Mapping-Class Groups of 3-Manifolds
Domenico Giulini
1.
1.1.
1.2.
1.3.
2.
3.
Introduction
Topologically closed Cauchy surfaces
Topologically open Cauchy surfaces
3-Manifolds
Mapping class groups
3.1.
3.2.
4.
4.1.
4.2.
5.
6.
Appendix: Elements of residual finiteness
References
Kinematical Uniqueness of Loop Quantum Gravity
Christian
1.
2.
3.
3.1.
3.2.
4.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
5.
5.1.
5.2.
5.3.
6.
6.1.
6.2.
6.3.
7.
7.1.
7.2.
158
161
161
161
163
166
169
172
174
175
183
183
185
190
192
193
197
.203
203
204
205
205
205
206
206
207
207
207
208
208
208
209
209
209
210
210
210
211
212
212
213
Contents
7.3.
7.4.
8.
8.1.
8.2.
8.3.
8.4.
Acknowledgements
References
Topological Quantum Field Theory as Topological Quantum Gravity
Kishore
1.
2.
3.
4.
5.
6.
7.
8.
9.
Acknowledgements
References
Strings, Higher Curvature Corrections, and Black Holes
Thomas Mohaupt
1.
2.
3.
4.
5.
6.
7.
8.
Acknowledgements
References
The Principle of the Fermionic Projector:
An Approach for Quantum Gravity?
Felix
1.
2.
3.
4.
5.
x
6.
7.
References
Gravitational Waves and Energy Momentum Quanta
Tekin Dereli and Robin W. Tucker
1.
2.
3.
4.
5.
6.
References
Asymptotic Safety in Quantum Einstein Gravity:
Nonperturbative Renormalizability and Fractal Spacetime Structure
Oliver
1.
2.
3.
4.
5.
6.
7.
References
Noncommutative QFT
Harald, Grosse
1.
2.
3.
4.
References
Index |
adam_txt |
CONTENTS
Preface
Bertfried Fauser, Jürgen Tolksdorf and Eberhard
Quantum
Claus Kiefer
1.
2.
2.1.
2.2.
2.2.1.
2.2.2.
3.
4.
5.
6.
References
The Search for Quantum Gravity
Claus Lämmerzahl
1.
2.
3.
3.1.
3.2.
3.3.
3.3.1.
3.3.2.
3.3.3.
3.3.4.
3.3.5.
3.3.6.
3.4.
3.4.1.
3.4.2.
3.4.3.
3.4.4.
3.5.
3.6.
3.6.1.
3.6.2.
vi
4.
5.
6.
7.
Acknowledgements
References
Time Paradox in Quantum Gravity
Alfredo Macias and
Introduction
Time in canonical quantization
Time in general relativity
Canonical quantization in minisuperspace
Canonical quantization in midisuperspace
The problem of time
Conclusions
Acknowledgements
References
Differential Geometry in Non-Commutative Worlds
Louis H. Kauffman
1.
2.
3.
Acknowledgements
References
Algebraic Approach to Quantum Gravity III:
Non-Commutative Riemannian Geometry
Shahn Majid
1.
Reprise of quantum differential calculus
Symplectic connections: a new field in physics
Differential anomalies and the orgin of time
2.
2.1.
2.2.
3.
Cotorsion and weak metric compatibility
Framings and coframings
Quantum bundles and Riemannian structures
Quantum gravity on finite sets
Outlook: Monoidal functors
3.1
3.2
4.
5.
6.
References
Quantum Gravity as a Quantum Field Theory of Simplicial Geometry
Daniele
1.
1.1.
27
29
30
31
32
32
.41
41
43
45
49
51
52
56
57
57
. 61
61
66
69
74
74
. 77
77
79
81
82
85
86
87
89
94
97
98
101
101
102
Contents
1.2.
1.3.
1.4.
Group field theory: What is it? The basic GFT formalism
A discrete superspace
The field and its symmetries
The space of states or a third quantized simplicial space
Quantum histories or a third quantized simplicial spacetime
The third quantized simplicial gravity action
The partition function and its perturbative expansion
GFT definition of the canonical inner product
Summary: GFT as a general framework for quantum gravity
An example:
Assorted questions for the present, but especially for the future
2.
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
3.
4.
Acknowledgements
References
109
109
111
112
112
113
114
115
116
117
120
124
125
An Essay on the Spectral Action and its Relation to Quantum Gravity
Mario Paschke
1.
2.
3.
4.
4.1.
4.2.
4.3.
5.
5.1.
5.2.
5.3.
6.
6.1.
6.2.
References
Towards a Background Independent Formulation of Perturbative Quantum Grav¬
ity
Romeo
1.
2.
3.
4.
151
151
152
155
158
Vlil
Contents
References
Mapping-Class Groups of 3-Manifolds
Domenico Giulini
1.
1.1.
1.2.
1.3.
2.
3.
Introduction
Topologically closed Cauchy surfaces
Topologically open Cauchy surfaces
3-Manifolds
Mapping class groups
3.1.
3.2.
4.
4.1.
4.2.
5.
6.
Appendix: Elements of residual finiteness
References
Kinematical Uniqueness of Loop Quantum Gravity
Christian
1.
2.
3.
3.1.
3.2.
