Mathematical aspects of classical and celestial mechanics:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | German English Russian |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
[2006]
|
Ausgabe: | Third edition |
Schriftenreihe: | Encyclopaedia of mathematical sciences
3 Encyclopaedia of mathematical sciences 3 : Dynamical systems ; 3 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 518 Seiten Diagramme |
ISBN: | 3540282467 9783540282464 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021787812 | ||
003 | DE-604 | ||
005 | 20221101 | ||
007 | t | ||
008 | 061030s2006 gw |||| |||| 00||| ger d | ||
020 | |a 3540282467 |9 3-540-28246-7 | ||
020 | |a 9783540282464 |9 978-3-540-28246-4 | ||
035 | |a (OCoLC)180896038 | ||
035 | |a (DE-599)BVBBV021787812 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a ger |a eng |h rus | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-91G |a DE-29T |a DE-11 |a DE-188 |a DE-384 |a DE-634 |a DE-20 |a DE-83 | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 990 |0 (DE-625)143278: |2 rvk | ||
084 | |a 70A05 |2 msc | ||
084 | |a MTA 001f |2 stub | ||
084 | |a 70-02 |2 msc | ||
084 | |a 70Hxx |2 msc | ||
084 | |a 37Jxx |2 msc | ||
084 | |a PHY 200f |2 stub | ||
100 | 1 | |a Arnolʹd, V. I. |d 1937-2010 |0 (DE-588)119540878 |4 aut | |
240 | 1 | 0 | |a Matematičeskie aspekty klassičeskoj i nebesnoj mechaniki |
245 | 1 | 0 | |a Mathematical aspects of classical and celestial mechanics |c Vladimir I. Arnold ; Valery V. Kozlov ; Anatoly I. Neishtadt |
250 | |a Third edition | ||
264 | 1 | |a Berlin ; Heidelberg |b Springer |c [2006] | |
264 | 4 | |c © 2006 | |
300 | |a XIII, 518 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v 3 | |
490 | 1 | |a Encyclopaedia of mathematical sciences |v 3 : Dynamical systems |v 3 | |
650 | 4 | |a Celestial mechanics | |
650 | 4 | |a Mechanics, Analytic | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 0 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 1 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |D s |
689 | 2 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Kozlov, Valerij V. |d 1950- |0 (DE-588)172195187 |4 aut | |
700 | 1 | |a Nejštadt, Anatolij I. |0 (DE-588)1159205175 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-48926-9 |
830 | 0 | |a Encyclopaedia of mathematical sciences |v 3 |w (DE-604)BV024126459 |9 3 | |
830 | 0 | |a Encyclopaedia of mathematical sciences |v 3 : Dynamical systems ; 3 |w (DE-604)BV043561198 |9 3 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015000504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015000504 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135696060907520 |
---|---|
adam_text | Contents
Basic
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5
1.5.1
1.5.2
1.6
1.6.1
VIII Contents
1.6.2
1.6.3 Anisotropie
1.6.4
1.6.5
1.6.6
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.5.3
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.7.3
2.7.4
3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.2
Contents
3.2.1 Order
3.2.2 Order
3.2.3
Three-Body Problem
3.3
3.3.1
3.3.2
Bifurcation Sets
3.3.3
3.3.4
Problem of Rotation of a Heavy Rigid Body with a
Fixed Point
Variational Principles and Methods
4.1
4.1.1
4.1.2
4.1.3
with Boundary
4.2
4.2.1
4.2.2
Possible Motion
4.2.3
Conjecture
4.2.4
4.3
4.3.1
Functionals
4.3.2
Theorem
4.4
of Motion
4.4.1
4.4.2
Equilibrium Position
4.4.3
4.4.4
Suspension
4.4.5
Motions
Integrable
5.1
to Integrability of Hamiltonian Systems
X
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
6
6.1
6.1.1
6.1.2
Non-Resonant Case
6.1.3
Case
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9
6.1.10
6.2
6.2.1
6.2.2
6.3 KAM
6.3.1
6.3.2
6.3.3
6.3.4
Systems and its Exponential Estimate
6.3.5
6.3.6
6.3.7 KAM
6.3.8
6.3.9
6.4
6.4.1
Single-Frequency Systems
Contents
6.4.2
Systems
6.4.3
6.4.4
Conservation Time of Adiabatic Invariants
6.4.5
6.4.6
6.4.7
Crossings
7
7.1
7.1.1
7.1.2
to Integrability
7.1.3
7.2
7.2.1
7.2.2
Integrability
7.2.3
7.3
7.3.1
7.3.2
7.3.3
7.4
Position (Siegel s Method)
7.5
7.5.1
7.5.2
Single-Valued Integrals
7.6
Integrability of Natural Systems
7.6.1
7.6.2
7.6.3
7.6.4
Multivalued Hamiltonians
8
8.1
8.2
8.2.1
XII Contents
8.2.2 Rayleigh-Fisher-Courant Theorems
of Characteristic Frequencies when Rigidity Increases
or Constraints are Imposed
8.2.3
8.3
Position
8.3.1
8.3.2
Freedom in a Neighbourhood of an Equilibrium
Position at a Resonance
8.3.3
Two Degrees of Freedom at Resonances
8.4
Trajectories
8.4.1
Coefficients
8.4.2
Normal Form
8.4.3
Freedom near a Closed Trajectory at a Resonance
8.5
8.5.1
8.5.2
8.5.3
9
9.1
9.1.1
9.1.2
9.1.3
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
Frozen-in Direction Fields
9.3.2
9.3.3
9.4
9.5
Integrals
9.6
9.6.1
9.6.2
Contents XIII
9.7 General
9.7.1
9.7.2
9.7.3
Recommended Reading
Bibliography
