Advanced engineering thermodynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2006
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Beschreibung für Leser Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XL, 880 S. graph. Darst. |
ISBN: | 0471677639 9780471677635 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021757509 | ||
003 | DE-604 | ||
005 | 20131022 | ||
007 | t | ||
008 | 061006s2006 xxud||| |||| 00||| eng d | ||
010 | |a 2006040510 | ||
020 | |a 0471677639 |c cloth |9 0-471-67763-9 | ||
020 | |a 9780471677635 |9 978-0-471-67763-5 | ||
035 | |a (OCoLC)62878730 | ||
035 | |a (DE-599)BVBBV021757509 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-1050 |a DE-703 |a DE-634 |a DE-91G | ||
050 | 0 | |a TJ265 | |
082 | 0 | |a 621.402/1 |2 22 | |
084 | |a UG 1200 |0 (DE-625)145614: |2 rvk | ||
084 | |a MTA 600f |2 stub | ||
100 | 1 | |a Bejan, Adrian |d 1948- |e Verfasser |0 (DE-588)112710247 |4 aut | |
245 | 1 | 0 | |a Advanced engineering thermodynamics |c Adrian Bejan |
250 | |a 3. ed. | ||
264 | 1 | |a Hoboken, NJ |b Wiley |c 2006 | |
300 | |a XL, 880 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Thermodynamique | |
650 | 4 | |a Thermodynamics | |
650 | 0 | 7 | |a Thermodynamik |0 (DE-588)4059827-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Thermodynamik |0 (DE-588)4059827-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://deposit.dnb.de/cgi-bin/dokserv?id=2846636&prov=M&dok_var=1&dok_ext=htm |3 Beschreibung für Leser | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014970650&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-014970650 |
Datensatz im Suchindex
_version_ | 1805088437537079296 |
---|---|
adam_text |
ADVANCED ENGINEERING THERMODYNAMICS THIRD EDITION ADRIAN BEJAN J. A.
JONES DISTINGUISHED PROFESSOR OF MECHANICAL ENGINEERING DUKE UNIVERSITY
DURHAM, NORTH CAROLINA WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE
PREFACE TO THE SECOND EDITION PREFACE TO THE FIRST EDITION SYMBOLS XIX
XXIII XXVII XXXI 1 THE FIRST LAW OF THERMODYNAMICS 1.1 ELEMENTS OF
THERMODYNAMICS TERMINOLOGY, 1 1.2 THE FIRST LAW FOR CLOSED SYSTEMS, 4
1.3 WORK TRANSFER, 8 1.4 HEAT TRANSFER, 13 1.5 ENERGY CHANGE, 17 1.6 THE
FIRST LAW FOR OPEN SYSTEMS, 20 1.7 HISTORICAL BACKGROUND, 26 1.8 THE
STRUCTURED PRESENTATION OF THE FIRST LAW, 34 1.8.1 POINCARE'S SCHEME, 34
1.8.2 CARATHEODORY'S SCHEME, 36 1.8.3 KEENAN AND SHAPIRO'S SECOND
SCHEME, 36 REFERENCES, 37 PROBLEMS, 39 2 THE SECOND LAW OF
THERMODYNAMICS 2.1 THE SECOND LAW FOR CLOSED SYSTEMS, 44 2.1.1 CYCLE IN
CONTACT WITH ONE TEMPERATURE RESERVOIR, 46 44 VLL VIII CONTENTS 2.1.2
CYCLE IN CONTACT WITH TWO TEMPERATURE RESERVOIRS, 46 2.1.3 CYCLE IN
CONTACT WITH ANY NUMBER OF TEMPERATURE RESERVOIRS, 55 2.1.4 PROCESS IN
CONTACT WITH ANY NUMBER OF TEMPERATURE RESERVOIRS, 57 2.2 THE SECOND LAW
FOR OPEN SYSTEMS, 60 2.3 THE LOCAL THERMODYNAMIC EQUILIBRIUM MODEL, 62
2.4 THE ENTROPY MAXIMUM AND ENERGY MINIMUM PRINCIPLES, 65 2.5
CARATHEODORY'S TWO AXIOMS, 70 2.5.1 REVERSIBLE AND ADIABATIC SURFACES,
72 2.5.2 ENTROPY, 76 2.5.3 THERMODYNAMIC TEMPERATURE, 80 2.5.4 THE TWO
PARTS OF THE SECOND LAW, 81 2.6 A HEAT TRANSFER MAN'S TWO AXIOMS, 81 2.7
HISTORICAL BACKGROUND, 88 REFERENCES, 89 PROBLEMS, 91 3 ENTROPY
GENERATION, OR EXERGY DESTRUCTION 101 3.1 LOST AVAILABLE WORK, 102 3.2
CYCLES, 109 3.2.1 HEAT-ENGINE CYCLES, 109 3.2.2 REFRIGERATION CYCLES,
111 3.2.3 HEAT-PUMP CYCLES, 114 3.3 NONFLOW PROCESSES, 116 3.4
STEADY-FLOW PROCESSES, 120 3.5 MECHANISMS OF ENTROPY GENERATION OR
EXERGY DESTRUCTION, 126 3.5.1 HEAT TRANSFER ACROSS A FINITE TEMPERATURE
