Transseries and real differential algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Schriftenreihe: | Lecture notes in mathematics
1888 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [235] - 239 |
Beschreibung: | XII, 255 S. graph. Darst. 235 mm x 155 mm |
ISBN: | 9783540355908 3540355901 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021752534 | ||
003 | DE-604 | ||
005 | 20081118 | ||
007 | t | ||
008 | 061004s2006 gw d||| |||| 00||| eng d | ||
015 | |a 06,N35,0540 |2 dnb | ||
016 | 7 | |a 98074590X |2 DE-101 | |
020 | |a 9783540355908 |c Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.) |9 978-3-540-35590-8 | ||
020 | |a 3540355901 |c Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.) |9 3-540-35590-1 | ||
024 | 3 | |a 9783540355908 | |
028 | 5 | 2 | |a 11771975 |
035 | |a (OCoLC)71747730 | ||
035 | |a (DE-599)BVBBV021752534 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-91G |a DE-29T |a DE-384 |a DE-83 |a DE-11 |a DE-739 |a DE-188 | ||
050 | 0 | |a QA247.4 | |
082 | 0 | |a 512.56 |2 22 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 34E13 |2 msc | ||
084 | |a MAT 032f |2 stub | ||
084 | |a 03C65 |2 msc | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 346f |2 stub | ||
084 | |a 68W30 |2 msc | ||
100 | 1 | |a Hoeven, Joris van der |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transseries and real differential algebra |c J. van der Hoeven |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XII, 255 S. |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1888 | |
500 | |a Literaturverz. S. [235] - 239 | ||
650 | 4 | |a Algèbre différentielle | |
650 | 7 | |a Differentiaalrekening |2 gtt | |
650 | 4 | |a Séries arithmétiques | |
650 | 4 | |a Differential algebra | |
650 | 4 | |a Series, Arithmetic | |
650 | 0 | 7 | |a Differentialalgebra |0 (DE-588)4134657-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialalgebra |0 (DE-588)4134657-9 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1888 |w (DE-604)BV000676446 |9 1888 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2841853&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014965735&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-014965735 |
Datensatz im Suchindex
_version_ | 1805088433749622784 |
---|---|
adam_text |
Table
of
Contents
Foreword
.
XI
Introduction
. 1
The field with no escape
. 1
Historical perspectives
. 3
Outline of the contents
. 7
Notations
. 10
1
Orderings
. 11
1.1
Quasi-orderings
. 12
1.2
Ordinal numbers
. 15
1.3
Well-quasi-orderings
. 17
1.4
Kruskal's theorem
. 19
1.5
Ordered structures
. 2?,
1.6
Asymptotic relations
., , 25
1.7 Hahn
spaces
.,,.,,,,,,,, 29
1.8
Groups and rings with generalized powers
, , , ,., , 30
2
Grid-based series
. 33
2.1
Grid-based sets
. . . . 34
2.2
Grid-based series
. . . . 36
2.3
Asymptotic relations
. 40
2.3.1
Dominance and neglection
relations
. . 40
2.3.2
Flatness relations
. 42
2.3.3
Truncations
. 42
2.4
Strong linear algebra
. 44
2.4.1
Set-like notations for families
. 44
2.4.2
Infmitary operators
. 45
2.4.3
Strong abelian groups
. 46
2.4.4
Other strong structures
. 47
2.5
Grid-based summation
. 48
2.5.1
Ultra-strong grid-based algebras
. 48
2.5.2
Properties of grid-based summation
. . 49
2.5.3
Extension by strong linearity
. 50
2.6
Asymptotic scales
. 53
The Newton polygon method
. 57
3.1
The method illustrated by examples
. 58
3.1.1
The Newton polygon and its slopes
. 58
3.1.2
Equations with asymptotic constraints and refinements
. 59
3.1.3
Almost double roots
. 62
3.2
The implicit series theorem
. 63
3.3
The Newton polygon method
. 65
3.3.1
Newton polynomials and Newton degree
. 65
3.3.2
Decrease of the Newton degree during refinements
. . 66
3.3.3
Resolution of asymptotic polynomial equations
. 67
3.4
Cartesian representations
. 69
3.4.1
Cartesian representations
. 69
3.4.2
Inserting new infinitesimal monomials
. 71
3.5
Local communities
. 71
3.5.1
Cartesian communities
. 72
3.5.2
Local communities
. 72
3.5.3
Faithful Cartesian representations
. 73
3.5.4
Applications of faithful Cartesian representations
. . 74
3.5.5
The Newton polygon method revisited
. 75
Transseries
. 79
4.1
Totally ordered
exp-
log fields
. 80
4.2
Fields of grid-based
transseries
. 84
4.3
The field of grid-based
transseries
in
ж
. 87
4.3.1
Logarithmic
transseries
in
ж
. 88
4.3.2
Exponential extensions
. 88
4.3.3
Increasing unions
. 89
4.3.4
General
transseries
in
ж
. 89
4.3.5
Upward and downward shifting
. 90
4.4
The incomplete
transbasis
theorem
. 92
4.5
Convergent
transseries
. 94
5
Operations on
transseries .
