The number systems: foundations of algebra and analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
AMS Chelsea Publ.
2003
|
Ausgabe: | 2. ed., Repr |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 418 S. graph. Darst. |
ISBN: | 0821829157 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021748797 | ||
003 | DE-604 | ||
005 | 20060928 | ||
007 | t | ||
008 | 060928s2003 d||| |||| 00||| eng d | ||
020 | |a 0821829157 |9 0-8218-2915-7 | ||
035 | |a (OCoLC)266993230 | ||
035 | |a (DE-599)BVBBV021748797 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
082 | 0 | |a 512.7 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Feferman, Solomon |d 1928- |e Verfasser |0 (DE-588)128682167 |4 aut | |
245 | 1 | 0 | |a The number systems |b foundations of algebra and analysis |c by Solomon Feferman |
250 | |a 2. ed., Repr | ||
264 | 1 | |a Providence, RI |b AMS Chelsea Publ. |c 2003 | |
300 | |a XIV, 418 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Number theory | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grundlage |0 (DE-588)4158388-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 1 | 1 | |a Grundlage |0 (DE-588)4158388-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 2 | 1 | |a Grundlage |0 (DE-588)4158388-7 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014962036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014962036 |
Datensatz im Suchindex
_version_ | 1804135604726792192 |
---|---|
adam_text | CONTENTS
Chapteb
1.1
The mathematical method
1.2
Mathematical statements and thefr structure
Logical connectives
Chapter
2.1
Sets as abstractions from conditions
cept of set
sets
2.2
Intersection, union, and complement
algebra of sets
2.3
Relations as abstractions from conditions
and cartesian products
Ternary (etc.) relations
tion
and partitions
Converse and composition of functions
2.4
Isomorphism
tems
Chapteb
3.1
Peano systems and inductive proofs
systems
3.2
Recursive definitions
Multiplication of positive integers
other operations
3.3
Simply ordered systems
ing and the arithmetical operations
3.4
Finite and infinite sequences
ucts
Some special sums and products
Знартев
4.1
Practical motivations
mutative rings with unity
4.2
Ordered integral domains
4.3
The existence theorem
tion
4.4
More general associative and commutative laws
metric series; binomial expansion
4.5
The division algorithm
primes
integers into primes
4.6
Homomorphism
phism
to a Diophantine problem
)haptbe
5.1
Existence and uniqueness of simple transcendental exten¬
sions
derivatives
5.2
fe-fold transcendental extensions
mials
nomials
Chapter
6.1
Algebraic motivations
Melds
fields
6.2
The existence theorem
tients
6.3
Systems of linear equations
domains
6.4
Basic properties of divisibility
The division algorithm for polynomials
mon divisors
nomials
Chapter
7.1
Algebraic motivations
Upper and lower sections; continuously ordered systems
Existence of continuously ordered systems
lower bounds and least upper bounds
7.2
The Archimedean property
ordered fields
zano;Weierstrass Theorem
ously ordered field
7.3
Positional notations for real numbers
The exponential function
7.4
Weierstrass
roots
Sturm s theorem
bers
7.5
Cantor s method
sets
Liouville s method
Chapter
8.1
Characterization of the complex numbers
jugates
metric interpretation
erties of the trigonometric functions
representation;
8.2
Limits and the Bolaano-Weierstrass theorem extended
Continuity extended
minimum of the modulus
complex algebra
nomials
8.3
Roots of polynomials over a subfield
subfields
cubic equations
On equations of higher degree
Chapter
9.1
The general extension process
Simple transcendental extensions
sions
9.2
Linearly generated extensions; bases and dimension
field extensions
9.3
Basic geometric notions
plane
braic equivalent of constructibility
struction problems
9.4
Appendix I Some Axioms for Set Theory
Appendix II The Analytical Basis of the
Trigonometric Functions
Bibliography
Index
|
adam_txt |
CONTENTS
Chapteb
1.1
The mathematical method
1.2
Mathematical statements and thefr'structure
Logical connectives
Chapter
2.1
Sets as abstractions from conditions
cept of set
sets
2.2
Intersection, union, and complement
algebra of sets
2.3
Relations as abstractions from conditions
and cartesian products
Ternary (etc.) relations
tion
and partitions
Converse and composition of functions
2.4
Isomorphism
tems
Chapteb
3.1
Peano systems and inductive proofs
systems
3.2
Recursive definitions
Multiplication of positive integers
other operations
3.3
Simply ordered systems
ing and the arithmetical operations
3.4
Finite and infinite sequences
ucts
Some special sums and products
Знартев
4.1
Practical motivations
mutative rings with unity
4.2
Ordered integral domains
4.3
The existence theorem
tion
4.4
More general associative and commutative laws
metric series; binomial expansion
4.5
The division algorithm
primes
integers into primes
4.6
Homomorphism
phism
to a Diophantine problem
)haptbe
5.1
Existence and uniqueness of simple transcendental exten¬
sions
derivatives
5.2
fe-fold transcendental extensions
mials
nomials
Chapter
6.1
Algebraic motivations
Melds
fields
6.2
The existence theorem
tients
6.3
Systems of linear equations
domains
6.4
Basic properties of divisibility
The division algorithm for polynomials
mon divisors
nomials
Chapter
7.1
Algebraic motivations
Upper and lower sections; continuously ordered systems
Existence of continuously ordered systems