DIFFERENCE, 126 3.5.2 FLOW WITH FRICTION, 129 3.5.3 MIXING, 131 3.6
ENTROPY-GENERATION MINIMIZATION, 134 3.6.1 THE METHOD, 134 3.6.2
GEOMETRIC OPTIMIZATION OF A TREE-SHAPED FLUID-FLOW NETWORK, 135 3.6.3
ENTROPY-GENERATION NUMBER, 138 CONTENTS REFERENCES, 140 PROBLEMS, 142 4
SINGLE-PHASE SYSTEMS 4.1 SIMPLE SYSTEM, 145 4.2 EQUILIBRIUM CONDITIONS,
146 4.3 THE FUNDAMENTAL RELATION, 151 4.3.1 ENERGY REPRESENTATION, 152
4.3.2 ENTROPY REPRESENTATION, 153 4.3.3 EXTENSIVE PROPERTIES VERSUS
INTENSIVE PROPERTIES, 154 4.3.4 THE EULER EQUATION, 155 4.3.5 THE
GIBBS-DUHEM RELATION, 156 4.4 LEGENDRE TRANSFORMS, 160 4.5 RELATIONS
BETWEEN THERMODYNAMIC PROPERTIES, 169 4.5.1 MAXWELL'S RELATIONS, 170
4.5.2 RELATIONS MEASURED DURING SPECIAL PROCESSES, 172 4.5.3 BRIDGMAN'S
TABLE, 181 4.5.4 JACOBIANS IN THERMODYNAMICS, 183 4.6 PARTIAL MOLAL
PROPERTIES, 187 4.7 IDEAL GAS MIXTURES, 192 4.8 REAL GAS MIXTURES, 195
REFERENCES, 198 PROBLEMS, 199 145 5 EXERGY ANALYSIS 5.1 NONFLOW SYSTEMS,
204 5.2 ROW SYSTEMS, 207 5.3 GENERALIZED EXERGY ANALYSIS, 211 5.4
AIR-CONDITIONING APPLICATIONS, 213 5.4.1 MIXTURES OF AIR AND WATER
VAPOR, 213 5.4.2 TOTAL FLOW EXERGY OF HUMID AIR, 215 5.4.3 TOTAL FLOW
EXERGY OF LIQUID WATER, 218 5.4.4 EVAPORATIVE COOLING PROCESS, 219 5.5
OTHER ASPECTS OF EXERGY ANALYSIS, 220 REFERENCES, 221 PROBLEMS, 221 204
C CONTENTS 6 MULTIPHASE SYSTEMS 225 6.1 THE ENERGY MINIMUM PRINCIPLE IN
U, H, F, AND G REPRESENTATIONS, 225 6.1.1 THE ENERGY MINIMUM PRINCIPLE,
226 6.1.2 THE ENTHALPY MINIMUM PRINCIPLE, 227 6.1.3 THE HELMHOLTZ
FREE-ENERGY MINIMUM PRINCIPLE, 228 6.1.4 THE GIBBS FREE-ENERGY MINIMUM
PRINCIPLE, 229 6.1.5 THE STAR DIAGRAM, 230 6.2 THE INTERNAL STABILITY OF
A SIMPLE SYSTEM, 231 6.2.1 THERMAL STABILITY, 231 6.2.2 MECHANICAL
STABILITY, 233 6.2.3 CHEMICAL STABILITY, 235 6.3 THE CONTINUITY OF THE
VAPOR AND LIQUID STATES, 237 6.3.1 THE ANDREWS DIAGRAM AND J. THOMSON'S
THEORY, 237 6.3.2 THE VAN DER WAALS EQUATION OF STATE, 240 6.3.3
MAXWELL'S EQUAL-AREA RULE, 247 6.3.4 THE CLAPEYRON RELATION, 248 6.4
PHASE DIAGRAMS, 249 6.4.1 THE GIBBS PHASE RULE, 249 6.4.2
SINGLE-COMPONENT SUBSTANCES, 250 6.4.3 TWO-COMPONENT MIXTURES, 254 6.5
CORRESPONDING STATES, 261 6.5.1 COMPRESSIBILITY FACTOR, 261 6.5.2
ANALYTICAL P(V, T) EQUATIONS OF STATE, 267 6.5.3 CALCULATION OF OTHER
PROPERTIES BASED ON P(V, T) AND SPECIFIC HEAT INFORMATION, 273 6.5.4
SATURATED-LIQUID AND SATURATED-VAPOR STATES, 275 6.5.5 METASTABLE
STATES, 278 6.5.6 CRITICAL-POINT PHENOMENA, 281 REFERENCES, 283
PROBLEMS, 285 7 CHEMICALLY REACTIVE SYSTEMS 291 7.1 EQUILIBRIUM, 291
7.1.1 CHEMICAL REACTIONS, 291 CONTENTS 7.1.2 AFFINITY, 294 7.1.3 THE LE
CHATELIER-BRAUN PRINCIPLE, 297 7.1.4 IDEAL GAS MIXTURES, 301 7.2
IRREVERSIBLE REACTIONS, 308 7.3 STEADY-FLOW COMBUSTION, 317 7.3.1
COMBUSTION STOICHIOMETRY, 317 7.3.2 THE FIRST LAW, 319 7.3.3 THE SECOND
LAW, 325 7.3.4 MAXIMUM POWER OUTPUT, 328 7.4 THE CHEMICAL EXERGY OF
FUELS, 339 7.5 CONSTANT-VOLUME COMBUSTION, 343 7.5.1 THE FIRST LAW, 343
7.5.2 THE SECOND LAW, 345 7.5.3 MAXIMUM WORK OUTPUT, 345 REFERENCES, 346
PROBLEMS, 348 8 POWER GENERATION 352 8.1 MAXIMUM POWER SUBJECT TO SIZE
CONSTRAINT, 352 8.2 MAXIMUM POWER FROM HOT STREAM, 356 8.3 EXTERNAL
IRREVERSIBILITIES, 363 8.4 INTERNAL IRREVERSIBILITIES, 369 8.4.1 HEATER,
369 8.4.2 EXPANDER, 370 8.4.3 COOLER, 371 8.4.4 PUMP, 372 8.4.5 RELATIVE
IMPORTANCE OF INTERNAL IRREVERSIBILITIES, 373 8.5 ADVANCED STEAM-TURBINE
POWER PLANTS, 375 8.5.1 SUPERHEATER, REHEATER, AND PARTIAL CONDENSER
VACUUM, 375 8.5.2 REGENERATIVE FEED HEATING, 377 8.5.3 COMBINED FEED