97
5.1
Differentiation
. . 98
5.2
Integration
. 103
5.3
Functional composition
. . 106
5.4
Functional inversion
.
Ill
5.4.1
Existence of functional inverses
.
Ill
5.4.2
The
Translagrange
theorem
. 112
6
Grid-based operators
. 115
6.1
Multilinear grid-based operators
. 116
6.1.1
Multilinear grid-based operators
. 116
6.1.2
Operator supports
. 117
6.2
Strong tensor products
. 118
6.3
Grid-based operators
. 122
6.3.1
Definition and characterization
. 122
6.3.2
Multivariate grid-based operators and compositions
. 123
6.4
Atomic decompositions
. 124
6.4.1
The space of grid-based operators
. 124
6.4.2
Atomic decompositions
. 125
6.4.3
Combinatorial interpretation of atomic families
. 126
6.5
Implicit function theorems
. 127
6.5.1
The first implicit function theorem
. 128
6.5.2
The second implicit function theorem
. 130
6.5.3
The third implicit function theorem
. 130
6.6
Multilinear types
. 133
7
Linear differential equations
. 135
7.1
Linear differential operators
.,.,.,,. 136
7.1.1
Linear differential operators as series
. . 136
7.1.2
Multiplicative conjugation
. 137
7.1.3
Upward shifting
. 137
7.2
Differential Riccati polynomials
. 139
7.2.1
The differential Riccati polynomial
. 139
7.2.2
Properties of differential Riccati polynomials
. 140
7.3
The trace of a linear differential operator
. 141
7.3.1
The trace relative to plane
transbases
. 141
7.3.2
Dependence of the trace on the
transbasis
. 143
7.3.3
Remarkable properties of the trace
. 144
7.4
Distinguished solutions
. 146
7.4.1
Existence of distinguished right inverses
. 146
7.4.2
On the supports of distinguished solutions
. 148
7.5
The deformed Newton polygon method
. 151
7.5.1
Asymptotic Riccati equations modulo o(l)
. 151
7.5.2
Quasi-linear Riccati equations
. 152
7.5.3
Refinements
. 153
7.5.4
An algorithm for finding all solutions
. 155
7.6
Solving the homogeneous equation
. 156
7.7
Oscillating
transseries
. 158
7.7.1
Complex and oscillating
transseries
. 158
7.7.2
Oscillating solutions to linear differential equations
. 159
7.8
Factorization of differential operators
. 162
7.8.1
Existence of factorizations
. 162
7.8.2
Distinguished factorizations
. 163
8
Algebraic differential equations
. 165
8.1
Decomposing differential polynomials
. 166
8.1.1
Serial decomposition
. 166
8.1.2
Decomposition by degrees
. 167
8.1.3
Decomposition by orders
. 167
8.1.4
Logarithmic decomposition
. 168
8.2
Operations on differential polynomials
. 169
8.2.1
Additive conjugation
. 169
8.2.2
Multiplicative conjugation
. 170
8.2.3
Upward and downward shifting
. 170
8.3
The differential Newton polygon method