Index of Names
Subject Index
|
adam_txt |
Contents
Basic
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5
1.5.1
1.5.2
1.6
1.6.1
VIII Contents
1.6.2
1.6.3 Anisotropie
1.6.4
1.6.5
1.6.6
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.5.3
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.2
2.7.3
2.7.4
3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.2
Contents
3.2.1 Order
3.2.2 Order
3.2.3
Three-Body Problem
3.3
3.3.1
3.3.2
Bifurcation Sets
3.3.3
3.3.4
Problem of Rotation of a Heavy Rigid Body with a
Fixed Point
Variational Principles and Methods
4.1
4.1.1
4.1.2
4.1.3
with Boundary
4.2
4.2.1
4.2.2
Possible Motion
4.2.3
Conjecture
4.2.4
4.3
4.3.1
Functionals
4.3.2
Theorem
4.4
of Motion
4.4.1
4.4.2
Equilibrium Position
4.4.3
4.4.4
Suspension
4.4.5
Motions
Integrable
5.1
to Integrability of Hamiltonian Systems
X
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
6
6.1
6.1.1
6.1.2
Non-Resonant Case
6.1.3
Case
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9
6.1.10
6.2
6.2.1
6.2.2
6.3 KAM
6.3.1
6.3.2
6.3.3
6.3.4
Systems and its Exponential Estimate
6.3.5
6.3.6
6.3.7 KAM
6.3.8
6.3.9
6.4
6.4.1
Single-Frequency Systems
Contents
6.4.2
Systems
6.4.3
6.4.4
Conservation Time of Adiabatic Invariants
6.4.5
6.4.6
6.4.7
Crossings
7
7.1
7.1.1
7.1.2
to Integrability
7.1.3
7.2
7.2.1
7.2.2
Integrability
7.2.3
7.3
7.3.1
7.3.2
7.3.3
7.4
Position (Siegel's Method)
7.5
7.5.1
7.5.2
Single-Valued Integrals
7.6
Integrability of Natural Systems
7.6.1
7.6.2
7.6.3
7.6.4
Multivalued Hamiltonians
8
8.1
8.2
8.2.1
XII Contents
8.2.2 Rayleigh-Fisher-Courant Theorems
of Characteristic Frequencies when Rigidity Increases
or Constraints are Imposed
8.2.3
8.3
Position
8.3.1
8.3.2
Freedom in a Neighbourhood of an Equilibrium
Position at a Resonance
8.3.3
Two Degrees of Freedom at Resonances
8.4
Trajectories
8.4.1
Coefficients
8.4.2
Normal Form
8.4.3
Freedom near a Closed Trajectory at a Resonance
8.5
8.5.1
8.5.2
8.5.3
9
9.1
9.1.1
9.1.2
9.1.3
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
Frozen-in Direction Fields
9.3.2
9.3.3
9.4
9.5
Integrals
9.6
9.6.1
9.6.2
Contents XIII
9.7 General
9.7.1
9.7.2
9.7.3
Recommended Reading
Bibliography
Index of Names
Subject Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Arnolʹd, V. I. 1937-2010 Kozlov, Valerij V. 1950- Nejštadt, Anatolij I. |
author_GND | (DE-588)119540878 (DE-588)172195187 (DE-588)1159205175 |
author_facet | Arnolʹd, V. I. 1937-2010 Kozlov, Valerij V. 1950- Nejštadt, Anatolij I. |
author_role | aut aut aut |
author_sort | Arnolʹd, V. I. 1937-2010 |
author_variant | v i a vi via v v k vv vvk a i n ai ain |
building | Verbundindex |
bvnumber | BV021787812 |
classification_rvk | SK 520 SK 540 SK 990 |
classification_tum | MTA 001f PHY 200f |
ctrlnum | (OCoLC)180896038 (DE-599)BVBBV021787812 |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
edition | Third edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03231nam a2200745 cb4500</leader><controlfield tag="001">BV021787812</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221101 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061030s2006 gw |||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540282467</subfield><subfield code="9">3-540-28246-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540282464</subfield><subfield code="9">978-3-540-28246-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180896038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021787812</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 990</subfield><subfield code="0">(DE-625)143278:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 001f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70Hxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37Jxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 200f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnolʹd, V. I.</subfield><subfield code="d">1937-2010</subfield><subfield code="0">(DE-588)119540878</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Matematičeskie aspekty klassičeskoj i nebesnoj mechaniki</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical aspects of classical and celestial mechanics</subfield><subfield code="c">Vladimir I. Arnold ; Valery V. Kozlov ; Anatoly I. Neishtadt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">[2006]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 518 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">3</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">3 : Dynamical systems</subfield><subfield code="v">3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Celestial mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Analytic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kozlov, Valerij V.</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)172195187</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nejštadt, Anatolij I.</subfield><subfield code="0">(DE-588)1159205175</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-48926-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">3</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">3 : Dynamical systems ; 3</subfield><subfield code="w">(DE-604)BV043561198</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015000504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015000504</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021787812 |