HEATING AND REHEATING, 385 8.6 ADVANCED GAS-TURBINE POWER PLANTS, 390
8.6.1 EXTERNAL AND INTERNAL IRREVERSIBILITIES, 390 8.6.2 REGENERATIVE
HEAT EXCHANGER, REHEATERS, AND INTERCOOLERS, 394 8.6.3 COOLED TURBINES,
397 CONTENTS 8.7 COMBINED STEAM-TURBINE AND GAS-TURBINE POWER PLANTS,
400 REFERENCES, 403 PROBLEMS, 406 9 SOLAR POWER 419 9.1 THERMODYNAMIC
PROPERTIES OF THERMAL RADIATION, 419 9.1.1 PHOTONS, 420 9.1.2
TEMPERATURE, 421 9.1.3 ENERGY, 422 9.1.4 PRESSURE, 425 9.1.5 ENTROPY,
425 9.2 REVERSIBLE PROCESSES, 426 9.2.1 REVERSIBLE AND ADIABATIC
EXPANSION OR COMPRESSION, 429 9.2.2 REVERSIBLE AND ISOTHERMAL EXPANSION
OR COMPRESSION, 429 9.2.3 CARNOT CYCLE, 429 9.3 IRREVERSIBLE PROCESSES,
430 9.3.1 ADIABATIC FREE EXPANSION, 430 9.3.2 TRANSFORMATION OF
MONOCHROMATIC RADIATION INTO BLACKBODY RADIATION, 431 9.3.3 SCATTERING,
433 9.3.4 NET RADIATIVE HEAT TRANSFER, 435 9.3.5 KIRCHHOFF'S LAW, 438
9.4 THE IDEAL CONVERSION OF ENCLOSED BLACKBODY RADIATION, 440 9.4.1
PETELA'S THEORY, 440 9.4.2 THE CONTROVERSY, 443 9.4.3 UNIFYING THEORY,
443 9.4.4 REFORMULATION OF JETER'S THEORY, 448 9.5 MAXIMIZATION OF POWER
OUTPUT PER UNIT COLLECTOR AREA, 451 9.5.1 IDEAL CONCENTRATORS, 451 9.5.2
OMNICOLOR SERIES OF IDEAL CONCENTRATORS, 455 9.5.3 UNCONCENTRATED SOLAR
RADIATION, 456 9.6 CONVECTIVELY COOLED COLLECTORS, 458 9.6.1 LINEAR
CONVECTIVE-HEAT-LOSS MODEL, 459 CONTENTS 9.6.2 EFFECT OF
COLLECTOR-ENGINE HEAT-EXCHANGER IRREVERSIBILITY, 461 9.6.3 COMBINED
CONVECTIVE AND RADIATIVE HEAT LOSS, 462 9.6.4 COLLECTOR-AMBIENT HEAT
LOSS AND ENGINE-AMBIENT HEAT EXCHANGER, 464 9.6.5 STORAGE BY MELTING,
466 9.7 EXTRATERRESTRIAL SOLAR POWER PLANT, 469 9.8 NONISOTHERMAL
COLLECTORS, TIME-VARYING CONDITIONS, AND SOLAR-DRIVEN REFRIGERATORS, 472
9.9 GLOBAL CIRCULATION AND CLIMATE, 472 REFERENCES, 484 PROBLEMS, 488
REFRIGERATION 10.1 JOULE-THOMSON EXPANSION, 493 10.2 WORK-PRODUCING
EXPANSION, 500 10.3 BRAYTON CYCLE, 502 10.4 OPTIMAL INTERMEDIATE
COOLING, 509 10.4.1 COUNTERFLOW HEAT EXCHANGER, 509 10.4.2 APPLICATION
TO BIOHEAT TRANSFER, 512 10.4.3 DISTRIBUTION OF EXPANDERS, 512 10.4.4
INSULATION SYSTEMS, 517 10.5 LIQUEFACTION, 525 10.5.1 LIQUEFIERS VERSUS
REFRIGERATORS, 525 10.5.2 HEYLANDT NITROGEN LIQUEFIER, 528 10.5.3
EFFICIENCY OF LIQUEFIERS AND REFRIGERATORS, 532 10.6 REFRIGERATOR MODELS
WITH HEAT TRANSFER IRREVERSIBILITIES, 534 10.6.1 HEAT LEAK IN PARALLEL
WITH A REVERSIBLE COMPARTMENT, 534 10.6.2 OPTIMAL TIME-DEPENDENT
OPERATION, 537 10.6.3 DISTRIBUTION OF COOLING DURING GAS COMPRESSION,
541 10.7 MAGNETIC REFRIGERATION, 550 10.7.1 FUNDAMENTAL RELATIONS, 552
10.7.2 ADIABATIC DEMAGNETIZATION, 555 10.7.3 PARAMAGNETIC THERMOMETRY,
556 493 XIV CONTENTS 10.7.4 THE THIRD LAW OF THERMODYNAMICS, 559
REFERENCES, 561 PROBLEMS, 564 11 ENTROPY-GENERATION MINIMIZATION 574
11.1 TRADE-OFF BETWEEN COMPETING IRREVERSIBILITIES, 574 11.1.1 INTERNAL
FLOW AND HEAT TRANSFER, 574 11.1.2 HEAT TRANSFER AUGMENTATION, 579
11.1.3 EXTERNAL FLOW AND HEAT TRANSFER, 581 11.1.4 CONVECTIVE HEAT
TRANSFER IN GENERAL, 584 11.2 BALANCED COUNTERFLOW HEAT EXCHANGERS, 587
11.2.1 THE IDEAL LIMIT, 587 11.2.2 AREA CONSTRAINT, 591 11.2.3 VOLUME
CONSTRAINT, 593 11.2.4 COMBINED AREA AND VOLUME CONSTRAINT, 595 11.3
HEAT EXCHANGERS WITH NEGLIGIBLE PRESSURE-DROP IRREVERSIBILITY, 595
11.3.1 THE MAXIMUM ENTROPY-GENERATION RATE PARADOX, 596 11.3.2 THE
PRINCIPLE OF THERMODYNAMIC ISOLATION, 598 11.3.3 REMANENT
(FLOW-IMBALANCE) IRREVERSIBILITIES, 600 11.3.4 THE STRUCTURE OF
HEAT-EXCHANGER IRREVERSIBILITY, 603 11.4 STORAGE SYSTEMS, 604 11.4.1