. 172
8.3.1
Differential Newton polynomials
. 172
8.3.2
Properties of differential Newton polynomials
. 173
8.3.3
Starting terms
. 174
8.3.4
Refinements
. 175
8.4
Finding the starting monomials
. 177
8.4.1
Algebraic starting monomials
. 177
8.4.2
Differential starting monomials
. 179
8.4.3
On the shape of the differential Newton polygon
. . . 180
8.5
Quasi-linear equations
. 182
8.5.1
Distinguished solutions
. 182
8.5.2
General
solutions
. 183
8.6
Unravelling almost multiple solutions
. 186
8.6.1
Partial unravellings
. 186
8.6.2
Logarithmic slow-down of the unravelling process
. . 188
8.6.3
On the stagnation of the depth
. 189
8.6.4
Bounding the depths of solutions
. 190
8.7
Algorithmic resolution
. 192
8.7.1
Computing starting terms
. 192
8.7.2
Solving the differential equation
. 194
8.8
Structure theorems
. 196
8.8.1
Distinguished unravellers
. 196
8.8.2
Distinguished solutions and their existence
. 197
8.8.3
On the intrusion of new exponentials
. 198
The intermediate value theorem
. 201
9.1
Compactification of total
orderings
. 202
9.1.1
The interval topology on total
orderings
. 202
9.1.2
Dedekind cuts
. 203
9.1.3
The compactness theorem
. 204
9.2
Compactification of totally ordered fields
. 206
9.2.1
Functorial properties of compactification
. 206
9.2.2
Compactification of totallj·-ordered fields
. 207
9.3
Compactification of grid-based
algebran
. 208
9.3.1
Monomial cuts
. 208
9.3.2
Width of a cut
. . . . ,. 209
9.3.3
Initializers
.,. . 210
9.3.4
Serial cuts
.,,,.,,.,.,
П0
9.3.5
Decomposition of
nou
serial
ente
. . , , 211
9.4
Compa.ctification of' the
transline
. 212
9.4.1
Exponentiation in
T
. 213
9.4.2
Classification of
transseries
cuts
. 213
9.4.3
Finite nested expansions
. 214
9.4.4
Infinite nested expansions
. 216
9.5
Integral neighbourhoods of cuts
. 219
9.5.1
Differentiation and integration of cuts
. 219
9.5.2
Integral nested expansions
. 219
9.5.3
Integral neighbourhoods
. 220
9.5.4
On the orientation of integral neighbourhoods
. 222
9.6 Differential
polynomials near cuts
. 223
9.6.1
Differential polynomials near serial cuts
. 223
9.6.2
Differential polynomials near constants
. 224
9.6.3
Differential polynomials near nested cuts
. 225
9.6.4
Differential polynomials near arbitrary cuts
. 226
9.6.5
On the sign of a differential polynomial
. 227
9.7
The intermediate value theorem
. 229
9.7.1
The quasi-linear case
. 229
9.7.2
Preserving sign changes during refinements
. 230
9.7.3
Proof of the intermediate value theorem
. 232
References
. 235
Glossary
. 241
Index
. 247 |
adam_txt |
Table
of
Contents
Foreword
.