lower bounds and least upper bounds
7.2
The Archimedean property
ordered fields
zano;Weierstrass Theorem
ously ordered field
7.3
Positional notations for real numbers
The exponential function
7.4
Weierstrass'
roots
Sturm's theorem
bers
7.5
Cantor's method
sets
Liouville's method
Chapter
8.1
Characterization of the complex numbers
jugates
metric interpretation
erties of the trigonometric functions
representation;
8.2
Limits and the Bolaano-Weierstrass theorem extended
Continuity extended
minimum of the modulus
complex algebra
nomials
8.3
Roots of polynomials over a subfield
subfields
cubic equations
On equations of higher degree
Chapter
9.1
The general extension process
Simple transcendental extensions
sions
9.2
Linearly generated extensions; bases and dimension
field extensions
9.3
Basic geometric notions
plane
braic equivalent of constructibility
struction problems
9.4
Appendix I Some Axioms for Set Theory
Appendix II The Analytical Basis of the
Trigonometric Functions
Bibliography
Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Feferman, Solomon 1928- |
author_GND | (DE-588)128682167 |
author_facet | Feferman, Solomon 1928- |
author_role | aut |
author_sort | Feferman, Solomon 1928- |
author_variant | s f sf |
building | Verbundindex |
bvnumber | BV021748797 |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)266993230 (DE-599)BVBBV021748797 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed., Repr |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01707nam a2200457 c 4500</leader><controlfield tag="001">BV021748797</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060928 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060928s2003 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821829157</subfield><subfield code="9">0-8218-2915-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)266993230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021748797</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feferman, Solomon</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128682167</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The number systems</subfield><subfield code="b">foundations of algebra and analysis</subfield><subfield code="c">by Solomon Feferman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., Repr</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">AMS Chelsea Publ.</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 418 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grundlage</subfield><subfield code="0">(DE-588)4158388-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Grundlage</subfield><subfield code="0">(DE-588)4158388-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Grundlage</subfield><subfield code="0">(DE-588)4158388-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014962036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014962036</subfield></datafield></record></collection> |
id | DE-604.BV021748797 |
illustrated | Illustrated |
index_date | 2024-07-02T15:31:35Z |
indexdate | 2024-07-09T20:43:09Z |
institution | BVB |
isbn | 0821829157 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014962036 |
oclc_num | 266993230 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | XIV, 418 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | AMS Chelsea Publ. |
record_format | marc |
spelling | Feferman, Solomon 1928- Verfasser (DE-588)128682167 aut The number systems foundations of algebra and analysis by Solomon Feferman 2. ed., Repr Providence, RI AMS Chelsea Publ. 2003 XIV, 418 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Number theory Analysis (DE-588)4001865-9 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Grundlage (DE-588)4158388-7 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s DE-604 Analysis (DE-588)4001865-9 s Grundlage (DE-588)4158388-7 s Algebra (DE-588)4001156-2 s Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014962036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Feferman, Solomon 1928- The number systems foundations of algebra and analysis Number theory Analysis (DE-588)4001865-9 gnd Zahlentheorie (DE-588)4067277-3 gnd Algebra (DE-588)4001156-2 gnd Grundlage (DE-588)4158388-7 gnd |
subject_GND | (DE-588)4001865-9 (DE-588)4067277-3 (DE-588)4001156-2 (DE-588)4158388-7 |
title | The number systems foundations of algebra and analysis |
title_auth | The number systems foundations of algebra and analysis |
title_exact_search | The number systems foundations of algebra and analysis |
title_exact_search_txtP | The number systems foundations of algebra and analysis |
title_full | The number systems foundations of algebra and analysis by Solomon Feferman |
title_fullStr | The number systems foundations of algebra and analysis by Solomon Feferman |
title_full_unstemmed | The number systems foundations of algebra and analysis by Solomon Feferman |
title_short | The number systems |
title_sort | the number systems foundations of algebra and analysis |
title_sub | foundations of algebra and analysis |
topic | Number theory Analysis (DE-588)4001865-9 gnd Zahlentheorie (DE-588)4067277-3 gnd Algebra (DE-588)4001156-2 gnd Grundlage (DE-588)4158388-7 gnd |
topic_facet | Number theory Analysis Zahlentheorie Algebra Grundlage |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014962036&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fefermansolomon thenumbersystemsfoundationsofalgebraandanalysis |