SENSIBLE-HEAT STORAGE: ENERGY STORAGE VERSUS EXERGY STORAGE, 604 11.4.2
OPTIMAL STORAGE TIME INTERVAL, 605 11.4.3 OPTIMAL HEAT-EXCHANGER SIZE,
608 11.4.4 STORAGE FOLLOWED BY REMOVAL OF EXERGY, 609 11.4.5 HEATING AND
COOLING SUBJECT TO TIME CONSTRAINT, 613 11.4.6 LATENT HEAT STORAGE, 616
11.5 POWER MAXIMIZATION OR ENTROPY-GENERATION MINIMIZATION, 620 11.5.1
HEAT-TRANSFER-IRREVERSIBLE POWER PLANT MODELS, 621 11.5.2 MINIMUM
ENTROPY-GENERATION RATE, 623 11.5.3 FLUID FLOW SYSTEMS, 627 11.5.4
ELECTRICAL MACHINES, 631 CONTENTS 11.6 FROM ENTROPY-GENERATION
MINIMIZATION TO CONSTMCTAL THEORY, 634 11.6.1 GENERATION OF
CONFIGURATION PHENOMENON, 634 11.6.2 OPTIMAL ORGAN SIZE, 637 REFERENCES,
642 PROBLEMS, 649 112 IRREVERSIBLE THERMODYNAMICS 12.1 CONJUGATE FLUXES
AND FORCES, 657 12.2 LINEARIZED RELATIONS, 662 12.3 RECIPROCITY
RELATIONS, 663 12.4 THERMOELECTRIC PHENOMENA, 665 12.4.1 FORMULATIONS,
665 12.4.2 THE PELTIER EFFECT, 670 12.4.3 THE SEEBECK EFFECT, 672 12.4.4
THE THOMSON EFFECT, 673 12.4.5 POWER GENERATION, 675 12.4.6
REFRIGERATION, 680 12.5 HEAT CONDUCTION IN ANISOTROPIC MEDIA, 682 12.5.1
FORMULATION IN TWO DIMENSIONS, 683 12.5.2 PRINCIPAL DIRECTIONS AND
CONDUCTIVITIES, 685 12.5.3 THE CONCENTRATED-HEAT-SOURCE EXPERIMENT, 689
12.5.4 THREE-DIMENSIONAL CONDUCTION, 690 12.6 MASS DIFFUSION, 693 12.6.1
NONISOTHERMAL DIFFUSION OF A SINGLE COMPONENT, 693 12.6.2 NONISOTHERMAL
BINARY MIXTURES, 695 12.6.3 ISOTHERMAL DIFFUSION, 698 12.6.4
ELECTRODIFFUSION, 699 REFERENCES, 699 PROBLEMS, 701 656 RI3 THE
CONSTRUCTAL LAW OF CONFIGURATION GENERATION 13.1 THE CONSTMCTAL LAW, 705
13.2 THE AREA-POINT ACCESS PROBLEM, 709 705 XVI CONTENTS 13.2.1 STREET
PATTERNS: A SIMPLE CONSTMCTION SEQUENCE, 709 13.2.2 HEAT FLOW TREES, 721
13.2.3 CONSTMCTAL THEORY VERSUS FRACTAL ALGORITHMS, 727 13.2.4
FLUID-FLOW TREES, 729 13.3 NATURAL FLOW PATTERNS, 739 13.3.1 RIVER
MEANDERS, 741 13.3.2 RIVER BASINS AND DELTAS, 742 13.3.3 ELECTRIC
DISCHARGES, 747 13.3.4 RIVERS OF PEOPLE, 749 13.3.5 CHANNEL CROSS
SECTIONS, 750 13.3.6 TURBULENT FLOW, 755 13.3.7 CRACKS IN SHRINKING
SOLIDS, 762 13.3.8 DENDRITIC CRYSTALS, 767 13.3.9 SOLID BODIES IN FLOW,
773 13.4 CONSTMCTAL THEORY OF DISTRIBUTION OF CITY SIZES, BY A. BEJAN,
S. LORENTE, A. F. MIGUEL, AND A. H. REIS, 774 13.5 CONSTMCTAL THEORY OF
DISTRIBUTION OF RIVER SIZES, BY A. BEJAN, S. LORENTE, A. F. MIGUEL, AND
A. H. REIS, 779 13.6 CONSTMCTAL THEORY OF EGYPTIAN PYRAMIDS AND FLOW
FOSSILS IN GENERAL, BY A. BEJAN AND S. PERM, 782 13.7 THE BROAD VIEW:
BIOLOGY, PHYSICS, AND ENGINEERING, 788 13.7.1 HEAT LOSS VERSUS BODY
SIZE, 790 13.7.2 FLIGHT AND ORGAN SIZES, 795 13.7.3 SURVIVAL BY
INCREASING FREEDOM, PERFORMANCE, SVELTENESS, AND TERRITORY, 799 13.7.4
MODELING IS NOT THEORY, 803 13.8 CONSTMCTAL THEORY OF RUNNING, SWIMMING
AND FLYING, BY A. BEJAN AND J. H. MARDEN, 805 13.8.1 RUNNING, 807 13.8.2
FLYING, 811 13.8.3 SWIMMING, 813 13.8.4 LOCOMOTION AND TURBULENT
STMCTURE, 814 13.9 SCIENCE AND CIVILIZATION AS CONSTMCTAL FLOW SYSTEMS,
815 13.10 FREEDOM IS GOOD FOR DESIGN, 816 REFERENCES, 820 PROBLEMS, 829
CONTENTS XVII RAPPENDIX CONSTANTS, 842 MATHEMATICAL FORMULAS, 842
VARIATIONAL CALCULUS, 844 PROPERTIES OF MODERATELY COMPRESSED-LIQUID
STATES, 845 PROPERTIES OF SLIGHTLY SUPERHEATED-VAPOR STATES, 846
PROPERTIES OF COLD WATER NEAR THE DENSITY MAXIMUM, 847 ANALYSIS OF
ENGINEERING COMPONENTS, 848 THE FLOW EXERGY OF GASES AT LOW PRESSURES,
851 TABLES, 853 REFERENCES, 863 ABOUT THE AUTHOR AUTHOR INDEX SUBJECT
INDEX 842 865 867 875 |
adam_txt |
ADVANCED ENGINEERING THERMODYNAMICS THIRD EDITION ADRIAN BEJAN J. A.