XI
Introduction
. 1
The field with no escape
. 1
Historical perspectives
. 3
Outline of the contents
. 7
Notations
. 10
1
Orderings
. 11
1.1
Quasi-orderings
. 12
1.2
Ordinal numbers
. 15
1.3
Well-quasi-orderings
. 17
1.4
Kruskal's theorem
. 19
1.5
Ordered structures
. 2?,
1.6
Asymptotic relations
., , 25
1.7 Hahn
spaces
.,,.,,,,,,,, 29
1.8
Groups and rings with generalized powers
, , , ,., , 30
2
Grid-based series
. 33
2.1
Grid-based sets
. . . . 34
2.2
Grid-based series
. . . . 36
2.3
Asymptotic relations
. 40
2.3.1
Dominance and neglection
relations
. . 40
2.3.2
Flatness relations
. 42
2.3.3
Truncations
. 42
2.4
Strong linear algebra
. 44
2.4.1
Set-like notations for families
. 44
2.4.2
Infmitary operators
. 45
2.4.3
Strong abelian groups
. 46
2.4.4
Other strong structures
. 47
2.5
Grid-based summation
. 48
2.5.1
Ultra-strong grid-based algebras
. 48
2.5.2
Properties of grid-based summation
. . 49
2.5.3
Extension by strong linearity
. 50
2.6
Asymptotic scales
. 53
The Newton polygon method
. 57
3.1
The method illustrated by examples
. 58
3.1.1
The Newton polygon and its slopes
. 58
3.1.2
Equations with asymptotic constraints and refinements
. 59
3.1.3
Almost double roots
. 62
3.2
The implicit series theorem
. 63
3.3
The Newton polygon method
. 65
3.3.1
Newton polynomials and Newton degree
. 65
3.3.2
Decrease of the Newton degree during refinements
. . 66
3.3.3
Resolution of asymptotic polynomial equations
. 67
3.4
Cartesian representations
. 69
3.4.1
Cartesian representations
. 69
3.4.2
Inserting new infinitesimal monomials
. 71
3.5
Local communities
. 71
3.5.1
Cartesian communities
. 72
3.5.2
Local communities
. 72
3.5.3
Faithful Cartesian representations
. 73
3.5.4
Applications of faithful Cartesian representations
. . 74
3.5.5
The Newton polygon method revisited
. 75
Transseries
. 79
4.1
Totally ordered
exp-
log fields
. 80
4.2
Fields of grid-based
transseries
. 84
4.3
The field of grid-based
transseries
in
ж
. 87
4.3.1
Logarithmic
transseries
in
ж
. 88
4.3.2
Exponential extensions
. 88
4.3.3
Increasing unions
. 89
4.3.4
General
transseries
in
ж
. 89
4.3.5
Upward and downward shifting
. 90
4.4
The incomplete
transbasis
theorem
. 92
4.5
Convergent
transseries
. 94
5
Operations on
transseries .
97
5.1
Differentiation
. . 98
5.2
Integration
. 103
5.3
Functional composition
. . 106
5.4
Functional inversion
.
Ill
5.4.1
Existence of functional inverses
.
Ill
5.4.2
The
Translagrange
theorem
. 112
6
Grid-based operators
. 115
6.1
Multilinear grid-based operators
. 116
6.1.1
Multilinear grid-based operators
. 116
6.1.2
Operator supports
. 117
6.2
Strong tensor products
. 118
6.3
Grid-based operators
. 122
6.3.1
Definition and characterization
. 122
6.3.2
Multivariate grid-based operators and compositions
. 123
6.4
Atomic decompositions
. 124
6.4.1
The space of grid-based operators
. 124
6.4.2
Atomic decompositions
. 125
6.4.3
Combinatorial interpretation of atomic families
. 126
6.5
Implicit function theorems
. 127
6.5.1
The first implicit function theorem
. 128
6.5.2
The second implicit function theorem
. 130
6.5.3
The third implicit function theorem
. 130
6.6
Multilinear types
. 133
7
Linear differential equations
. 135
7.1
Linear differential operators
.,.,.,,. 136
7.1.1
Linear differential operators as series
. . 136
7.1.2
Multiplicative conjugation
. 137
7.1.3
Upward shifting
. 137
7.2
Differential Riccati polynomials
. 139
7.2.1
The differential Riccati polynomial
. 139
7.2.2
Properties of differential Riccati polynomials
. 140
7.3
The trace of a linear differential operator
. 141
7.3.1
The trace relative to plane
transbases
. 141
7.3.2
Dependence of the trace on the
transbasis
. 143
7.3.3
Remarkable properties of the trace
. 144
7.4
Distinguished solutions
. 146
7.4.1
Existence of distinguished right inverses
. 146
7.4.2
On the supports of distinguished solutions
. 148
7.5
The deformed Newton polygon method
. 151
7.5.1
Asymptotic Riccati equations modulo o(l)
. 151
7.5.2
Quasi-linear Riccati equations
. 152
7.5.3
Refinements
. 153
7.5.4
An algorithm for finding all solutions
. 155
7.6
Solving the homogeneous equation
. 156
7.7
Oscillating
transseries
. 158
7.7.1
Complex and oscillating
transseries
. 158
7.7.2
Oscillating solutions to linear differential equations
. 159
7.8
Factorization of differential operators
. 162
7.8.1
Existence of factorizations
. 162
7.8.2
Distinguished factorizations
. 163
8
Algebraic differential equations