illustrated | Not Illustrated |
index_date | 2024-07-02T15:43:29Z |
indexdate | 2024-07-09T20:44:36Z |
institution | BVB |
isbn | 3540282467 9783540282464 |
language | German English Russian |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015000504 |
oclc_num | 180896038 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-29T DE-11 DE-188 DE-384 DE-634 DE-20 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-29T DE-11 DE-188 DE-384 DE-634 DE-20 DE-83 |
physical | XIII, 518 Seiten Diagramme |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences |
spelling | Arnolʹd, V. I. 1937-2010 (DE-588)119540878 aut Matematičeskie aspekty klassičeskoj i nebesnoj mechaniki Mathematical aspects of classical and celestial mechanics Vladimir I. Arnold ; Valery V. Kozlov ; Anatoly I. Neishtadt Third edition Berlin ; Heidelberg Springer [2006] © 2006 XIII, 518 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Encyclopaedia of mathematical sciences 3 Encyclopaedia of mathematical sciences 3 : Dynamical systems 3 Celestial mechanics Mechanics, Analytic Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Theoretische Mechanik (DE-588)4185100-6 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Mechanik (DE-588)4038168-7 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Mechanik (DE-588)4038168-7 s Mathematische Methode (DE-588)4155620-3 s 1\p DE-604 Mathematik (DE-588)4037944-9 s 2\p DE-604 Theoretische Mechanik (DE-588)4185100-6 s Mathematische Physik (DE-588)4037952-8 s 3\p DE-604 Kozlov, Valerij V. 1950- (DE-588)172195187 aut Nejštadt, Anatolij I. (DE-588)1159205175 aut Erscheint auch als Online-Ausgabe 978-3-540-48926-9 Encyclopaedia of mathematical sciences 3 (DE-604)BV024126459 3 Encyclopaedia of mathematical sciences 3 : Dynamical systems ; 3 (DE-604)BV043561198 3 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015000504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Arnolʹd, V. I. 1937-2010 Kozlov, Valerij V. 1950- Nejštadt, Anatolij I. Mathematical aspects of classical and celestial mechanics Encyclopaedia of mathematical sciences Celestial mechanics Mechanics, Analytic Mathematische Physik (DE-588)4037952-8 gnd Theoretische Mechanik (DE-588)4185100-6 gnd Mathematische Methode (DE-588)4155620-3 gnd Mechanik (DE-588)4038168-7 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4185100-6 (DE-588)4155620-3 (DE-588)4038168-7 (DE-588)4037944-9 |
title | Mathematical aspects of classical and celestial mechanics |
title_alt | Matematičeskie aspekty klassičeskoj i nebesnoj mechaniki |
title_auth | Mathematical aspects of classical and celestial mechanics |
title_exact_search | Mathematical aspects of classical and celestial mechanics |
title_exact_search_txtP | Mathematical aspects of classical and celestial mechanics |
title_full | Mathematical aspects of classical and celestial mechanics Vladimir I. Arnold ; Valery V. Kozlov ; Anatoly I. Neishtadt |
title_fullStr | Mathematical aspects of classical and celestial mechanics Vladimir I. Arnold ; Valery V. Kozlov ; Anatoly I. Neishtadt |
title_full_unstemmed | Mathematical aspects of classical and celestial mechanics Vladimir I. Arnold ; Valery V. Kozlov ; Anatoly I. Neishtadt |
title_short | Mathematical aspects of classical and celestial mechanics |
title_sort | mathematical aspects of classical and celestial mechanics |
topic | Celestial mechanics Mechanics, Analytic Mathematische Physik (DE-588)4037952-8 gnd Theoretische Mechanik (DE-588)4185100-6 gnd Mathematische Methode (DE-588)4155620-3 gnd Mechanik (DE-588)4038168-7 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Celestial mechanics Mechanics, Analytic Mathematische Physik Theoretische Mechanik Mathematische Methode Mechanik Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015000504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV024126459 (DE-604)BV043561198 |
work_keys_str_mv | AT arnolʹdvi matematiceskieaspektyklassiceskojinebesnojmechaniki AT kozlovvalerijv matematiceskieaspektyklassiceskojinebesnojmechaniki AT nejstadtanatoliji matematiceskieaspektyklassiceskojinebesnojmechaniki AT arnolʹdvi mathematicalaspectsofclassicalandcelestialmechanics AT kozlovvalerijv mathematicalaspectsofclassicalandcelestialmechanics AT nejstadtanatoliji mathematicalaspectsofclassicalandcelestialmechanics |