JONES DISTINGUISHED PROFESSOR OF MECHANICAL ENGINEERING DUKE UNIVERSITY
DURHAM, NORTH CAROLINA WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE
PREFACE TO THE SECOND EDITION PREFACE TO THE FIRST EDITION SYMBOLS XIX
XXIII XXVII XXXI 1 THE FIRST LAW OF THERMODYNAMICS 1.1 ELEMENTS OF
THERMODYNAMICS TERMINOLOGY, 1 1.2 THE FIRST LAW FOR CLOSED SYSTEMS, 4
1.3 WORK TRANSFER, 8 1.4 HEAT TRANSFER, 13 1.5 ENERGY CHANGE, 17 1.6 THE
FIRST LAW FOR OPEN SYSTEMS, 20 1.7 HISTORICAL BACKGROUND, 26 1.8 THE
STRUCTURED PRESENTATION OF THE FIRST LAW, 34 1.8.1 POINCARE'S SCHEME, 34
1.8.2 CARATHEODORY'S SCHEME, 36 1.8.3 KEENAN AND SHAPIRO'S SECOND
SCHEME, 36 REFERENCES, 37 PROBLEMS, 39 2 THE SECOND LAW OF
THERMODYNAMICS 2.1 THE SECOND LAW FOR CLOSED SYSTEMS, 44 2.1.1 CYCLE IN
CONTACT WITH ONE TEMPERATURE RESERVOIR, 46 44 VLL VIII CONTENTS 2.1.2
CYCLE IN CONTACT WITH TWO TEMPERATURE RESERVOIRS, 46 2.1.3 CYCLE IN
CONTACT WITH ANY NUMBER OF TEMPERATURE RESERVOIRS, 55 2.1.4 PROCESS IN
CONTACT WITH ANY NUMBER OF TEMPERATURE RESERVOIRS, 57 2.2 THE SECOND LAW
FOR OPEN SYSTEMS, 60 2.3 THE LOCAL THERMODYNAMIC EQUILIBRIUM MODEL, 62
2.4 THE ENTROPY MAXIMUM AND ENERGY MINIMUM PRINCIPLES, 65 2.5
CARATHEODORY'S TWO AXIOMS, 70 2.5.1 REVERSIBLE AND ADIABATIC SURFACES,
72 2.5.2 ENTROPY, 76 2.5.3 THERMODYNAMIC TEMPERATURE, 80 2.5.4 THE TWO
PARTS OF THE SECOND LAW, 81 2.6 A HEAT TRANSFER MAN'S TWO AXIOMS, 81 2.7
HISTORICAL BACKGROUND, 88 REFERENCES, 89 PROBLEMS, 91 3 ENTROPY
GENERATION, OR EXERGY DESTRUCTION 101 3.1 LOST AVAILABLE WORK, 102 3.2
CYCLES, 109 3.2.1 HEAT-ENGINE CYCLES, 109 3.2.2 REFRIGERATION CYCLES,
111 3.2.3 HEAT-PUMP CYCLES, 114 3.3 NONFLOW PROCESSES, 116 3.4
STEADY-FLOW PROCESSES, 120 3.5 MECHANISMS OF ENTROPY GENERATION OR
EXERGY DESTRUCTION, 126 3.5.1 HEAT TRANSFER ACROSS A FINITE TEMPERATURE
DIFFERENCE, 126 3.5.2 FLOW WITH FRICTION, 129 3.5.3 MIXING, 131 3.6
ENTROPY-GENERATION MINIMIZATION, 134 3.6.1 THE METHOD, 134 3.6.2
GEOMETRIC OPTIMIZATION OF A TREE-SHAPED FLUID-FLOW NETWORK, 135 3.6.3
ENTROPY-GENERATION NUMBER, 138 CONTENTS REFERENCES, 140 PROBLEMS, 142 4
SINGLE-PHASE SYSTEMS 4.1 SIMPLE SYSTEM, 145 4.2 EQUILIBRIUM CONDITIONS,
146 4.3 THE FUNDAMENTAL RELATION, 151 4.3.1 ENERGY REPRESENTATION, 152
4.3.2 ENTROPY REPRESENTATION, 153 4.3.3 EXTENSIVE PROPERTIES VERSUS
INTENSIVE PROPERTIES, 154 4.3.4 THE EULER EQUATION, 155 4.3.5 THE
GIBBS-DUHEM RELATION, 156 4.4 LEGENDRE TRANSFORMS, 160 4.5 RELATIONS
BETWEEN THERMODYNAMIC PROPERTIES, 169 4.5.1 MAXWELL'S RELATIONS, 170
4.5.2 RELATIONS MEASURED DURING SPECIAL PROCESSES, 172 4.5.3 BRIDGMAN'S
TABLE, 181 4.5.4 JACOBIANS IN THERMODYNAMICS, 183 4.6 PARTIAL MOLAL
PROPERTIES, 187 4.7 IDEAL GAS MIXTURES, 192 4.8 REAL GAS MIXTURES, 195
REFERENCES, 198 PROBLEMS, 199 145 5 EXERGY ANALYSIS 5.1 NONFLOW SYSTEMS,
204 5.2 ROW SYSTEMS, 207 5.3 GENERALIZED EXERGY ANALYSIS, 211 5.4
AIR-CONDITIONING APPLICATIONS, 213 5.4.1 MIXTURES OF AIR AND WATER
VAPOR, 213 5.4.2 TOTAL FLOW EXERGY OF HUMID AIR, 215 5.4.3 TOTAL FLOW
EXERGY OF LIQUID WATER, 218 5.4.4 EVAPORATIVE COOLING PROCESS, 219 5.5
OTHER ASPECTS OF EXERGY ANALYSIS, 220 REFERENCES, 221 PROBLEMS, 221 204
C CONTENTS 6 MULTIPHASE SYSTEMS 225 6.1 THE ENERGY MINIMUM PRINCIPLE IN
U, H, F, AND G REPRESENTATIONS, 225 6.1.1 THE ENERGY MINIMUM PRINCIPLE,
226 6.1.2 THE ENTHALPY MINIMUM PRINCIPLE, 227 6.1.3 THE HELMHOLTZ
FREE-ENERGY MINIMUM PRINCIPLE, 228 6.1.4 THE GIBBS FREE-ENERGY MINIMUM
PRINCIPLE, 229 6.1.5 THE STAR DIAGRAM, 230 6.2 THE INTERNAL STABILITY OF
A SIMPLE SYSTEM, 231 6.2.1 THERMAL STABILITY, 231 6.2.2 MECHANICAL
STABILITY, 233 6.2.3 CHEMICAL STABILITY, 235 6.3 THE CONTINUITY OF THE
VAPOR AND LIQUID STATES, 237 6.3.1 THE ANDREWS DIAGRAM AND J. THOMSON'S
THEORY, 237 6.3.2 THE VAN DER WAALS EQUATION OF STATE, 240 6.3.3
MAXWELL'S EQUAL-AREA RULE, 247 6.3.4 THE CLAPEYRON RELATION, 248 6.4
PHASE DIAGRAMS, 249 6.4.1 THE GIBBS PHASE RULE, 249 6.4.2
SINGLE-COMPONENT SUBSTANCES, 250 6.4.3 TWO-COMPONENT MIXTURES, 254 6.5
CORRESPONDING STATES, 261 6.5.1 COMPRESSIBILITY FACTOR, 261 6.5.2
ANALYTICAL P(V, T) EQUATIONS OF STATE, 267 6.5.3 CALCULATION OF OTHER
PROPERTIES BASED ON P(V, T) AND SPECIFIC HEAT INFORMATION, 273 6.5.4