. 165
8.1
Decomposing differential polynomials
. 166
8.1.1
Serial decomposition
. 166
8.1.2
Decomposition by degrees
. 167
8.1.3
Decomposition by orders
. 167
8.1.4
Logarithmic decomposition
. 168
8.2
Operations on differential polynomials
. 169
8.2.1
Additive conjugation
. 169
8.2.2
Multiplicative conjugation
. 170
8.2.3
Upward and downward shifting
. 170
8.3
The differential Newton polygon method
. 172
8.3.1
Differential Newton polynomials
. 172
8.3.2
Properties of differential Newton polynomials
. 173
8.3.3
Starting terms
. 174
8.3.4
Refinements
. 175
8.4
Finding the starting monomials
. 177
8.4.1
Algebraic starting monomials
. 177
8.4.2
Differential starting monomials
. 179
8.4.3
On the shape of the differential Newton polygon
. . . 180
8.5
Quasi-linear equations
. 182
8.5.1
Distinguished solutions
. 182
8.5.2
General
solutions
. 183
8.6
Unravelling almost multiple solutions
. 186
8.6.1
Partial unravellings
. 186
8.6.2
Logarithmic slow-down of the unravelling process
. . 188
8.6.3
On the stagnation of the depth
. 189
8.6.4
Bounding the depths of solutions
. 190
8.7
Algorithmic resolution
. 192
8.7.1
Computing starting terms
. 192
8.7.2
Solving the differential equation
. 194
8.8
Structure theorems
. 196
8.8.1
Distinguished unravellers
. 196
8.8.2
Distinguished solutions and their existence
. 197
8.8.3
On the intrusion of new exponentials
. 198
The intermediate value theorem
. 201
9.1
Compactification of total
orderings
. 202
9.1.1
The interval topology on total
orderings
. 202
9.1.2
Dedekind cuts
. 203
9.1.3
The compactness theorem
. 204
9.2
Compactification of totally ordered fields
. 206
9.2.1
Functorial properties of compactification
. 206
9.2.2
Compactification of totallj·-ordered fields
. 207
9.3
Compactification of grid-based
algebran
. 208
9.3.1
Monomial cuts
. 208
9.3.2
Width of a cut
. . . . ,. 209
9.3.3
Initializers
.,. . 210
9.3.4
Serial cuts
.,,,.,,.,.,
П0
9.3.5
Decomposition of
nou
serial
ente
. . , , 211
9.4
Compa.ctification of' the
transline
. 212
9.4.1
Exponentiation in
T
. 213
9.4.2
Classification of
transseries
cuts
. 213
9.4.3
Finite nested expansions
. 214
9.4.4
Infinite nested expansions
. 216
9.5
Integral neighbourhoods of cuts
. 219
9.5.1
Differentiation and integration of cuts
. 219
9.5.2
Integral nested expansions
. 219
9.5.3
Integral neighbourhoods
. 220
9.5.4
On the orientation of integral neighbourhoods
. 222
9.6 Differential
polynomials near cuts
. 223
9.6.1
Differential polynomials near serial cuts
. 223
9.6.2
Differential polynomials near constants
. 224
9.6.3
Differential polynomials near nested cuts
. 225
9.6.4
Differential polynomials near arbitrary cuts
. 226
9.6.5
On the sign of a differential polynomial
. 227
9.7
The intermediate value theorem
. 229
9.7.1
The quasi-linear case
. 229
9.7.2
Preserving sign changes during refinements
. 230
9.7.3
Proof of the intermediate value theorem
. 232
References
. 235
Glossary
. 241
Index
. 247 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hoeven, Joris van der |
author_facet | Hoeven, Joris van der |
author_role | aut |
author_sort | Hoeven, Joris van der |
author_variant | j v d h jvd jvdh |
building | Verbundindex |
bvnumber | BV021752534 |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247.4 |
callnumber-search | QA247.4 |
callnumber-sort | QA 3247.4 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
classification_tum | MAT 032f MAT 346f |
ctrlnum | (OCoLC)71747730 (DE-599)BVBBV021752534 |
dewey-full | 512.56 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.56 |
dewey-search | 512.56 |
dewey-sort | 3512.56 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV021752534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081118</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">061004s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N35,0540</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98074590X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540355908</subfield><subfield code="c">Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.)</subfield><subfield code="9">978-3-540-35590-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540355901</subfield><subfield code="c">Pb. : EUR 42.75 (freier Pr.), sfr 73.00 (freier Pr.)</subfield><subfield code="9">3-540-35590-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540355908</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11771975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71747730</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021752534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA247.