4.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
5.
5.1.
5.2.
5.3.
6.
6.1.
6.2.
6.3.
7.
7.1.
7.2.
158
161
161
161
163
166
169
172
174
175
183
183
185
190
192
193
197
.203
203
204
205
205
205
206
206
207
207
207
208
208
208
209
209
209
210
210
210
211
212
212
213
Contents
7.3.
7.4.
8.
8.1.
8.2.
8.3.
8.4.
Acknowledgements
References
Topological Quantum Field Theory as Topological Quantum Gravity
Kishore
1.
2.
3.
4.
5.
6.
7.
8.
9.
Acknowledgements
References
Strings, Higher Curvature Corrections, and Black Holes
Thomas Mohaupt
1.
2.
3.
4.
5.
6.
7.
8.
Acknowledgements
References
The Principle of the Fermionic Projector:
An Approach for Quantum Gravity?
Felix
1.
2.
3.
4.
5.
x
6.
7.
References
Gravitational Waves and Energy Momentum Quanta
Tekin Dereli and Robin W. Tucker
1.
2.
3.
4.
5.
6.
References
Asymptotic Safety in Quantum Einstein Gravity:
Nonperturbative Renormalizability and Fractal Spacetime Structure
Oliver
1.
2.
3.
4.
5.
6.
7.
References
Noncommutative QFT
Harald, Grosse
1.
2.
3.
4.
References
Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021795483 |
callnumber-first | Q - Science |
callnumber-label | QC178 |
callnumber-raw | QC178 |
callnumber-search | QC178 |
callnumber-sort | QC 3178 |
callnumber-subject | QC - Physics |
classification_rvk | SK 950 UH 8500 |
ctrlnum | (OCoLC)77482236 (DE-599)BVBBV021795483 |
dewey-full | 530.14/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/3 |
dewey-search | 530.14/3 |
dewey-sort | 3530.14 13 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV021795483</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070118</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061106s2007 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N37,0525</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980910420</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764379773</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">978-3-7643-7977-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764379774</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">3-7643-7977-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764379773</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11825203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)77482236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021795483</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC178</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8500</subfield><subfield code="0">(DE-625)145782:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum gravity</subfield><subfield code="b">mathematical models and experimental bounds</subfield><subfield code="c">Bertfried Fauser ..., ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel u.a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 336 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum gravity</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum gravity</subfield><subfield code="x">Mathematical models</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengravitation</subfield><subfield code="0">(DE-588)4124012-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2005</subfield><subfield code="z">Blaubeuren</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantengravitation</subfield><subfield code="0">(DE-588)4124012-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fauser, Bertfried</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2845859&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015008067&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015008067</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2005 Blaubeuren gnd-content |
genre_facet | Konferenzschrift 2005 Blaubeuren |
id | DE-604.BV021795483 |
illustrated | Not Illustrated |
index_date | 2024-07-02T15:45:59Z |
indexdate | 2024-07-20T09:08:53Z |
institution | BVB |
isbn | 9783764379773 3764379774 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015008067 |
oclc_num | 77482236 |
open_access_boolean | |
owner | DE-384 DE-11 DE-20 |
owner_facet | DE-384 DE-11 DE-20 |
physical | XVI, 336 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Birkhäuser |
record_format | marc |
spelling | Quantum gravity mathematical models and experimental bounds Bertfried Fauser ..., ed. Basel u.a. Birkhäuser 2007 XVI, 336 S. txt rdacontent n rdamedia nc rdacarrier Mathematisches Modell Quantum gravity Congresses Quantum gravity Mathematical models Congresses Quantengravitation (DE-588)4124012-1 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2005 Blaubeuren gnd-content Quantengravitation (DE-588)4124012-1 s DE-604 Fauser, Bertfried Sonstige oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2845859&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015008067&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Quantum gravity mathematical models and experimental bounds Mathematisches Modell Quantum gravity Congresses Quantum gravity Mathematical models Congresses Quantengravitation (DE-588)4124012-1 gnd |
subject_GND | (DE-588)4124012-1 (DE-588)1071861417 |
title | Quantum gravity mathematical models and experimental bounds |
title_auth | Quantum gravity mathematical models and experimental bounds |
title_exact_search | Quantum gravity mathematical models and experimental bounds |
title_exact_search_txtP | Quantum gravity mathematical models and experimental bounds |
title_full | Quantum gravity mathematical models and experimental bounds Bertfried Fauser ..., ed. |
title_fullStr | Quantum gravity mathematical models and experimental bounds Bertfried Fauser ..., ed. |
title_full_unstemmed | Quantum gravity mathematical models and experimental bounds Bertfried Fauser ..., ed. |
title_short | Quantum gravity |
title_sort | quantum gravity mathematical models and experimental bounds |
title_sub | mathematical models and experimental bounds |
topic | Mathematisches Modell Quantum gravity Congresses Quantum gravity Mathematical models Congresses Quantengravitation (DE-588)4124012-1 gnd |
topic_facet | Mathematisches Modell Quantum gravity Congresses Quantum gravity Mathematical models Congresses Quantengravitation Konferenzschrift 2005 Blaubeuren |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2845859&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015008067&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fauserbertfried quantumgravitymathematicalmodelsandexperimentalbounds |