SATURATED-LIQUID AND SATURATED-VAPOR STATES, 275 6.5.5 METASTABLE
STATES, 278 6.5.6 CRITICAL-POINT PHENOMENA, 281 REFERENCES, 283
PROBLEMS, 285 7 CHEMICALLY REACTIVE SYSTEMS 291 7.1 EQUILIBRIUM, 291
7.1.1 CHEMICAL REACTIONS, 291 CONTENTS 7.1.2 AFFINITY, 294 7.1.3 THE LE
CHATELIER-BRAUN PRINCIPLE, 297 7.1.4 IDEAL GAS MIXTURES, 301 7.2
IRREVERSIBLE REACTIONS, 308 7.3 STEADY-FLOW COMBUSTION, 317 7.3.1
COMBUSTION STOICHIOMETRY, 317 7.3.2 THE FIRST LAW, 319 7.3.3 THE SECOND
LAW, 325 7.3.4 MAXIMUM POWER OUTPUT, 328 7.4 THE CHEMICAL EXERGY OF
FUELS, 339 7.5 CONSTANT-VOLUME COMBUSTION, 343 7.5.1 THE FIRST LAW, 343
7.5.2 THE SECOND LAW, 345 7.5.3 MAXIMUM WORK OUTPUT, 345 REFERENCES, 346
PROBLEMS, 348 8 POWER GENERATION 352 8.1 MAXIMUM POWER SUBJECT TO SIZE
CONSTRAINT, 352 8.2 MAXIMUM POWER FROM HOT STREAM, 356 8.3 EXTERNAL
IRREVERSIBILITIES, 363 8.4 INTERNAL IRREVERSIBILITIES, 369 8.4.1 HEATER,
369 8.4.2 EXPANDER, 370 8.4.3 COOLER, 371 8.4.4 PUMP, 372 8.4.5 RELATIVE
IMPORTANCE OF INTERNAL IRREVERSIBILITIES, 373 8.5 ADVANCED STEAM-TURBINE
POWER PLANTS, 375 8.5.1 SUPERHEATER, REHEATER, AND PARTIAL CONDENSER
VACUUM, 375 8.5.2 REGENERATIVE FEED HEATING, 377 8.5.3 COMBINED FEED
HEATING AND REHEATING, 385 8.6 ADVANCED GAS-TURBINE POWER PLANTS, 390
8.6.1 EXTERNAL AND INTERNAL IRREVERSIBILITIES, 390 8.6.2 REGENERATIVE
HEAT EXCHANGER, REHEATERS, AND INTERCOOLERS, 394 8.6.3 COOLED TURBINES,
397 CONTENTS 8.7 COMBINED STEAM-TURBINE AND GAS-TURBINE POWER PLANTS,
400 REFERENCES, 403 PROBLEMS, 406 9 SOLAR POWER 419 9.1 THERMODYNAMIC
PROPERTIES OF THERMAL RADIATION, 419 9.1.1 PHOTONS, 420 9.1.2
TEMPERATURE, 421 9.1.3 ENERGY, 422 9.1.4 PRESSURE, 425 9.1.5 ENTROPY,
425 9.2 REVERSIBLE PROCESSES, 426 9.2.1 REVERSIBLE AND ADIABATIC
EXPANSION OR COMPRESSION, 429 9.2.2 REVERSIBLE AND ISOTHERMAL EXPANSION
OR COMPRESSION, 429 9.2.3 CARNOT CYCLE, 429 9.3 IRREVERSIBLE PROCESSES,
430 9.3.1 ADIABATIC FREE EXPANSION, 430 9.3.2 TRANSFORMATION OF
MONOCHROMATIC RADIATION INTO BLACKBODY RADIATION, 431 9.3.3 SCATTERING,
433 9.3.4 NET RADIATIVE HEAT TRANSFER, 435 9.3.5 KIRCHHOFF'S LAW, 438
9.4 THE IDEAL CONVERSION OF ENCLOSED BLACKBODY RADIATION, 440 9.4.1
PETELA'S THEORY, 440 9.4.2 THE CONTROVERSY, 443 9.4.3 UNIFYING THEORY,
443 9.4.4 REFORMULATION OF JETER'S THEORY, 448 9.5 MAXIMIZATION OF POWER
OUTPUT PER UNIT COLLECTOR AREA, 451 9.5.1 IDEAL CONCENTRATORS, 451 9.5.2
OMNICOLOR SERIES OF IDEAL CONCENTRATORS, 455 9.5.3 UNCONCENTRATED SOLAR
RADIATION, 456 9.6 CONVECTIVELY COOLED COLLECTORS, 458 9.6.1 LINEAR
CONVECTIVE-HEAT-LOSS MODEL, 459 CONTENTS 9.6.2 EFFECT OF
COLLECTOR-ENGINE HEAT-EXCHANGER IRREVERSIBILITY, 461 9.6.3 COMBINED
CONVECTIVE AND RADIATIVE HEAT LOSS, 462 9.6.4 COLLECTOR-AMBIENT HEAT
LOSS AND ENGINE-AMBIENT HEAT EXCHANGER, 464 9.6.5 STORAGE BY MELTING,
466 9.7 EXTRATERRESTRIAL SOLAR POWER PLANT, 469 9.8 NONISOTHERMAL
COLLECTORS, TIME-VARYING CONDITIONS, AND SOLAR-DRIVEN REFRIGERATORS, 472
9.9 GLOBAL CIRCULATION AND CLIMATE, 472 REFERENCES, 484 PROBLEMS, 488
REFRIGERATION 10.1 JOULE-THOMSON EXPANSION, 493 10.2 WORK-PRODUCING
EXPANSION, 500 10.3 BRAYTON CYCLE, 502 10.4 OPTIMAL INTERMEDIATE
COOLING, 509 10.4.1 COUNTERFLOW HEAT EXCHANGER, 509 10.4.2 APPLICATION
TO BIOHEAT TRANSFER, 512 10.4.3 DISTRIBUTION OF EXPANDERS, 512 10.4.4
INSULATION SYSTEMS, 517 10.5 LIQUEFACTION, 525 10.5.1 LIQUEFIERS VERSUS
REFRIGERATORS, 525 10.5.2 HEYLANDT NITROGEN LIQUEFIER, 528 10.5.3
EFFICIENCY OF LIQUEFIERS AND REFRIGERATORS, 532 10.6 REFRIGERATOR MODELS
WITH HEAT TRANSFER IRREVERSIBILITIES, 534 10.6.1 HEAT LEAK IN PARALLEL
WITH A REVERSIBLE COMPARTMENT, 534 10.6.2 OPTIMAL TIME-DEPENDENT
OPERATION, 537 10.6.3 DISTRIBUTION OF COOLING DURING GAS COMPRESSION,
541 10.7 MAGNETIC REFRIGERATION, 550 10.7.1 FUNDAMENTAL RELATIONS, 552
10.7.2 ADIABATIC DEMAGNETIZATION, 555 10.7.3 PARAMAGNETIC THERMOMETRY,
556 493 XIV CONTENTS 10.7.4 THE THIRD LAW OF THERMODYNAMICS, 559
REFERENCES, 561 PROBLEMS, 564 11 ENTROPY-GENERATION MINIMIZATION 574
11.1 TRADE-OFF BETWEEN COMPETING IRREVERSIBILITIES, 574 11.1.1 INTERNAL
FLOW AND HEAT TRANSFER, 574 11.1.2 HEAT TRANSFER AUGMENTATION, 579
11.1.3 EXTERNAL FLOW AND HEAT TRANSFER, 581 11.1.4 CONVECTIVE HEAT