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.56</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">34E13</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 032f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03C65</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 346f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68W30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoeven, Joris van der</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transseries and real differential algebra</subfield><subfield code="c">J. van der Hoeven</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 255 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1888</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [235] - 239</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre différentielle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiaalrekening</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Séries arithmétiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series, Arithmetic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialalgebra</subfield><subfield code="0">(DE-588)4134657-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialalgebra</subfield><subfield code="0">(DE-588)4134657-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1888</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1888</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2841853&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014965735&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014965735</subfield></datafield></record></collection> |
id | DE-604.BV021752534 |
illustrated | Illustrated |
index_date | 2024-07-02T15:32:33Z |
indexdate | 2024-07-20T09:07:56Z |
institution | BVB |
isbn | 9783540355908 3540355901 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014965735 |
oclc_num | 71747730 |
open_access_boolean | |
owner | DE-824 DE-91G DE-BY-TUM DE-29T DE-384 DE-83 DE-11 DE-739 DE-188 |
owner_facet | DE-824 DE-91G DE-BY-TUM DE-29T DE-384 DE-83 DE-11 DE-739 DE-188 |
physical | XII, 255 S. graph. Darst. 235 mm x 155 mm |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Hoeven, Joris van der Verfasser aut Transseries and real differential algebra J. van der Hoeven Berlin [u.a.] Springer 2006 XII, 255 S. graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1888 Literaturverz. S. [235] - 239 Algèbre différentielle Differentiaalrekening gtt Séries arithmétiques Differential algebra Series, Arithmetic Differentialalgebra (DE-588)4134657-9 gnd rswk-swf Differentialalgebra (DE-588)4134657-9 s DE-604 Lecture notes in mathematics 1888 (DE-604)BV000676446 1888 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2841853&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014965735&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hoeven, Joris van der Transseries and real differential algebra Lecture notes in mathematics Algèbre différentielle Differentiaalrekening gtt Séries arithmétiques Differential algebra Series, Arithmetic Differentialalgebra (DE-588)4134657-9 gnd |
subject_GND | (DE-588)4134657-9 |
title | Transseries and real differential algebra |
title_auth | Transseries and real differential algebra |
title_exact_search | Transseries and real differential algebra |
title_exact_search_txtP | Transseries and real differential algebra |
title_full | Transseries and real differential algebra J. van der Hoeven |
title_fullStr | Transseries and real differential algebra J. van der Hoeven |
title_full_unstemmed | Transseries and real differential algebra J. van der Hoeven |
title_short | Transseries and real differential algebra |
title_sort | transseries and real differential algebra |
topic | Algèbre différentielle Differentiaalrekening gtt Séries arithmétiques Differential algebra Series, Arithmetic Differentialalgebra (DE-588)4134657-9 gnd |
topic_facet | Algèbre différentielle Differentiaalrekening Séries arithmétiques Differential algebra Series, Arithmetic Differentialalgebra |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2841853&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014965735&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT hoevenjorisvander transseriesandrealdifferentialalgebra |