TRANSFER IN GENERAL, 584 11.2 BALANCED COUNTERFLOW HEAT EXCHANGERS, 587
11.2.1 THE IDEAL LIMIT, 587 11.2.2 AREA CONSTRAINT, 591 11.2.3 VOLUME
CONSTRAINT, 593 11.2.4 COMBINED AREA AND VOLUME CONSTRAINT, 595 11.3
HEAT EXCHANGERS WITH NEGLIGIBLE PRESSURE-DROP IRREVERSIBILITY, 595
11.3.1 THE MAXIMUM ENTROPY-GENERATION RATE PARADOX, 596 11.3.2 THE
PRINCIPLE OF THERMODYNAMIC ISOLATION, 598 11.3.3 REMANENT
(FLOW-IMBALANCE) IRREVERSIBILITIES, 600 11.3.4 THE STRUCTURE OF
HEAT-EXCHANGER IRREVERSIBILITY, 603 11.4 STORAGE SYSTEMS, 604 11.4.1
SENSIBLE-HEAT STORAGE: ENERGY STORAGE VERSUS EXERGY STORAGE, 604 11.4.2
OPTIMAL STORAGE TIME INTERVAL, 605 11.4.3 OPTIMAL HEAT-EXCHANGER SIZE,
608 11.4.4 STORAGE FOLLOWED BY REMOVAL OF EXERGY, 609 11.4.5 HEATING AND
COOLING SUBJECT TO TIME CONSTRAINT, 613 11.4.6 LATENT HEAT STORAGE, 616
11.5 POWER MAXIMIZATION OR ENTROPY-GENERATION MINIMIZATION, 620 11.5.1
HEAT-TRANSFER-IRREVERSIBLE POWER PLANT MODELS, 621 11.5.2 MINIMUM
ENTROPY-GENERATION RATE, 623 11.5.3 FLUID FLOW SYSTEMS, 627 11.5.4
ELECTRICAL MACHINES, 631 CONTENTS 11.6 FROM ENTROPY-GENERATION
MINIMIZATION TO CONSTMCTAL THEORY, 634 11.6.1 GENERATION OF
CONFIGURATION PHENOMENON, 634 11.6.2 OPTIMAL ORGAN SIZE, 637 REFERENCES,
642 PROBLEMS, 649 112 IRREVERSIBLE THERMODYNAMICS 12.1 CONJUGATE FLUXES
AND FORCES, 657 12.2 LINEARIZED RELATIONS, 662 12.3 RECIPROCITY
RELATIONS, 663 12.4 THERMOELECTRIC PHENOMENA, 665 12.4.1 FORMULATIONS,
665 12.4.2 THE PELTIER EFFECT, 670 12.4.3 THE SEEBECK EFFECT, 672 12.4.4
THE THOMSON EFFECT, 673 12.4.5 POWER GENERATION, 675 12.4.6
REFRIGERATION, 680 12.5 HEAT CONDUCTION IN ANISOTROPIC MEDIA, 682 12.5.1
FORMULATION IN TWO DIMENSIONS, 683 12.5.2 PRINCIPAL DIRECTIONS AND
CONDUCTIVITIES, 685 12.5.3 THE CONCENTRATED-HEAT-SOURCE EXPERIMENT, 689
12.5.4 THREE-DIMENSIONAL CONDUCTION, 690 12.6 MASS DIFFUSION, 693 12.6.1
NONISOTHERMAL DIFFUSION OF A SINGLE COMPONENT, 693 12.6.2 NONISOTHERMAL
BINARY MIXTURES, 695 12.6.3 ISOTHERMAL DIFFUSION, 698 12.6.4
ELECTRODIFFUSION, 699 REFERENCES, 699 PROBLEMS, 701 656 RI3 THE
CONSTRUCTAL LAW OF CONFIGURATION GENERATION 13.1 THE CONSTMCTAL LAW, 705
13.2 THE AREA-POINT ACCESS PROBLEM, 709 705 XVI CONTENTS 13.2.1 STREET
PATTERNS: A SIMPLE CONSTMCTION SEQUENCE, 709 13.2.2 HEAT FLOW TREES, 721
13.2.3 CONSTMCTAL THEORY VERSUS FRACTAL ALGORITHMS, 727 13.2.4
FLUID-FLOW TREES, 729 13.3 NATURAL FLOW PATTERNS, 739 13.3.1 RIVER
MEANDERS, 741 13.3.2 RIVER BASINS AND DELTAS, 742 13.3.3 ELECTRIC
DISCHARGES, 747 13.3.4 RIVERS OF PEOPLE, 749 13.3.5 CHANNEL CROSS
SECTIONS, 750 13.3.6 TURBULENT FLOW, 755 13.3.7 CRACKS IN SHRINKING
SOLIDS, 762 13.3.8 DENDRITIC CRYSTALS, 767 13.3.9 SOLID BODIES IN FLOW,
773 13.4 CONSTMCTAL THEORY OF DISTRIBUTION OF CITY SIZES, BY A. BEJAN,
S. LORENTE, A. F. MIGUEL, AND A. H. REIS, 774 13.5 CONSTMCTAL THEORY OF
DISTRIBUTION OF RIVER SIZES, BY A. BEJAN, S. LORENTE, A. F. MIGUEL, AND
A. H. REIS, 779 13.6 CONSTMCTAL THEORY OF EGYPTIAN PYRAMIDS AND FLOW
FOSSILS IN GENERAL, BY A. BEJAN AND S. PERM, 782 13.7 THE BROAD VIEW:
BIOLOGY, PHYSICS, AND ENGINEERING, 788 13.7.1 HEAT LOSS VERSUS BODY
SIZE, 790 13.7.2 FLIGHT AND ORGAN SIZES, 795 13.7.3 SURVIVAL BY
INCREASING FREEDOM, PERFORMANCE, SVELTENESS, AND TERRITORY, 799 13.7.4
MODELING IS NOT THEORY, 803 13.8 CONSTMCTAL THEORY OF RUNNING, SWIMMING
AND FLYING, BY A. BEJAN AND J. H. MARDEN, 805 13.8.1 RUNNING, 807 13.8.2
FLYING, 811 13.8.3 SWIMMING, 813 13.8.4 LOCOMOTION AND TURBULENT
STMCTURE, 814 13.9 SCIENCE AND CIVILIZATION AS CONSTMCTAL FLOW SYSTEMS,
815 13.10 FREEDOM IS GOOD FOR DESIGN, 816 REFERENCES, 820 PROBLEMS, 829
CONTENTS XVII RAPPENDIX CONSTANTS, 842 MATHEMATICAL FORMULAS, 842
VARIATIONAL CALCULUS, 844 PROPERTIES OF MODERATELY COMPRESSED-LIQUID
STATES, 845 PROPERTIES OF SLIGHTLY SUPERHEATED-VAPOR STATES, 846
PROPERTIES OF COLD WATER NEAR THE DENSITY MAXIMUM, 847 ANALYSIS OF
ENGINEERING COMPONENTS, 848 THE FLOW EXERGY OF GASES AT LOW PRESSURES,
851 TABLES, 853 REFERENCES, 863 ABOUT THE AUTHOR AUTHOR INDEX SUBJECT
INDEX 842 865 867 875 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bejan, Adrian 1948- |
author_GND | (DE-588)112710247 |
author_facet | Bejan, Adrian 1948- |
author_role | aut |
author_sort | Bejan, Adrian 1948- |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV021757509 |
callnumber-first | T - Technology |
callnumber-label | TJ265 |
callnumber-raw | TJ265 |
callnumber-search | TJ265 |
callnumber-sort | TJ 3265 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | UG 1200 |
classification_tum | MTA 600f |
ctrlnum | (OCoLC)62878730 (DE-599)BVBBV021757509 |
dewey-full | 621.402/1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.402/1 |
dewey-search | 621.402/1 |
dewey-sort | 3621.402 11 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Energietechnik |
discipline_str_mv | Physik Energietechnik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV021757509</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131022</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061006s2006 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006040510</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471677639</subfield><subfield code="c">cloth</subfield><subfield code="9">0-471-67763-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471677635</subfield><subfield code="9">978-0-471-67763-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62878730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021757509</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ265</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 1200</subfield><subfield code="0">(DE-625)145614:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bejan, Adrian</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112710247</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced engineering thermodynamics</subfield><subfield code="c">Adrian Bejan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XL, 880 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2846636&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Beschreibung für Leser</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014970650&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014970650</subfield></datafield></record></collection> |
id | DE-604.BV021757509 |
illustrated | Illustrated |
index_date | 2024-07-02T15:33:57Z |
indexdate | 2024-07-20T09:08:01Z |
institution | BVB |
isbn | 0471677639 9780471677635 |
language | English |
lccn | 2006040510 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014970650 |
oclc_num | 62878730 |
open_access_boolean | |
owner | DE-1050 DE-703 DE-634 DE-91G DE-BY-TUM |
owner_facet | DE-1050 DE-703 DE-634 DE-91G DE-BY-TUM |
physical | XL, 880 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Wiley |
record_format | marc |
spelling | Bejan, Adrian 1948- Verfasser (DE-588)112710247 aut Advanced engineering thermodynamics Adrian Bejan 3. ed. Hoboken, NJ Wiley 2006 XL, 880 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Thermodynamique Thermodynamics Thermodynamik (DE-588)4059827-5 gnd rswk-swf Thermodynamik (DE-588)4059827-5 s DE-604 http://deposit.dnb.de/cgi-bin/dokserv?id=2846636&prov=M&dok_var=1&dok_ext=htm Beschreibung für Leser HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014970650&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bejan, Adrian 1948- Advanced engineering thermodynamics Thermodynamique Thermodynamics Thermodynamik (DE-588)4059827-5 gnd |
subject_GND | (DE-588)4059827-5 |
title | Advanced engineering thermodynamics |
title_auth | Advanced engineering thermodynamics |
title_exact_search | Advanced engineering thermodynamics |
title_exact_search_txtP | Advanced engineering thermodynamics |
title_full | Advanced engineering thermodynamics Adrian Bejan |
title_fullStr | Advanced engineering thermodynamics Adrian Bejan |
title_full_unstemmed | Advanced engineering thermodynamics Adrian Bejan |
title_short | Advanced engineering thermodynamics |
title_sort | advanced engineering thermodynamics |
topic | Thermodynamique Thermodynamics Thermodynamik (DE-588)4059827-5 gnd |
topic_facet | Thermodynamique Thermodynamics Thermodynamik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2846636&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014970650&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bejanadrian advancedengineeringthermodynamics |